Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune mechanisms of salt-sensitive hypertension and renal end-organ damage

Abstract

Immune mechanisms have been recognized to have a role in the pathogenesis of hypertension, vascular disease and kidney damage in humans and animals for many decades. Contemporary advances in experimentation have permitted a deeper understanding of the mechanisms by which inflammation and immunity participate in cardiovascular disease, and multiple observations have demonstrated strong correlations between the discoveries made in animals and those made in patients with hypertension. Of note, striking phenotypic similarities have been observed in the infiltration of immune cells in the kidney and the development of end-organ damage in patients and animal models with sodium-sensitive hypertension. The available data suggest that an initial salt-induced increase in renal perfusion pressure, which is likely independent of immune mechanisms, induces the infiltration of immune cells into the kidney. The mechanisms mediating immune cell infiltration in the kidney are not well understood but likely involve tissue damage, the direct influence of salt to stimulate immune cell activation, sympathetic nerve stimulation or other factors. The infiltrating cells then release cytokines, free radicals and other factors that contribute to renal damage as well as increased retention of sodium and water and vascular resistance, which lead to the further development of hypertension.

Key points

  • Individuals with hypertension, particularly those with salt sensitivity of blood pressure, have an associated increase in renal end-organ damage that is accompanied by the infiltration of macrophages and T lymphocytes into the kidney.

  • Pharmacological and genetic studies have demonstrated that immune mechanisms have a role in the development of disease in experimental models of hypertension and related kidney damage.

  • The molecular mechanisms that mediate the effects of immune cells in hypertension include the release of cytokines and other molecular species that alter physiological function and/or elicit tissue damage.

  • Evidence indicates that immune activation in hypertension occurs secondary to primary haemodynamic or other stimuli.

  • The processes that activate immunity in hypertension are unclear but may involve sympathetic stimulation, pressure-mediated tissue damage, exposure of antigens or neoantigens and other effects related to high salt intake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Renal damage and immune cell infiltration are increased in patients with hypertension.
Fig. 2: Immune cells in hypertension and end-organ damage.
Fig. 3: T cell deficiency attenuates Dahl salt-sensitive hypertension and albuminuria.
Fig. 4: Elevated perfusion pressure mediates kidney infiltration of immune cells in Dahl salt-sensitive rats.
Fig. 5: Hypothesized role of immune mechanisms in the development of salt-sensitive hypertension.

Similar content being viewed by others

References

  1. Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Poulter, N. R., Prabhakaran, D. & Caulfield, M. Hypertension. Lancet 386, 801–812 (2015).

    PubMed  Google Scholar 

  3. Kearney, P. M. et al. Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005).

    Article  PubMed  Google Scholar 

  4. Rapsomaniki, E. et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 383, 1899–1811 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Benjamin, E. J. et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 137, e67–e492 (2018).

    PubMed  Google Scholar 

  6. Muntner, P. et al. Potential U. S. population impact of the 2017 American College of Cardiology/American Heart Association high blood pressure guideline. Circulation 137, 109–118 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. Kotchen, T. A., Cowley, A. W. Jr & Frohlich, E. D. Salt in health and disease-a delicate balance. N. Engl. J. Med. 368, 1229–1237 (2013).

    CAS  Google Scholar 

  8. Elijovich, F. et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension 68, e7–e46 (2016).

    CAS  PubMed  Google Scholar 

  9. He, J. et al. Gender differences in blood pressure response to dietary sodium intervention in the GenSalt study. J. Hypertens. 27, 48–54 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawasaki, T., Delea, C. S., Bartter, F. C. & Smith, H. The effect of high sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am. J. Med. 64, 193–198 (1978).

    CAS  PubMed  Google Scholar 

  11. Weinberger, M. H., Miller, J. Z., Luft, F. C., Grim, C. E. & Fineberg, N. S. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 8, II127–II134 (1986).

    CAS  PubMed  Google Scholar 

  12. Morimoto, A. et al. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet 350, 1734–1737 (1997).

    CAS  PubMed  Google Scholar 

  13. Weinberger, M. H., Fineberg, N. S., Fineberg, S. E. & Weinberger, M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 37, 429–432 (2001).

    CAS  PubMed  Google Scholar 

  14. Hughson, M. D. et al. Associations of glomerular number and birth weight with clinicopathological features of African Americans and Whites. Am. J. Kidney Dis. 52, 18–28 (2008).

    PubMed  Google Scholar 

  15. Johnson, R. J. et al. Subtle renal injury is a likely common mechanism for salt-sensitive essential hypertension. Hypertension 45, 326–330 (2005).

    CAS  PubMed  Google Scholar 

  16. Johnson, R. J., Herrera-Acosta, J., Schreiner, G. F. & Rodríguez-Iturbe, B. Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N. Engl. J. Med. 346, 913–923 (2002).

    CAS  Google Scholar 

  17. Mattson, D. L. Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury. Am. J. Physiol. 307, F499–F508 (2014).

    CAS  Google Scholar 

  18. Rodríguez-Iturbe, B., Vaziri, N. D., Herrera-Acosta, J. & Johnson, R. J. Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all. Am. J. Physiol. 286, F606–F616 (2004).

    Google Scholar 

  19. Stewart, T., Jung, F. F., Manning, J. & Vehaskari, V. M. Kidney immune cell infiltration and oxidative stress contribute to prenatally programmed hypertension. Kidney Int. 68, 2180–2188 (2005).

    CAS  PubMed  Google Scholar 

  20. Rodríguez-Iturbe, B., Pons, H., Quiroz, Y., Lanaspa, M. A. & Johnson, R. J. Autoimmunity in the pathogenesis of hypertension. Nat. Rev. Nephrol. 10, 56–62 (2014).

    PubMed  Google Scholar 

  21. Rodríguez-Iturbe, B. Renal infiltration of immunocompetent cells: cause and effect of sodium-sensitive hypertension. Clin. Exp. Nephrol. 14, 105–111 (2010).

    PubMed  Google Scholar 

  22. Rodríguez-Iturbe, B. Autoimmunity in the pathogenesis of hypertension. Hypertension 67, 477–483 (2016).

    PubMed  Google Scholar 

  23. Harrison, D. G. et al. Inflammation, immunity, and hypertension. Hypertension 57, 132–140 (2011).

    CAS  PubMed  Google Scholar 

  24. Madhur, M. S. & Harrison, D. G. Synapses, signals, CDs, and cytokines: Interactions of the autonomic nervous system and immunity in hypertension. Circ. Res. 111, 1113–1116 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Norlander, A. E., Madhur, M. S. & Harrison, D. G. The immunology of hypertension. J. Exp. Med. 215, 21–33 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ryan, M. J. An update on immune system activation in the pathogenesis of hypertension. Hypertension 62, 226–230 (2013).

    CAS  PubMed  Google Scholar 

  27. Schiffrin, E. L. T lymphocytes: a role in hypertension? Curr. Opin. Nephrol. Hypertens. 19, 181–186 (2010).

    CAS  PubMed  Google Scholar 

  28. Norlander, A. E. & Madhur, M. S. Inflammatory cytokines regulate renal sodium transporters: how, where, and why? Am. J. Physiol. 313, F141–F144 (2017).

    CAS  Google Scholar 

  29. Sommers, S. C., Relman, A. S. & Smithwick, R. H. Histologic studies of kidney biopsy specimens from patients with hypertension. Am. J. Pathol. 34, 685–715 (1958).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Olsen, F. Inflammatory cellular reaction in hypertensive vascular disease in man. Acta Path. Microbiol. Scand. A 80, 253–256 (1972).

    CAS  Google Scholar 

  31. Paronetto, F. Immunocytochemical observations on the vascular necrosis and renal glomerular lesions of malignant nephrosclerosis. Am. J. Pathol. 46, 901–915 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ebringer, A. & Doyle, A. E. Raised Serum IgG levels in hypertension. Br. Med. J. 5702, 146–148 (1970).

    Google Scholar 

  33. Olsen, F. Immunological factors and high blood pressure in man. Acta Path. Microbiol. Scand. A 80, 257–259 (1972).

    CAS  Google Scholar 

  34. Youn, J.-C. et al. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension 62, 126–133 (2013).

    CAS  PubMed  Google Scholar 

  35. Seaberg, E. C. et al. Association between highly active antiretroviral therapy and hypertension in a large cohort of men followed from 1984 to 2003. AIDS 19, 953–960 (2005).

    PubMed  Google Scholar 

  36. Herrera, J., Ferrebuz, A., García MacGregor, E. & Rodriguez-Iturbe, B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J. Am. Soc. Nephrol. 17, 218–225 (2006).

    Google Scholar 

  37. Ehret, G. B., O’Connor, A. A., Weder, A., Cooper, R. S. & Chakravarti, A. Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study. Eur. J. Hum. Genet. 17, 1650–1657 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fox, E. R. et al. Association of genetic variation with systolic and diastolic blood pressure among African Americans: the candidate gene association resource study. Hum. Mol. Genet. 20, 2273–2284 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shinzawa, M. et al. Gene polymorphisms contributing to hypertension in immunoglobulin A nephropathy. Clin. Exp. Nephrol. 16, 250–258 (2012).

    CAS  PubMed  Google Scholar 

  41. Poesen, R. et al. Associations of soluble CD14 and endotoxin with mortality, cardiovascular disease, and progression of kidney disease among patients with CKD. Clin. J. Am. Soc. Nephrol. 4, 1525–1533 (2015).

    Google Scholar 

  42. Devalliere, J. & Charreau, B. The Adaptor Lnk (Sh2b3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem. Pharmacol. 82, 1391–1402 (2011).

    CAS  PubMed  Google Scholar 

  43. Brancato, S. K. et al. Toll-like receptor 4 signaling regulates the acute local inflammatory response to injury and the fibrosis/neovascularization of sterile wounds. Wound Repair Regen. 21, 624–633 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. Triantafilou, M. & Triantafilou, K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 23, 301–304 (2002).

    CAS  PubMed  Google Scholar 

  45. Irving, B. A., Chan, A. C. & Weiss, A. Functional characterization of a signal transducing motif present in the T cell antigen receptor zeta chain. J. Exp. Med. 177, 1093–1103 (1993).

    CAS  PubMed  Google Scholar 

  46. Itoh, Y. et al. Structural analysis of the CD3 zeta/eta locus of the rat. Expression of zeta but not eta transcripts by rat T cells. J. Immun. 151, 4705–4717 (1993).

    CAS  PubMed  Google Scholar 

  47. Sussman, J. J. et al. Failure to synthesize the T cell CD3-ζ chain: structure and function of a partial T cell receptor complex. Cell 52, 85–96 (1988).

    CAS  PubMed  Google Scholar 

  48. White, F. N. & Grollman, A. Autoimmune factors associated with infarction of the kidney. Nephron 1, 93–102 (1964).

    CAS  PubMed  Google Scholar 

  49. Okuda, T. & Grollman, A. Passive transfer of autoimmune induced hypertension in the rat by lymph node cells. Tex. Rep. Biol. Med. 25, 257–264 (1967).

    CAS  PubMed  Google Scholar 

  50. Olsen, F. Transfer of arterial hypertension by splenic cells from DOCA-salt hypertensive and renal hypertensive rats to normotensive recipients. Acta Pathol. Microbiol. Scand. C 88, 1–5 (1980).

    CAS  PubMed  Google Scholar 

  51. Svendsen, U. G. Evidence for an initial, thymus independent and a chronic, thymus dependent phase of DOCA and salt hypertension in mice. Acta Pathol. Microbiol. Scand. A 84, 523–528 (1976).

    CAS  PubMed  Google Scholar 

  52. Khraibi, A. A., Norman, R. A. & Dzielak, D. J. Chronic immunosuppression attenuates hypertension in Okamoto spontaneously hypertensive rats. Am. J. Physiol. 247, H722–H726 (1984).

    CAS  PubMed  Google Scholar 

  53. Norman, R. A. Jr., Galloway, P. G., Dzielak, D. J. & Huang, M. Mechanisms of partial infarct hypertension. J. Hypertension 6, 397–403 (1988).

    Google Scholar 

  54. Khraibi, A. A., Smith, T. L., Hutchins, P. M., Lynch, C. D. & Dusseau, J. W. Thymectomy delays the development of hypertension in Okamoto spontaneously hypertensive rats. J. Hypertens. 5, 537–541 (1987).

    CAS  PubMed  Google Scholar 

  55. Khraibi, A. A. Association between disturbances in the immune system and hypertension. Am. J. Hypertens. 4, 635–641 (1991).

    CAS  PubMed  Google Scholar 

  56. Ba, D., Takeichi, N., Kodama, T. & Kobayashi, H. Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts. J. Immunol. 128, 1211–1216 (1982).

    CAS  PubMed  Google Scholar 

  57. Tuttle, R. S. & Boppana, D. P. Antihypertensive effect of interleukin-2. Hypertension 15, 89–94 (1990).

    CAS  PubMed  Google Scholar 

  58. Bravo, Y., Quiroz, Y., Ferrebuz, A., Vaziri, N. D. & Rodríguez-Iturbe, B. Mycophenolate mofetil administration reduces renal inflammation, oxidative stress, and arterial pressure in rats with lead-induced hypertension. Am. J. Physiol. 293, F616–F623 (2007).

    CAS  Google Scholar 

  59. Rodríguez-Iturbe, B. & Johnson, R. J. The role of inflammatory cells in the kidney in the induction and maintenance of hypertension. Nephrol. Dial. Transplant 21, 260–263 (2006).

    PubMed  Google Scholar 

  60. Rodríguez-Iturbe, B. et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int. 59, 2222–2232 (2001).

    PubMed  Google Scholar 

  61. Rodríguez-Iturbe, B. et al. Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am. J. Physiol. 282, F191–F201 (2002).

    Google Scholar 

  62. Franco, M. et al. Renal angiotensin II concentration and interstitial infiltration of immune cells are correlated with blood pressure levels in salt-sensitive hypertension. Am. J. Physiol. 293, R251–R256 (2007).

    CAS  Google Scholar 

  63. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Alvarez, V., Quiroz, Y., Nava, M., Pons, H. & Rodríguez-Iturbe, B. Overload proteinuria is followed by salt-sensitive hypertension caused by renal infiltration of immune cells. Am. J. Physiol. 283, F1132–F1141 (2002).

    Google Scholar 

  65. Quiroz, Y. et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from nitric oxide synthase inhibition. Am. J. Physiol. 281, F38–F47 (2001).

    CAS  Google Scholar 

  66. Pons, H. et al. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. Am. J. Physiol. 304, F289–F299 (2013).

    CAS  Google Scholar 

  67. Itani, H. A. et al. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 68, 123–132 (2016).

    CAS  PubMed  Google Scholar 

  68. Itani, H. A. et al. CD70 exacerbates blood pressure elevation and renal damage in response to repeated hypertensive stimuli. Circ. Res. 118, 1233–1243 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Trott, D. W. et al. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 64, 1108–1115 (2014).

    CAS  PubMed  Google Scholar 

  70. Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

    CAS  PubMed  Google Scholar 

  71. Kamat, N. V. et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-gamma−/− and interleukin-17A−/− mice. Hypertension 65, 569–576 (2015).

    CAS  PubMed  Google Scholar 

  72. Norlander, A. E. et al. Interleukin-17A regulates renal sodium transporters and renal injury in Angiotensin II-induced hypertension. Hypertension 68, 167–174 (2016).

    CAS  PubMed  Google Scholar 

  73. Barbaro, N. R. et al. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 21, 1009–1020 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kirabo, A. et al. DC isoketal-modified proteins activate T cells and promote hypertension. J. Clin. Invest. 124, 4642–4656 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kossmann, S. & Wenzel, P. Under pressure a new role for CD11c+ myeloid cells in hypertension. Hypertension 71, 557–558 (2018).

    CAS  PubMed  Google Scholar 

  76. De Ciuceis, C. et al. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of Angiotensin II–infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in Angiotensin-induced vascular injury. Arter. Thromb. Vasc. Biol. 25, 2106–2113 (2005).

    Google Scholar 

  77. Rickard, A. J. et al. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension 54, 537–543 (2009).

    CAS  PubMed  Google Scholar 

  78. Hevia, D. et al. Myeloid CD11c+ antigen-presenting cells ablation prevents hypertension in response to angiotensin II plus high-salt diet. Hypertension 71, 709–718 (2018).

    CAS  PubMed  Google Scholar 

  79. Wang, L. et al. Genetic and pharmacologic inhibition of the chemokine receptor CXCR2 prevents experimental hypertension and vascular dysfunction. Circulation 134, 1353–1368 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chan, C. T. et al. Obligatory role for B cells in the development of angiotensin II-dependent hypertension. Hypertension 66, 1023–1033 (2015).

    CAS  PubMed  Google Scholar 

  81. Caillon, A. et al. γδ T cells mediate angiotensin II-induced hypertension and vascular injury. Circulation 135, 2155–2162 (2017).

    CAS  PubMed  Google Scholar 

  82. Shah, K. H. et al. Myeloid suppressor cells accumulate and regulate blood pressure in hypertension. Circ. Res. 117, 858–869 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Barhoumi, T. et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension 57, 469–476 (2011).

    CAS  PubMed  Google Scholar 

  84. Matrougui, K. Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice. Am. J. Pathol. 178, 434–441 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mian, M. O., Barhoumi, T., Briet, M., Paradis, P. & Schiffrin, E. L. Deficiency of T-regulatory cells exaggerates angiotensin II-induced microvascular injury by enhancing immune responses. J. Hypertens. 34, 97–108 (2016).

    CAS  PubMed  Google Scholar 

  86. Katsuki, M., Hirooka, Y., Kishi, T. & Sunagawa, K. Decreased proportion of Foxp3+CD4+ regulatory T cells contributes to the development of hypertension in genetically hypertensive rats. J. Hypertens. 33, 773–783 (2015).

    CAS  PubMed  Google Scholar 

  87. De Miguel, C., Das, S., Lund, H. & Mattson, D. L. T-lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am. J. Physiol. 298, R1136–R1142 (2010).

    Google Scholar 

  88. Campese, V. M. Salt sensitivity in hypertension. Hypertension 23, 531–550 (1994).

    CAS  PubMed  Google Scholar 

  89. Cowley, A. W. Jr & Roman, R. J. The role of the kidney in hypertension. JAMA 275, 1581–1589 (1996).

    PubMed  Google Scholar 

  90. Feldman, H. I., Klag, M. J., Chiapella, A. P. & Whelton, P. K. End-stage renal disease in US minority groups. Am. J. Kidney Dis. 19, 397–410 (1992).

    CAS  PubMed  Google Scholar 

  91. Grim, C. E. et al. Blood pressure in blacks. Hypertension 15, 803–809 (1990).

    CAS  PubMed  Google Scholar 

  92. Lackland, D. T. & Keil, J. E. Epidemiology of hypertension in African Americans. Semin. Nephrol. 16, 63–70 (1996).

    CAS  PubMed  Google Scholar 

  93. Bigazzi, R. et al. Microalbuminuria in salt-sensitive patients. A marker for renal and cardiovascular risk factors. Hypertension 23, 195–199 (1994).

    CAS  PubMed  Google Scholar 

  94. Mattson, D. L., James, L., Berdan, E. A. & Meister, C. J. Immune suppression attenuates hypertension and renal disease in the Dahl salt-sensitive rat. Hypertension 48, 149–156 (2006).

    CAS  PubMed  Google Scholar 

  95. Ozawa, Y., Kobori, H., Suzaki, Y. & Navar, L. G. Sustained renal interstitial macrophage infiltration following chronic angiotensin II infusions. Am. J. Physiol. 292, F330–F339 (2007).

    CAS  Google Scholar 

  96. Mai, M. et al. Early changes in hypertension induced renal injury. Hypertension 22, 754–765 (1993).

    CAS  PubMed  Google Scholar 

  97. Pechman, K. R., Basile, D. P., Lund, H. & Mattson, D. L. Immune suppression blocks sodium-sensitive hypertension following recovery from ischemic acute renal failure. Am. J. Physiol. 294, R1234–R1239 (2008).

    CAS  Google Scholar 

  98. Rudemiller, N., Lund, H., Jacob, H. J., Geurts, A. M. & Mattson, D. L. CD247 modulates blood pressure by altering T lymphocyte infiltration in the kidney. Hypertension 63, 559–564 (2014).

    CAS  PubMed  Google Scholar 

  99. De Miguel, C., Lund, H., Di, F. & Mattson, D. L. Infiltrating T lymphocytes in the kidney increase oxidative stress and lead to hypertension and renal disease. Am. J. Physiol. 300, F734–F742 (2011).

    Google Scholar 

  100. De Miguel, C., Lund, H. & Mattson, D. L. High dietary protein exacerbates hypertension and renal damage in Dahl salt-sensitive (SS) rats by increasing infiltrating immune cells. Hypertension 57, 269–274 (2011).

    PubMed  Google Scholar 

  101. Bendich, A., Belisle, E. H. & Strausser, H. R. Immune system modulation and its effect on the blood pressure of the spontaneously hypertensive male and female rat. Biochem. Biophys. Res. Comm. 99, 600–607 (1981).

    CAS  PubMed  Google Scholar 

  102. Geurts, A. M. et al. Generation of gene-specific mutated rats using zinc-finger nucleases. Methods Mol. Biol. 597, 211–225 (2010).

    CAS  PubMed  Google Scholar 

  103. Geurts, A. M. et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 24, 433 (2009).

    Google Scholar 

  104. Mattson, D. L. et al. Genetic mutation of recombination activating gene 1 in Dahl salt sensitive rats attenuates hypertension and renal damage. Am. J. Physiol. 304, R407–R414 (2013).

    CAS  Google Scholar 

  105. Rudemiller, N. P. et al. Mutation of SH2B3 (LNK), a GWAS candidate for hypertension, attenuates Dahl SS hypertension via inflammatory modulation. Hypertension 65, 1111–1117 (2015).

    CAS  PubMed  Google Scholar 

  106. Rieux-Laucat, F. et al. Inherited and somatic CD3ζ mutations in a patient with T cell deficiency. N. Engl. J. Med. 354, 1913–1921 (2006).

    CAS  PubMed  Google Scholar 

  107. Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

    CAS  PubMed  Google Scholar 

  108. Maranon, R. O. et al. Roles for the sympathetic nervous system, renal nerves, and CNS melanocortin-4 receptor in the elevated blood pressure in hyperandrogenemic female rats. Am. J. Physiol. 308, R708–R713 (2015).

    CAS  Google Scholar 

  109. Andersson, U. & Tracey, K. J. Neural reflexes in inflammation and immunity. J. Exp. Med. 209, 1057–1068 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Marvar, P. J. et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ. Res. 107, 263–270 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Carnevale, D. et al. The angiogenic factor PlGF mediates a neuroimmune interaction in the spleen to allow the onset of hypertension. Immunity 41, 737–752 (2014).

    CAS  PubMed  Google Scholar 

  112. Mori, T. et al. High perfusion pressure accelerates renal injury in salt-sensitive hypertension. J. Am. Soc. Nephrol. 19, 1472–1482 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Evans, L. C. et al. Increased perfusion pressure drives renal T cell infiltration in the Dahl salt-sensitive rat. Hypertension 70, 543–551 (2017).

    CAS  PubMed  Google Scholar 

  114. Bidani, A. K., Griffin, K. A., Williamson, G., Wang, X. & Loutzenhiser, R. Protective importance of the myogenic response in the renal circulation. Hypertension 54, 393–398 (2009).

    CAS  PubMed  Google Scholar 

  115. Burke, M., Pabbidi, M. R., Farley, J. & Roman, R. J. Molecular mechanisms of renal blood flow autoregulation. Curr. Vasc. Pharmacol. 12, 845–858 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Campese, V. M., Parise, M., Karubian, F. & Bigazzi, R. Abnormal renal hemodynamics in Black salt-sensitive patients with hypertension. Hypertension 18, 805–812 (1991).

    CAS  PubMed  Google Scholar 

  117. Karlsen, F. M., Andersen, C. B., Leyssac, P. P. & Holstein-Rathlou, N. H. Dynamic autoregulation and renal injury in Dahl rats. Hypertension 30, 975–983 (1997).

    CAS  PubMed  Google Scholar 

  118. Takenaka, T., Forster, H., De Micheli, A. & Epstein, M. Impaired myogenic responsiveness of renal microvessels in Dahl salt sensitive rats. Circ. Res. 71, 471–480 (1992).

    CAS  PubMed  Google Scholar 

  119. Loperena, R. et al. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc. Res. 114, 1547–1563 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Vinh, A. et al. Inhibition and genetic ablation of the B7/CD28 T cell costimulation axis prevents experimental hypertension. Circulation 122, 2529–2537 (2010).

    PubMed  PubMed Central  Google Scholar 

  121. Soos, T. J. et al. CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int. 70, 591–596 (2006).

    CAS  PubMed  Google Scholar 

  122. Woltman, A. M. et al. Quantification of dendritic cell subsets in human renal tissue under normal and pathological conditions. Kidney Int. 71, 1001–1008 (2007).

    CAS  PubMed  Google Scholar 

  123. John, R. & Nelson, P. J. Dendritic cells in the kidney. Am. J. Soc. Nephrol 18, 2628–2635 (2007).

    Google Scholar 

  124. Westhorpe, C. L. V. et al. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes. Nat. Commun. 9, 747 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. Devi, S. et al. Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat. Med. 19, 107–112 (2013).

    CAS  PubMed  Google Scholar 

  126. Finsterbusch, M. et al. Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus. Proc. Natl Acad. Sci. USA 113, E5172–E5181 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Macconi, D. et al. Proteasomal processing of albumin by renal dendritic cells generates antigenic peptides. J. Am. Soc. Nephrol. 20, 123–130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Binger, K. J., Linker, R. A., Muller, D. N. & Kleinewietfeld, M. Sodium chloride, SGK1, and Th17 activation. Pflugers Arch. 467, 543–550 (2015).

    CAS  PubMed  Google Scholar 

  131. Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Jantsch, J. et al. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab. 21, 493–501 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Titze, J. Sodium balance is not just a renal affair. Curr. Opin. Nephrol. Hypertens. 23, 101–105 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Yi, B. et al. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res. 166, 103–110 (2015).

    CAS  PubMed  Google Scholar 

  135. O’Leary, R., Penrose, H., Miyata, K. & Satou, R. Macrophage-derived Il-6 contributes to AngII-mediated angiotensinogen stimulation in renal proximal tubular cells. Am. J. Physiol. 310, F1000–F1007 (2016).

    Google Scholar 

  136. Wade, B., Petrova, G. & Mattson, D. L. Role of immune factors in angiotensin II-induced hypertension and renal damage in Dahl salt-sensitive rats. Am. J. Physiol. 314, R323–R333 (2018).

    Google Scholar 

  137. Southcombe, J. H., Redman, C. W., Sargent, I. L. & Granne, I. Interleukin-1 family cytokines and their regulatory proteins in normal pregnancy and pre-eclampsia. Clin. Exp. Immunol. 181, 480–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Qi, J. et al. Targeting interleukin-1 beta to suppress sympathoexcitation in hypothalamic paraventricular nucleus in Dahl salt-sensitive hypertensive rats. Cardiovasc. Toxicol. 16, 298–306 (2016).

    CAS  PubMed  Google Scholar 

  139. Zhang, J. et al. Interleukin-1 receptor activation potentiates salt reabsorption in angiotensin II-induced hypertension via the NKCC2 co-transporter in the nephron. Cell Metab. 23, 360–368 (2016).

    CAS  PubMed  Google Scholar 

  140. Crosswhite, P. & Sun, Z. Ribonucleic acid interference knockdown of interleukin 6 attenuates cold-induced hypertension. Hypertension 55, 1484–1491 (2010).

    CAS  PubMed  Google Scholar 

  141. Lee, D. L. et al. Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. Am. J. Physiol. 290, H935–H940 (2006).

    CAS  Google Scholar 

  142. Hashmat, S. et al. Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. Am. J. Physiol. 311, F555–F561 (2016).

    CAS  Google Scholar 

  143. Norlander, A. E. A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight 2, e92801 (2017).

    PubMed Central  Google Scholar 

  144. Saleh, M. A., Norlander, A. E. & Madhur, M. S. Inhibition of interleukin 17-A but not interleukin-17F signaling lowers blood pressure and reduces end-organ inflammation in angiotensin II-induced hypertension. JACC Basic Transl Sci. 1, 606–616 (2016).

    PubMed  PubMed Central  Google Scholar 

  145. Sun, X.-N. et al. T cell mineralocorticoid receptor controls blood pressure by regulating interferon-gamma. Circ. Res. 120, 1584–1597 (2017).

    CAS  PubMed  Google Scholar 

  146. Venegas Pont, M. et al. Tumor necrosis factor alpha antagonist etanercept decreases blood pressure and protects the kidney in a mouse model of systemic lupus erythematosus. Hypertension 56, 643–649 (2010).

    CAS  PubMed  Google Scholar 

  147. Zhang, J. et al. TNF-alpha produced in the kidney contributes to angiotensin II-dependent hypertension. Hypertension 64, 1275–1281 (2014).

    CAS  PubMed  Google Scholar 

  148. Crowley, S. D. et al. A role for angiotensin II type 1 receptors on bone marrow-derived cells in the pathogenesis of angiotensin II-dependent hypertension. Hypertension 55, 99–108 (2010).

    CAS  PubMed  Google Scholar 

  149. Montezano, A. C. & Touyz, R. M. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid. Redox Signal. 20, 164–182 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Cowley, A. W. Jr et al. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am. J. Physiol. 308, F179–F197 (2014).

    Google Scholar 

  151. Imig, J. D. & Ryan, M. J. Immune and inflammatory role in renal disease. Compr. Physiol. 3, 957–976 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author’s work is supported by US National Institutes of Health grants HL137748 and HL116264 and American Heart Association grant 15SFRN2391002.

Reviewer information

Nature Reviews Nephrology thanks S. Crowley, D. Harrison and B. Rodriguez-Iturbe for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Mattson.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Lymphocytes

Immune cells that have a role in the adaptive immune system. Lymphocytes include B lymphocytes (B cells) that produce antibodies and participate in humoral immunity and T lymphocytes (T cells) that secrete cytokines and participate in cellular immunity.

Myeloid cells

Cells that are derived from haematopoietic stem cells in the bone marrow and differentiate into granulocytes and monocytes. Myeloid cells form part of the innate immune system.

DOCA-salt hypertension

Experimental hypertension induced in animals by administration of deoxycorticosterone acetate, a potent mineralocorticoid, and NaCl.

Leukocyte

A type of blood cell derived from haematopoietic stem cells in the bone marrow. Leukocytes have a role in the immune system and include granulocytes, monocytes and lymphocytes.

γδ T cells

A subset of T cells with a distinct T cell receptor. The functions of γδ T cells bridge the innate and adaptive immune systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattson, D.L. Immune mechanisms of salt-sensitive hypertension and renal end-organ damage. Nat Rev Nephrol 15, 290–300 (2019). https://doi.org/10.1038/s41581-019-0121-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0121-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing