Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pre-eclampsia: pathogenesis, novel diagnostics and therapies

An Author Correction to this article was published on 08 May 2019

This article has been updated

Abstract

Pre-eclampsia is a complication of pregnancy that is associated with substantial maternal and fetal morbidity and mortality. The disease presents with new-onset hypertension and often proteinuria in the mother, which can progress to multi-organ dysfunction, including hepatic, renal and cerebral disease, if the fetus and placenta are not delivered. Maternal endothelial dysfunction due to circulating factors of fetal origin from the placenta is a hallmark of pre-eclampsia. Risk factors for the disease include maternal comorbidities, such as chronic kidney disease, hypertension and obesity; a family history of pre-eclampsia, nulliparity or multiple pregnancies; and previous pre-eclampsia or intrauterine fetal growth restriction. In the past decade, the discovery and characterization of novel antiangiogenic pathways have been particularly impactful both in increasing understanding of the disease pathophysiology and in directing predictive and therapeutic efforts. In this Review, we discuss the pathogenic role of antiangiogenic proteins released by the placenta in the development of pre-eclampsia and review novel therapeutic strategies directed at restoring the angiogenic imbalance observed during pre-eclampsia. We also highlight other notable advances in the field, including the identification of long-term maternal and fetal risks conferred by pre-eclampsia.

Key points

  • Pre-eclampsia is defined as new-onset hypertension and proteinuria or other end-organ damage such as to the liver or brain occurring after 20 weeks of pregnancy.

  • Pre-eclampsia is characterized by defective placentation, placental ischaemia, abnormal spiral artery remodelling, oxidative stress at the maternal–fetal interface and angiogenic imbalance in the maternal circulation with ensuing endothelial and end-organ damage.

  • High levels of antiangiogenic factors and low levels of proangiogenic factors are useful biomarkers for the early detection and prognosis of pre-eclampsia; these markers also serve as theranostics in clinical trials.

  • Delivery is currently the only definitive treatment for pre-eclampsia; aspirin is recommended for prevention of pre-eclampsia in women at high risk.

  • Potential therapeutic strategies for pre-eclampsia include targeted apheresis, antibody therapies, RNA interference and small-molecule inhibitors of factors that have a role in placental dysfunction.

  • Evidence is emerging of long-term increased risk of cardiovascular and kidney disease in women who have experienced pre-eclampsia; pre-eclampsia is also an important risk factor for neonatal respiratory distress syndrome and bronchopulmonary dysplasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The pathogenesis of pre-eclampsia.
Fig. 2: Decidual vasculopathy in a pre-eclamptic placenta.
Fig. 3: Glomerular endotheliosis.
Fig. 4: The role of sFLT1 in endothelial dysfunction in pre-eclampsia.
Fig. 5: Dextran-sulfate apheresis enables prolongation of pregnancy in women with pre-eclampsia.

Similar content being viewed by others

Evdokia Dimitriadis, Daniel L. Rolnik, … Ellen Menkhorst

Change history

  • 08 May 2019

    In the version of this article originally published online, the date when Francois Mauriceau published one of the earliest descriptions of pre-eclampsia was incorrectly stated to be 1637, which is actually his year of birth. The work was published in 1668. This error has been corrected in the PDF and HTML versions of the article.

References

  1. Wallis, A. B., Saftlas, A. F., Hsia, J. & Atrash, H. K. Secular trends in the rates of preeclampsia, eclampsia, and gestational hypertension, United States, 1987–2004. Am. J. Hypertens. 21, 521–526 (2008).

    PubMed  Google Scholar 

  2. Duley, L. The global impact of pre-eclampsia and eclampsia. Semin. Perinatol. 33, 130–137 (2009).

    PubMed  Google Scholar 

  3. Ananth, C. V., Keyes, K. M. & Wapner, R. J. Pre-eclampsia rates in the United States, 1980-2010: age-period-cohort analysis. BMJ 347, f6564 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Abalos, E., Cuesta, C., Grosso, A. L., Chou, D. & Say, L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 170, 1–7 (2013).

    PubMed  Google Scholar 

  5. Kuklina, E. V., Ayala, C. & Callaghan, W. M. Hypertensive disorders and severe obstetric morbidity in the United States. Obstet. Gynecol. 113, 1299–1306 (2009).

    PubMed  Google Scholar 

  6. Task Force on Hypertension in Pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on hypertension in pregnancy. Obstet. Gynecol. 122, 1122–1131 (2013). This paper highlights changes in diagnostic criteria for pre-eclampsia and summarizes the current recommendations for the management of patients with pre-eclampsia.

    Google Scholar 

  7. Bell, M. J. A historical overview of preeclampsia-eclampsia. J. Obstet. Gynecol. Neonatal Nurs. 39, 510–518 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Roberts, J. M. et al. Preeclampsia: an endothelial cell disorder. Am. J. Obstet. Gynecol. 161, 1200–1204 (1989).

    CAS  PubMed  Google Scholar 

  9. Karumanchi, S. A. Angiogenic factors in preeclampsia: from diagnosis to therapy. Hypertension 67, 1072–1079 (2016).

    CAS  PubMed  Google Scholar 

  10. Hod, T., Cerdeira, A. S. & Karumanchi, S. A. Molecular mechanisms of preeclampsia. Cold Spring Harb. Perspect. Med. 5, a023473 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Romero, R. & Chaiworapongsa, T. Preeclampsia: a link between trophoblast dysregulation and an antiangiogenic state. J. Clin. Invest. 123, 2775–2777 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghulmiyyah, L. & Sibai, B. Maternal mortality from preeclampsia/eclampsia. Semin. Perinatol. 36, 56–59 (2012).

    PubMed  Google Scholar 

  13. Shahul, S. et al. Racial disparities in comorbidities, complications, and maternal and fetal outcomes in women with preeclampsia/eclampsia. Hypertens. Pregnancy 34, 506–515 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Lo, J. O., Mission, J. F. & Caughey, A. B. Hypertensive disease of pregnancy and maternal mortality. Curr. Opin. Obstet. Gynecol. 25, 124–132 (2013).

    PubMed  Google Scholar 

  15. Zhang, J., Meikle, S. & Trumble, A. Severe maternal morbidity associated with hypertensive disorders in pregnancy in the United States. Hypertens. Pregnancy 22, 203–212 (2003).

    PubMed  Google Scholar 

  16. Robillard, P. Y., Dekker, G., Iacobelli, S. & Chaouat, G. An essay of reflection: why does preeclampsia exist in humans, and why are there such huge geographical differences in epidemiology? J. Reprod. Immunol. 114, 44–47 (2016).

    PubMed  Google Scholar 

  17. Lisonkova, S. & Joseph, K. S. Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am. J. Obstet. Gynecol. 209, 544.e1–544.e12 (2013).

    Google Scholar 

  18. Rasmussen, S., Irgens, L. M. & Espinoza, J. Maternal obesity and excess of fetal growth in pre-eclampsia. BJOG 121, 1351–1357 (2014).

    CAS  PubMed  Google Scholar 

  19. Chaiworapongsa, T. et al. Differences and similarities in the transcriptional profile of peripheral whole blood in early and late-onset preeclampsia: insights into the molecular basis of the phenotype of preeclampsiaa. J. Perinat. Med. 41, 485–504 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hutcheon, J. A., Lisonkova, S. & Joseph, K. S. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 25, 391–403 (2011).

    PubMed  Google Scholar 

  21. Bartsch, E., Medcalf, K. E., Park, A. L. & Ray, J. G. & High Risk of Pre-eclampsia Identification Group. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ 353, i1753 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Bdolah, Y. et al. Circulating angiogenic proteins in trisomy 13. Am. J. Obstet. Gynecol. 194, 239–245 (2006).

    CAS  PubMed  Google Scholar 

  23. Skjaerven, R. et al. Recurrence of pre-eclampsia across generations: exploring fetal and maternal genetic components in a population based cohort. BMJ 331, 877 (2005).

    PubMed  PubMed Central  Google Scholar 

  24. Heyborne, K. Paternal and maternal components of the predisposition to preeclampsia. N. Engl. J. Med. 345, 149; author reply 150 (2001).

    CAS  PubMed  Google Scholar 

  25. Mogren, I., Hogberg, U., Winkvist, A. & Stenlund, H. Familial occurrence of preeclampsia. Epidemiology 10, 518–522 (1999).

    CAS  PubMed  Google Scholar 

  26. Gray, K. J., Saxena, R. & Karumanchi, S. A. Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1, a gene involved in the regulation of angiogenesis. Am. J. Obstet. Gynecol. 218, 211–218 (2018).

    CAS  PubMed  Google Scholar 

  27. McGinnis, R. et al. Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. Nat. Genet. 49, 1255–1260 (2017). This large clinical genome-wide association study suggests that dysregulation at the FLT1 locus in the fetal genome (likely in the placenta) is a fundamental molecular defect in pre-eclampsia.

    CAS  PubMed  Google Scholar 

  28. Goel, A. et al. Epidemiology and mechanisms of de novo and persistent hypertension in the postpartum period. Circulation 132, 1726–1733 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Acosta-Sison, H. The relationship of hydatidiform mole to pre-eclampsia and eclampsia; a study of 85 cases. Am. J. Obstet. Gynecol. 71, 1279–1282 (1956).

    CAS  PubMed  Google Scholar 

  30. Hecht, J. L., Zsengeller, Z. K., Spiel, M., Karumanchi, S. A. & Rosen, S. Revisiting decidual vasculopathy. Placenta 42, 37–43 (2016).

    PubMed  Google Scholar 

  31. Brosens, I., Robertson, W. B. & Dixon, H. G. The physiological response of the vessels of the placental bed to normal pregnancy. J. Pathol. Bacteriol. 93, 569–579 (1967).

    CAS  PubMed  Google Scholar 

  32. Young, J. The aetiology of eclampsia and albuminuria and their relation to accidental haemorrhage: (an anatomical and experimental investigation). Proc. R. Soc. Med. 7, 307–348 (1914).

    PubMed  PubMed Central  Google Scholar 

  33. Robertson, W. B., Brosens, I. & Dixon, H. G. The pathological response of the vessels of the placental bed to hypertensive pregnancy. J. Pathol. Bacteriol. 93, 581–592 (1967).

    CAS  PubMed  Google Scholar 

  34. Brosens, I. A., Robertson, W. B. & Dixon, H. G. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet. Gynecol. Annu. 1, 177–191 (1972).

    CAS  PubMed  Google Scholar 

  35. Zhou, Y. et al. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J. Clin. Invest. 99, 2139–2151 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, Y., Damsky, C. H. & Fisher, S. J. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J. Clin. Invest. 99, 2152–2164 (1997). This paper demonstrates for the first time that invasive cytotrophoblasts fail to acquire endothelial markers in women with pre-eclampsia.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Meekins, J. W., Pijnenborg, R., Hanssens, M., McFadyen, I. R. & van Asshe, A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br. J. Obstet. Gynaecol. 101, 669–674 (1994).

    CAS  PubMed  Google Scholar 

  38. Burton, G. J., Woods, A. W., Jauniaux, E. & Kingdom, J. C. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30, 473–482 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lyall, F., Robson, S. C. & Bulmer, J. N. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension 62, 1046–1054 (2013).

    CAS  PubMed  Google Scholar 

  40. Cindrova-Davies, T. et al. Energy status and HIF signalling in chorionic villi show no evidence of hypoxic stress during human early placental development. Mol. Hum. Reprod. 21, 296–308 (2015).

    CAS  PubMed  Google Scholar 

  41. Caniggia, I. et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J. Clin. Invest. 105, 577–587 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rajakumar, A., Doty, K., Daftary, A., Harger, G. & Conrad, K. P. Impaired oxygen-dependent reduction of HIF-1alpha and -2alpha proteins in pre-eclamptic placentae. Placenta 24, 199–208 (2003).

    CAS  PubMed  Google Scholar 

  43. Tal, R. et al. Effects of hypoxia-inducible factor-1alpha overexpression in pregnant mice: possible implications for preeclampsia and intrauterine growth restriction. Am. J. Pathol. 177, 2950–2962 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nevo, O. et al. Increased expression of sFlt-1 in in vivo and in vitro models of human placental hypoxia is mediated by HIF-1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1085–R1093 (2006).

    CAS  PubMed  Google Scholar 

  45. Kanasaki, K. et al. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature 453, 1117–1121 (2008).

    CAS  PubMed  Google Scholar 

  46. Barnea, E. R., MacLusky, N. J., DeCherney, A. H. & Naftolin, F. Catechol-o-methyl transferase activity in the human term placenta. Am. J. Perinatol. 5, 121–127 (1988).

    CAS  PubMed  Google Scholar 

  47. Palmer, K. et al. Severe early-onset preeclampsia is not associated with a change in placental catechol O-methyltransferase (COMT) expression. Am. J. Pathol. 178, 2484–2488 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Burton, G. J. & Jauniaux, E. Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol. 25, 287–299 (2011).

    PubMed  PubMed Central  Google Scholar 

  49. Hung, T. H., Skepper, J. N. & Burton, G. J. In vitro ischemia-reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies. Am. J. Pathol. 159, 1031–1043 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sedeek, M. et al. Role of reactive oxygen species in hypertension produced by reduced uterine perfusion in pregnant rats. Am. J. Hypertens. 21, 1152–1156 (2008).

    CAS  PubMed  Google Scholar 

  51. Wu, L. & Wang, R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol. Rev. 57, 585–630 (2005).

    CAS  PubMed  Google Scholar 

  52. Neuzil, J. & Stocker, R. Free and albumin-bound bilirubin are efficient co-antioxidants for alpha-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J. Biol. Chem. 269, 16712–16719 (1994).

    CAS  PubMed  Google Scholar 

  53. Ahmed, A. et al. Induction of placental heme oxygenase-1 is protective against TNFalpha-induced cytotoxicity and promotes vessel relaxation. Mol. Med. 6, 391–409 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cudmore, M. et al. Negative regulation of soluble Flt-1 and soluble endoglin release by heme oxygenase-1. Circulation 115, 1789–1797 (2007).

    CAS  PubMed  Google Scholar 

  55. George, E. M. et al. Induction of heme oxygenase 1 attenuates placental ischemia-induced hypertension. Hypertension 57, 941–948 (2011).

    CAS  PubMed  Google Scholar 

  56. Zhao, H., Wong, R. J., Kalish, F. S., Nayak, N. R. & Stevenson, D. K. Effect of heme oxygenase-1 deficiency on placental development. Placenta 30, 861–868 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lian, I. A. et al. Increased endoplasmic reticulum stress in decidual tissue from pregnancies complicated by fetal growth restriction with and without pre-eclampsia. Placenta 32, 823–829 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fu, J., Zhao, L., Wang, L. & Zhu, X. Expression of markers of endoplasmic reticulum stress-induced apoptosis in the placenta of women with early and late onset severe pre-eclampsia. Taiwan. J. Obstet. Gynecol. 54, 19–23 (2015).

    PubMed  Google Scholar 

  59. Kaitu’u-Lino, T. J. et al. Activating transcription factor 3 is reduced in preeclamptic placentas and negatively regulates sFlt-1 (soluble fms-like tyrosine kinase 1), soluble endoglin, and proinflammatory cytokines in placenta. Hypertension 70, 1014–1024 (2017).

    PubMed  Google Scholar 

  60. Ratsep, M. T. et al. Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction 149, R91–R102 (2015).

    CAS  PubMed  Google Scholar 

  61. Cavalli, R. C. et al. Induced human decidual NK-like cells improve utero-placental perfusion in mice. PLOS ONE 11, e0164353 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Hiby, S. E. et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J. Clin. Invest. 120, 4102–4110 (2010). This manuscript provides evidence that mismatch between maternal natural killer cell receptors and HLA-C haplotypes in the placenta may be a fundamental cause of pre-eclampsia.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chazara, O., Xiong, S. & Moffett, A. Maternal KIR and fetal HLA-C: a fine balance. J. Leukoc. Biol. 90, 703–716 (2011).

    CAS  PubMed  Google Scholar 

  64. Robillard, P. Y., Dekker, G. A. & Hulsey, T. C. Revisiting the epidemiological standard of preeclampsia: primigravidity or primipaternity? Eur. J. Obstet. Gynecol. Reprod. Biol. 84, 37–41 (1999).

    CAS  PubMed  Google Scholar 

  65. Deen, M. E., Ruurda, L. G., Wang, J. & Dekker, G. A. Risk factors for preeclampsia in multiparous women: primipaternity versus the birth interval hypothesis. J. Matern. Fetal Neonatal Med. 19, 79–84 (2006).

    PubMed  Google Scholar 

  66. Saito, S. & Sakai, M. Th1/Th2 balance in preeclampsia. J. Reprod. Immunol. 59, 161–173 (2003).

    CAS  PubMed  Google Scholar 

  67. Sasaki, Y. et al. Proportion of peripheral blood and decidual CD4(+) CD25(bright) regulatory T cells in pre-eclampsia. Clin. Exp. Immunol. 149, 139–145 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Girardi, G. Complement activation, a threat to pregnancy. Semin. Immunopathol. 40, 103–111 (2018).

    CAS  PubMed  Google Scholar 

  69. Girardi, G., Yarilin, D., Thurman, J. M., Holers, V. M. & Salmon, J. E. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J. Exp. Med. 203, 2165–2175 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lynch, A. M. et al. Alternative complement pathway activation fragment Bb in early pregnancy as a predictor of preeclampsia. Am. J. Obstet. Gynecol. 198, 385 (2008).

    PubMed  PubMed Central  Google Scholar 

  71. Sones, J. L. et al. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia. FASEB J. 32, 2574–2586 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Vaught, A. J. et al. Germline mutations in the alternative pathway of complement predispose to HELLP syndrome. JCI Insight 3, 99128 (2018).

    PubMed  Google Scholar 

  73. Brocklebank, V., Wood, K. M. & Kavanagh, D. Thrombotic microangiopathy and the kidney. Clin. J. Am. Soc. Nephrol. 13, 300–317 (2018).

    CAS  PubMed  Google Scholar 

  74. Hecht, J. L. et al. The pathology of eclampsia: an autopsy series. Hypertens. Pregnancy 36, 259–268 (2017).

    CAS  PubMed  Google Scholar 

  75. Gaber, L. W., Spargo, B. H. & Lindheimer, M. D. Renal pathology in pre-eclampsia. Baillieres Clin. Obstet. Gynaecol. 8, 443–468 (1994).

    CAS  PubMed  Google Scholar 

  76. Stillman, I. E. & Karumanchi, S. A. The glomerular injury of preeclampsia. J. Am. Soc. Nephrol. 18, 2281–2284 (2007).

    PubMed  Google Scholar 

  77. Deen, W. M. What determines glomerular capillary permeability? J. Clin. Invest. 114, 1412–1414 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Garovic, V. D. et al. Urinary podocyte excretion as a marker for preeclampsia. Am. J. Obstet. Gynecol. 196, 320 (2007).

    PubMed  Google Scholar 

  79. Powe, C. E., Levine, R. J. & Karumanchi, S. A. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation 123, 2856–2869 (2011).

    PubMed  Google Scholar 

  80. Ahmad, S. & Ahmed, A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ. Res. 95, 884–891 (2004).

    CAS  PubMed  Google Scholar 

  81. Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003). This key paper demonstrates that excess sFLT1 is sufficient to induce pre-eclampsia.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Venkatesha, S. et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 12, 642–649 (2006).

    CAS  PubMed  Google Scholar 

  83. Levine, R. J. et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 350, 672–683 (2004). This paper highlights the utility of angiogenic factors for use as biomarkers in the early diagnosis of pre-eclampsia.

    CAS  PubMed  Google Scholar 

  84. Levine, R. J. et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N. Engl. J. Med. 355, 992–1005 (2006).

    CAS  PubMed  Google Scholar 

  85. Noori, M., Donald, A. E., Angelakopoulou, A., Hingorani, A. D. & Williams, D. J. Prospective study of placental angiogenic factors and maternal vascular function before and after preeclampsia and gestational hypertension. Circulation 122, 478–487 (2010).

    CAS  PubMed  Google Scholar 

  86. Park, J. E., Chen, H. H., Winer, J., Houck, K. A. & Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269, 25646–25654 (1994).

    CAS  PubMed  Google Scholar 

  87. Maynard, S., Epstein, F. H. & Karumanchi, S. A. Preeclampsia and angiogenic imbalance. Annu. Rev. Med. 59, 61–78 (2008).

    CAS  PubMed  Google Scholar 

  88. Kendall, R. L. & Thomas, K. A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl Acad. Sci. USA 90, 10705–10709 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lu, F. et al. The effect of over-expression of sFlt-1 on blood pressure and the occurrence of other manifestations of preeclampsia in unrestrained conscious pregnant mice. Am. J. Obstet. Gynecol. 196, 396; discussion 396 (2007).

    PubMed  Google Scholar 

  90. Li, Z. et al. Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension 50, 686–692 (2007).

    CAS  PubMed  Google Scholar 

  91. Szalai, G. et al. Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice. PLOS ONE 10, e0119547 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Verlohren, S., Stepan, H. & Dechend, R. Angiogenic growth factors in the diagnosis and prediction of pre-eclampsia. Clin. Sci. 122, 43–52 (2012).

    CAS  Google Scholar 

  93. Young, B. C., Levine, R. J. & Karumanchi, S. A. Pathogenesis of preeclampsia. Annu. Rev. Pathol. 5, 173–192 (2010).

    CAS  PubMed  Google Scholar 

  94. March, M. I. et al. Circulating angiogenic factors and the risk of adverse outcomes among haitian women with preeclampsia. PLOS ONE 10, e0126815 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Chaiworapongsa, T. et al. Plasma concentrations of angiogenic/anti-angiogenic factors have prognostic value in women presenting with suspected preeclampsia to the obstetrical triage area: a prospective study. J. Matern. Fetal. Neonatal Med. 27, 132–144 (2014).

    CAS  PubMed  Google Scholar 

  96. Rana, S. et al. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation 125, 911–919 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Patel, T. V. et al. A preeclampsia-like syndrome characterized by reversible hypertension and proteinuria induced by the multitargeted kinase inhibitors sunitinib and sorafenib. J. Natl Cancer Inst. 100, 282–284 (2008).

    CAS  PubMed  Google Scholar 

  99. Vigneau, C. et al. All anti-vascular endothelial growth factor drugs can induce ‘pre-eclampsia-like syndrome’: a RARe study. Nephrol. Dial. Transplant. 29, 325–332 (2014).

    CAS  PubMed  Google Scholar 

  100. Launay-Vacher, V. & Deray, G. Hypertension and proteinuria: a class-effect of antiangiogenic therapies. Anticancer Drugs 20, 81–82 (2009).

    CAS  PubMed  Google Scholar 

  101. Sela, S. et al. A novel human-specific soluble vascular endothelial growth factor receptor 1: cell-type-specific splicing and implications to vascular endothelial growth factor homeostasis and preeclampsia. Circ. Res. 102, 1566–1574 (2008).

    CAS  PubMed  Google Scholar 

  102. Tannetta, D. S., Dragovic, R. A., Gardiner, C., Redman, C. W. & Sargent, I. L. Characterisation of syncytiotrophoblast vesicles in normal pregnancy and pre-eclampsia: expression of Flt-1 and endoglin. PLOS ONE 8, e56754 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Rajakumar, A. et al. Transcriptionally active syncytial aggregates in the maternal circulation may contribute to circulating soluble fms-like tyrosine kinase 1 in preeclampsia. Hypertension 59, 256–264 (2012).

    CAS  PubMed  Google Scholar 

  104. Redman, C. W. et al. Review: Does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta 33 (Suppl.), S48–S54 (2012).

    PubMed  Google Scholar 

  105. Vaisbuch, E. et al. Circulating angiogenic and antiangiogenic factors in women with eclampsia. Am. J. Obstet. Gynecol. 204, 152 (2011).

    PubMed  PubMed Central  Google Scholar 

  106. Romero, R. et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J. Matern. Fetal Neonatal Med. 21, 9–23 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wallace, K. et al. Hypertension, inflammation and T lymphocytes are increased in a rat model of HELLP syndrome. Hypertens. Pregnancy 33, 41–54 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Maharaj, A. S. et al. VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J. Exp. Med. 205, 491–501 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Saleh, L., Verdonk, K., Visser, W., van den Meiracker, A. H. & Danser, A. H. The emerging role of endothelin-1 in the pathogenesis of pre-eclampsia. Ther. Adv. Cardiovasc. Dis. 10, 282–293 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Verdonk, K., Visser, W., Van Den Meiracker, A. H. & Danser, A. H. The renin-angiotensin-aldosterone system in pre-eclampsia: the delicate balance between good and bad. Clin. Sci. 126, 537–544 (2014).

    CAS  Google Scholar 

  111. Burke, S. D. et al. Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia. J. Clin. Invest. 126, 2561–2574 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. Wallukat, G. et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J. Clin. Invest. 103, 945–952 (1999). This paper is the first to demonstrate a biological role for autoantibodies against the angiotensin AT1 receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhou, C. C. et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat. Med. 14, 855–862 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hubel, C. A. et al. Agonistic angiotensin II type 1 receptor autoantibodies in postpartum women with a history of preeclampsia. Hypertension 49, 612–617 (2007).

    CAS  PubMed  Google Scholar 

  115. Xia, Y. & Kellems, R. E. Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond. Circ. Res. 113, 78–87 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Quitterer, U. et al. Beta-arrestin1 prevents preeclampsia by downregulation of mechanosensitive AT1-B2 receptor heteromers. Cell 176, 318–333 (2018).

    Article  PubMed  Google Scholar 

  117. Osol, G. et al. Placental growth factor is a potent vasodilator of rat and human resistance arteries. Am. J. Physiol. Heart Circ. Physiol. 294, H1381–H1387 (2008).

    CAS  PubMed  Google Scholar 

  118. Zhang, H. H., Chen, J. C., Sheibani, L., Lechuga, T. J. & Chen, D. B. Pregnancy augments VEGF-stimulated in vitro angiogenesis and vasodilator (NO and H2S) production in human uterine artery endothelial cells. J. Clin. Endocrinol. Metab. 102, 2382–2393 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Pimentel, A. M. et al. L-Arginine-nitric oxide pathway and oxidative stress in plasma and platelets of patients with pre-eclampsia. Hypertens. Res. 36, 783–788 (2013).

    CAS  PubMed  Google Scholar 

  120. Sandrim, V. C. et al. Nitric oxide formation is inversely related to serum levels of antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endogline in preeclampsia. Hypertension 52, 402–407 (2008).

    CAS  PubMed  Google Scholar 

  121. Zeng, Y., Li, M., Chen, Y. & Wang, S. Homocysteine, endothelin-1 and nitric oxide in patients with hypertensive disorders complicating pregnancy. Int. J. Clin. Exp. Pathol. 8, 15275–15279 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Goncalves-Rizzi, V. H., Possomato-Vieira, J. S., Sales Graca, T. U., Nascimento, R. A. & Dias-Junior, C. A. Sodium nitrite attenuates hypertension-in-pregnancy and blunts increases in soluble fms-like tyrosine kinase-1 and in vascular endothelial growth factor. Nitric Oxide 57, 71–78 (2016).

    CAS  PubMed  Google Scholar 

  123. Osol, G., Ko, N. L. & Mandala, M. Altered endothelial nitric oxide signaling as a paradigm for maternal vascular maladaptation in preeclampsia. Curr. Hypertens. Rep. 19, 82 (2017).

    PubMed  Google Scholar 

  124. Lankhorst, S., Danser, A. H. & van den Meiracker, A. H. Endothelin-1 and antiangiogenesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R230–R234 (2016).

    PubMed  Google Scholar 

  125. George, E. M. & Granger, J. P. Endothelin: key mediator of hypertension in preeclampsia. Am. J. Hypertens. 24, 964–969 (2011).

    CAS  PubMed  Google Scholar 

  126. Kingman, M., Ruggiero, R. & Torres, F. Ambrisentan, an endothelin receptor type A-selective endothelin receptor antagonist, for the treatment of pulmonary arterial hypertension. Expert Opin. Pharmacother. 10, 1847–1858 (2009).

    CAS  PubMed  Google Scholar 

  127. Wang, K. et al. Dysregulation of hydrogen sulfide producing enzyme cystathionine gamma-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation 127, 2514–2522 (2013).

    CAS  PubMed  Google Scholar 

  128. Holwerda, K. M. et al. Hydrogen sulfide attenuates sFlt1-induced hypertension and renal damage by upregulating vascular endothelial growth factor. J. Am. Soc. Nephrol. 25, 717–725 (2014).

    CAS  PubMed  Google Scholar 

  129. Snijder, P. M. et al. Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage. Nitric Oxide 42, 87–98 (2014).

    CAS  PubMed  Google Scholar 

  130. Gant, N. F., Daley, G. L., Chand, S., Whalley, P. J. & MacDonald, P. C. A study of angiotensin II pressor response throughout primigravid pregnancy. J. Clin. Invest. 52, 2682–2689 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Saxena, A. R. et al. Increased sensitivity to angiotensin II is present postpartum in women with a history of hypertensive pregnancy. Hypertension 55, 1239–1245 (2010).

    CAS  PubMed  Google Scholar 

  132. Germain, A. M. et al. Endothelial dysfunction: a link among preeclampsia, recurrent pregnancy loss, and future cardiovascular events? Hypertension 49, 90–95 (2007).

    CAS  PubMed  Google Scholar 

  133. Gammill, H. S., Lin, C. & Hubel, C. A. Endothelial progenitor cells and preeclampsia. Front. Biosci. 12, 2383–2394 (2007).

    CAS  PubMed  Google Scholar 

  134. O’Brien, T. E., Ray, J. G. & Chan, W. S. Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology 14, 368–374 (2003).

    PubMed  Google Scholar 

  135. Catalano, P. M., Tyzbir, E. D., Roman, N. M., Amini, S. B. & Sims, E. A. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am. J. Obstet. Gynecol. 165, 1667–1672 (1991).

    CAS  PubMed  Google Scholar 

  136. Chisholm, K. M. & Folkins, A. K. Placental and clinical characteristics of term small-for-gestational-age neonates: a case-control study. Pediatr. Dev. Pathol. 19, 37–46 (2016).

    PubMed  Google Scholar 

  137. Fuh, M. M. et al. Resistance to insulin-mediated glucose uptake and hyperinsulinemia in women who had preeclampsia during pregnancy. Am. J. Hypertens. 8, 768–771 (1995).

    CAS  PubMed  Google Scholar 

  138. Martinez Abundis, E., Gonzalez Ortiz, M., Quinones Galvan, A. & Ferrannini, E. Hyperinsulinemia in glucose-tolerant women with preeclampsia. A controlled study. Am. J. Hypertens. 9, 610–614 (1996).

    CAS  PubMed  Google Scholar 

  139. Arkwright, P. D., Rademacher, T. W., Dwek, R. A. & Redman, C. W. Pre-eclampsia is associated with an increase in trophoblast glycogen content and glycogen synthase activity, similar to that found in hydatidiform moles. J. Clin. Invest. 91, 2744–2753 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Scioscia, M. et al. Insulin resistance in human preeclamptic placenta is mediated by serine phosphorylation of insulin receptor substrate-1 and -2. J. Clin. Endocrinol. Metab. 91, 709–717 (2006).

    CAS  PubMed  Google Scholar 

  141. Thadhani, R. et al. Insulin resistance and alterations in angiogenesis: additive insults that may lead to preeclampsia. Hypertension 43, 988–992 (2004).

    CAS  PubMed  Google Scholar 

  142. Sandgren, J. A. et al. Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI Insight 3, e99403 (2018).

    PubMed Central  Google Scholar 

  143. Rana, S., Karumanchi, S. A. & Lindheimer, M. D. Angiogenic factors in diagnosis, management, and research in preeclampsia. Hypertension 63, 198–202 (2014).

    CAS  PubMed  Google Scholar 

  144. Baltajian, K. et al. Sequential plasma angiogenic factors levels in women with suspected preeclampsia. Am. J. Obstet. Gynecol. 215, 89.e1–89.e10 (2016).

    CAS  Google Scholar 

  145. Rana, S. et al. Angiogenic biomarkers in triage and risk for preeclampsia with severe features. Pregnancy Hypertens. 13, 100–106 (2018).

    PubMed  Google Scholar 

  146. Rana, S. et al. Clinical characterization and outcomes of preeclampsia with normal angiogenic profile. Hypertens. Pregnancy 32, 189–201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kleinrouweler, C. E. et al. Accuracy of circulating placental growth factor, vascular endothelial growth factor, soluble fms-like tyrosine kinase 1 and soluble endoglin in the prediction of pre-eclampsia: a systematic review and meta-analysis. BJOG 119, 778–787 (2012).

    CAS  PubMed  Google Scholar 

  148. Kusanovic, J. P. et al. A prospective cohort study of the value of maternal plasma concentrations of angiogenic and anti-angiogenic factors in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia. J. Matern. Fetal. Neonatal Med. 22, 1021–1038 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Moore Simas, T. A. et al. Angiogenic biomarkers for prediction of early preeclampsia onset in high-risk women. J. Matern. Fetal. Neonatal Med. 27, 1038–1048 (2014).

    CAS  PubMed  Google Scholar 

  150. Chappell, L. C. et al. Diagnostic accuracy of placental growth factor in women with suspected preeclampsia: a prospective multicenter study. Circulation 128, 2121–2131 (2013).

    CAS  PubMed  Google Scholar 

  151. Erez, O. et al. The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small-for-gestational age. J. Matern. Fetal. Neonatal Med. 21, 279–287 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Chaiworapongsa, T. et al. Maternal plasma concentrations of angiogenic/antiangiogenic factors in the third trimester of pregnancy to identify the patient at risk for stillbirth at or near term and severe late preeclampsia. Am. J. Obstet. Gynecol. 208, 287.e1–287.e15 (2013).

    CAS  Google Scholar 

  153. Chaiworapongsa, T. et al. Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young Investigator Award. Am. J. Obstet. Gynecol. 190, 1541–1547; discussion 1547–1550 (2004).

    CAS  PubMed  Google Scholar 

  154. Leanos-Miranda, A. et al. Changes in circulating concentrations of soluble fms-like tyrosine kinase-1 and placental growth factor measured by automated electrochemiluminescence immunoassays methods are predictors of preeclampsia. J. Hypertens. 30, 2173–2181 (2012).

    CAS  PubMed  Google Scholar 

  155. Chaiworapongsa, T. et al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J. Matern. Fetal. Neonatal Med. 17, 3–18 (2005).

    CAS  PubMed  Google Scholar 

  156. Moore, A. G. et al. Angiogenic biomarkers for prediction of maternal and neonatal complications in suspected preeclampsia. J. Matern. Fetal. Neonatal Med. 25, 2651–2657 (2012).

    CAS  PubMed  Google Scholar 

  157. Zeisler, H. et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N. Engl. J. Med. 374, 13–22 (2016). This large prospective clinical study demonstrates a utility for serum angiogenic biomarkers in women with suspected pre-eclampsia.

    CAS  PubMed  Google Scholar 

  158. Zeisler, H. et al. The sFlt-1/PlGF Ratio: ruling out pre-eclampsia for up to 4 weeks and the value of retesting. Ultrasound Obstet. Gynecol. https://doi.org/10.1002/uog.19178 (2018).

    Article  Google Scholar 

  159. Schnettler, W. T. et al. Cost and resource implications with serum angiogenic factor estimation in the triage of pre-eclampsia. BJOG 120, 1224–1232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Hadker, N. et al. Financial impact of a novel pre-eclampsia diagnostic test versus standard practice: a decision-analytic modeling analysis from a UK healthcare payer perspective. J. Med. Econ. 13, 728–737 (2010).

    PubMed  Google Scholar 

  161. Rolfo, A. et al. Chronic kidney disease may be differentially diagnosed from preeclampsia by serum biomarkers. Kidney Int. 83, 177–181 (2013).

    CAS  PubMed  Google Scholar 

  162. Verdonk, K. et al. Differential diagnosis of preeclampsia: remember the soluble fms-like tyrosine kinase 1/placental growth factor ratio. Hypertension 60, 884–890 (2012).

    CAS  PubMed  Google Scholar 

  163. Verlohren, S. et al. The sFlt-1/PlGF ratio in different types of hypertensive pregnancy disorders and its prognostic potential in preeclamptic patients. Am. J. Obstet. Gynecol. 206, 58 (2012).

    PubMed  Google Scholar 

  164. Young, B. et al. The use of angiogenic biomarkers to differentiate non-HELLP related thrombocytopenia from HELLP syndrome. J. Matern. Fetal. Neonatal Med. 23, 366–370 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Perni, U. et al. Angiogenic factors in superimposed preeclampsia: a longitudinal study of women with chronic hypertension during pregnancy. Hypertension 59, 740–746 (2012).

    CAS  PubMed  Google Scholar 

  166. Leanos-Miranda, A. et al. Circulating angiogenic factors and the risk of preeclampsia in systemic lupus erythematosus pregnancies. J. Rheumatol. 42, 1141–1149 (2015).

    CAS  PubMed  Google Scholar 

  167. Kim, M. Y. et al. Angiogenic factor imbalance early in pregnancy predicts adverse outcomes in patients with lupus and antiphospholipid antibodies: results of the PROMISSE study. Am. J. Obstet. Gynecol. 214, 108.e1–108.e14 (2016).

    CAS  Google Scholar 

  168. Chaiworapongsa, T. et al. The use of angiogenic biomarkers in maternal blood to identify which SGA fetuses will require a preterm delivery and mothers who will develop pre-eclampsia. J. Matern. Fetal. Neonatal Med. 29, 1214–1228 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Buyon, J. P. et al. Predictors of pregnancy outcomes in patients with lupus: a cohort study. Ann. Intern. Med. 163, 153–163 (2015).

    PubMed  PubMed Central  Google Scholar 

  170. Hagmann, H., Thadhani, R., Benzing, T., Karumanchi, S. A. & Stepan, H. The promise of angiogenic markers for the early diagnosis and prediction of preeclampsia. Clin. Chem. 58, 837–845 (2012).

    CAS  PubMed  Google Scholar 

  171. Sovio, U. et al. Prediction of preeclampsia using the soluble fms-like tyrosine kinase 1 to placental growth factor ratio: a prospective cohort study of unselected nulliparous women. Hypertension 69, 731–738 (2017).

    CAS  PubMed  Google Scholar 

  172. Poon, L. C., Kametas, N. A., Maiz, N., Akolekar, R. & Nicolaides, K. H. First-trimester prediction of hypertensive disorders in pregnancy. Hypertension 53, 812–818 (2009).

    CAS  PubMed  Google Scholar 

  173. Rolnik, D. L. et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N. Engl. J. Med. 377, 613–622 (2017). This prospective clinical trial demonstrates that aspirin, when given to high-risk women early in pregnancy, can prevent preterm pre-eclampsia.

    CAS  PubMed  Google Scholar 

  174. Charkiewicz, K., Jasinska, E. & Laudanski, P. Identification of proteomic biomarkers of preeclampsia using protein microarray and tandem mass spectrometry [Polish]. Postepy Hig. Med. Dosw. 69, 562–570 (2015).

    Google Scholar 

  175. Law, K. P., Han, T. L., Tong, C. & Baker, P. N. Mass spectrometry-based proteomics for pre-eclampsia and preterm birth. Int. J. Mol. Sci. 16, 10952–10985 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kenny, L. C. et al. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension 56, 741–749 (2010).

    CAS  PubMed  Google Scholar 

  177. Spaans, F., de Vos, P., Bakker, W. W., van Goor, H. & Faas, M. M. Danger signals from ATP and adenosine in pregnancy and preeclampsia. Hypertension 63, 1154–1160 (2014).

    CAS  PubMed  Google Scholar 

  178. Bahado-Singh, R. O. et al. First-trimester metabolomic detection of late-onset preeclampsia. Am. J. Obstet. Gynecol. 208, 58 (2013).

    PubMed  Google Scholar 

  179. Kuc, S. et al. Metabolomics profiling for identification of novel potential markers in early prediction of preeclampsia. PLOS ONE 9, e98540 (2014).

    PubMed  PubMed Central  Google Scholar 

  180. Hahn, S., Rusterholz, C., Hosli, I. & Lapaire, O. Cell-free nucleic acids as potential markers for preeclampsia. Placenta 32 (Suppl.), S17–S20 (2011).

    CAS  PubMed  Google Scholar 

  181. Purwosunu, Y. et al. Prediction of preeclampsia by analysis of cell-free messenger RNA in maternal plasma. Am. J. Obstet. Gynecol. 200, 386 (2009).

    PubMed  Google Scholar 

  182. Sekizawa, A. et al. Prediction of pre-eclampsia by an analysis of placenta-derived cellular mRNA in the blood of pregnant women at 15–20 weeks of gestation. BJOG 117, 557–564 (2010).

    CAS  PubMed  Google Scholar 

  183. Farina, A. et al. Performance of messenger RNAs circulating in maternal blood in the prediction of preeclampsia at 10–14 weeks. Am. J. Obstet. Gynecol. 203, 575 (2010).

    PubMed  Google Scholar 

  184. Bergmann, A. et al. Reduction of circulating soluble Flt-1 alleviates preeclampsia-like symptoms in a mouse model. J. Cell. Mol. Med. 14, 1857–1867 (2010).

    CAS  PubMed  Google Scholar 

  185. Gilbert, J. S. et al. Recombinant vascular endothelial growth factor 121 infusion lowers blood pressure and improves renal function in rats with placentalischemia-induced hypertension. Hypertension 55, 380–385 (2010).

    CAS  PubMed  Google Scholar 

  186. Siddiqui, A. H. et al. Recombinant vascular endothelial growth factor 121 attenuates autoantibody-induced features of pre-eclampsia in pregnant mice. Am. J. Hypertens. 24, 606–612 (2011).

    CAS  PubMed  Google Scholar 

  187. Makris, A. et al. Placental growth factor reduces blood pressure in a uteroplacental ischemia model of preeclampsia in nonhuman primates. Hypertension 67, 1263–1272 (2016).

    CAS  PubMed  Google Scholar 

  188. Spradley, F. T. et al. Placental growth factor administration abolishes placental ischemia-induced hypertension. Hypertension 67, 740–747 (2016).

    CAS  PubMed  Google Scholar 

  189. Santiago-Font, J. A. et al. Serelaxin improves the pathophysiology of placental ischemia in the reduced uterine perfusion pressure rat model of preeclampsia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311, R1158–R1163 (2016).

    PubMed  PubMed Central  Google Scholar 

  190. Ashar-Patel, A. et al. FLT1 and transcriptome-wide polyadenylation site (PAS) analysis in preeclampsia. Sci. Rep. 7, 12139 (2017).

    PubMed  PubMed Central  Google Scholar 

  191. Turanov, A. A. et al. RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat. Biotechnol. 36, 1164–1173 (2018).

    CAS  Google Scholar 

  192. Paauw, N. D. et al. Sildenafil during pregnancy: a preclinical meta-analysis on fetal growth and maternal blood pressure. Hypertension 70, 998–1006 (2017).

    CAS  PubMed  Google Scholar 

  193. Mandala, M. & Osol, G. Physiological remodelling of the maternal uterine circulation during pregnancy. Bas. Clin. Pharmacol. Toxicol. 110, 12–18 (2012).

    CAS  Google Scholar 

  194. Trapani, A. Jr. et al. Perinatal and hemodynamic evaluation of sildenafil citrate for preeclampsia treatment: a randomized controlled trial. Obstet. Gynecol. 128, 253–259 (2016).

    CAS  PubMed  Google Scholar 

  195. Pels, A. et al. STRIDER (Sildenafil TheRapy in dismal prognosis early onset fetal growth restriction): an international consortium of randomised placebo-controlled trials. BMC Pregnancy Childbirth 17, 440 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Hawkes, N. Trial of Viagra for fetal growth restriction is halted after baby deaths. BMJ 362, k3247 (2018).

    PubMed  Google Scholar 

  197. Rana, S. et al. Ouabain inhibits placental sFlt1 production by repressing HSP27-dependent HIF-1alpha pathway. FASEB J. 28, 4324–4334 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Kalafat, E., Sukur, Y. E., Abdi, A., Thilaganathan, B. & Khalil, A. Metformin for the prevention of hypertensive disorders of pregnancy in women with gestational diabetes and obesity: a systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 52, 706–714 (2018).

    CAS  PubMed  Google Scholar 

  199. Brownfoot, F. C. et al. Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction. Am. J. Obstet. Gynecol. 214, 356.e1–356.e15 (2016).

    CAS  Google Scholar 

  200. Cluver, C. A. et al. Esomeprazole to treat women with preterm preeclampsia: a randomised placebo controlled trial. Am. J. Obstet. Gynecol. 219, 388.e1–388.e17 (2018).

    Google Scholar 

  201. Kaitu’u-Lino, T. J. et al. Combining metformin and esomeprazole is additive in reducing sFlt-1 secretion and decreasing endothelial dysfunction — implications for treating preeclampsia. PLOS ONE 13, e0188845 (2018).

    PubMed  PubMed Central  Google Scholar 

  202. Klingel, R., Gohlen, B., Schwarting, A., Himmelsbach, F. & Straube, R. Differential indication of lipoprotein apheresis during pregnancy. Ther. Apher. Dial. 7, 359–364 (2003).

    PubMed  Google Scholar 

  203. Thadhani, R. et al. Pilot study of extracorporeal removal of soluble fms-like tyrosine kinase 1 in preeclampsia. Circulation 124, 940–950 (2011). This proof-of-concept clinical study demonstrates that removal of sFLT1 was associated with improvement of pre-eclamptic signs and extension of pregnancy.

    CAS  PubMed  Google Scholar 

  204. Thadhani, R. et al. Removal of soluble fms-like tyrosine kinase-1 by dextran sulfate apheresis in preeclampsia. J. Am. Soc. Nephrol. 27, 903–913 (2016).

    CAS  PubMed  Google Scholar 

  205. Roberts, J. M. et al. Vitamins C and E to prevent complications of pregnancy-associated hypertension. N. Engl. J. Med. 362, 1282–1291 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Haddad, B. et al. Enoxaparin and aspirin compared with aspirin alone to prevent placenta-mediated pregnancy complications: a randomized controlled trial. Obstet. Gynecol. 128, 1053–1063 (2016).

    CAS  PubMed  Google Scholar 

  207. Roberge, S., Bujold, E. & Nicolaides, K. H. Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis. Am. J. Obstet. Gynecol. 218, 287–293 (2018).

    CAS  PubMed  Google Scholar 

  208. LeFevre, M. L. & U.S. Preventive Services Task Force. Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 161, 819–826 (2014).

    PubMed  Google Scholar 

  209. Poston, L. et al. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): randomised placebo-controlled trial. Lancet 367, 1145–1154 (2006).

    CAS  PubMed  Google Scholar 

  210. Covarrubias, A. E. et al. AP39, a modulator of mitochondrial bioenergetics, reduces anti-angiogenic response and oxidative stress in hypoxia-exposed trophoblasts: relevance for preeclampsia pathogenesis. Am. J. Pathol. 189, 104–114 (2018).

    PubMed  Google Scholar 

  211. Vaka, V. R. et al. Role of mitochondrial dysfunction and reactive oxygen species in mediating hypertension in the reduced uterine perfusion pressure rat model of preeclampsia. Hypertension 72, 703–711 (2018).

    CAS  PubMed  Google Scholar 

  212. Girardi, G. Pravastatin to treat and prevent preeclampsia. Preclinical and clinical studies. J. Reprod. Immunol. 124, 15–20 (2017).

    CAS  PubMed  Google Scholar 

  213. Ramma, W. & Ahmed, A. Therapeutic potential of statins and the induction of heme oxygenase-1 in preeclampsia. J. Reprod. Immunol. 101–102, 153–160 (2014).

    PubMed  PubMed Central  Google Scholar 

  214. Costantine, M. M. et al. Using pravastatin to improve the vascular reactivity in a mouse model of soluble fms-like tyrosine kinase-1-induced preeclampsia. Obstet. Gynecol. 116, 114–120 (2010).

    CAS  PubMed  Google Scholar 

  215. Kumasawa, K. et al. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc. Natl Acad. Sci. USA 108, 1451–1455 (2011).

    CAS  PubMed  Google Scholar 

  216. Saad, A. F. et al. Pravastatin effects on placental prosurvival molecular pathways in a mouse model of preeclampsia. Reprod. Sci. 23, 1593–1599 (2016).

    CAS  PubMed  Google Scholar 

  217. Saad, A. F. et al. Effects of pravastatin on angiogenic and placental hypoxic imbalance in a mouse model of preeclampsia. Reprod. Sci. 21, 138–145 (2014).

    PubMed  Google Scholar 

  218. Brownfoot, F. C. et al. Effects of simvastatin, rosuvastatin and pravastatin on soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sENG) secretion from human umbilical vein endothelial cells, primary trophoblast cells and placenta. BMC Pregnancy Childbirth 16, 117 (2016).

    PubMed  PubMed Central  Google Scholar 

  219. Chaiworapongsa, T. et al. Pravastatin for the prevention of adverse pregnancy outcome: preeclampsia and more? J. Matern. Fetal Neonatal Med. 30, 3 (2017).

    PubMed  Google Scholar 

  220. Brownfoot, F. C. et al. Effects of pravastatin on human placenta, endothelium, and women with severe preeclampsia. Hypertension 66, 687–697; discussion 445 (2015).

    CAS  PubMed  Google Scholar 

  221. Lefkou, E. et al. Pravastatin improves pregnancy outcomes in obstetric antiphospholipid syndrome refractory to antithrombotic therapy. J. Clin. Invest. 126, 2933–2940 (2016).

    PubMed  PubMed Central  Google Scholar 

  222. Costantine, M. M. et al. Safety and pharmacokinetics of pravastatin used for the prevention of preeclampsia in high-risk pregnant women: a pilot randomized controlled trial. Am. J. Obstet. Gynecol. 214, 720.e1–720.e17 (2016).

    CAS  Google Scholar 

  223. Chen, C. W., Jaffe, I. Z. & Karumanchi, S. A. Pre-eclampsia and cardiovascular disease. Cardiovasc. Res. 101, 579–586 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Ahmed, R., Dunford, J., Mehran, R., Robson, S. & Kunadian, V. Pre-eclampsia and future cardiovascular risk among women: a review. J. Am. Coll. Cardiol. 63, 1815–1822 (2014).

    PubMed  Google Scholar 

  225. Mosca, L. et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women — 2011 update: a guideline from the American Heart Association. J. Am. Coll. Cardiol. 57, 1404–1423 (2011).

    PubMed  PubMed Central  Google Scholar 

  226. Bellamy, L., Casas, J. P., Hingorani, A. D. & Williams, D. J. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 335, 974 (2007). This paper provides a systematic review on the relationship between pre-eclampsia and long-term CVD.

    PubMed  PubMed Central  Google Scholar 

  227. Leslie, M. S. & Briggs, L. A. Preeclampsia and the risk of future vascular disease and mortality: a review. J. Midwifery Womens Health 61, 315–324 (2016).

    PubMed  Google Scholar 

  228. Veerbeek, J. H. et al. Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension. Hypertension 65, 600–606 (2015).

    CAS  PubMed  Google Scholar 

  229. Al-Nasiry, S. et al. Metabolic syndrome after pregnancies complicated by pre-eclampsia or small-for-gestational-age: a retrospective cohort. BJOG 122, 1818–1823 (2015).

    CAS  PubMed  Google Scholar 

  230. Bello, N., Rendon, I. S. H. & Arany, Z. The relationship between pre-eclampsia and peripartum cardiomyopathy: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 62, 1715–1723 (2013).

    PubMed  PubMed Central  Google Scholar 

  231. Patten, I. S. et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 485, 333–338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Shahul, S. et al. Circulating antiangiogenic factors and myocardial dysfunction in hypertensive disorders of pregnancy. Hypertension 67, 1273–1280 (2016).

    CAS  PubMed  Google Scholar 

  233. Vikse, B. E., Irgens, L. M., Leivestad, T., Skjaerven, R. & Iversen, B. M. Preeclampsia and the risk of end-stage renal disease. N. Engl. J. Med. 359, 800–809 (2008). This paper is the first to link pre-eclampsia with future ESRD.

    CAS  PubMed  Google Scholar 

  234. McDonald, S. D., Han, Z., Walsh, M. W., Gerstein, H. C. & Devereaux, P. J. Kidney disease after preeclampsia: a systematic review and meta-analysis. Am. J. Kidney Dis. 55, 1026–1039 (2010).

    PubMed  Google Scholar 

  235. Tangren, J. S. et al. Pregnancy outcomes after clinical recovery from AKI. J. Am. Soc. Nephrol. 28, 1566–1574 (2017). This paper reports that a prior history of acute kidney injury is a major risk factor for pre-eclampsia.

    CAS  PubMed  Google Scholar 

  236. Piccoli, G. B. et al. Risk of adverse pregnancy outcomes in women with CKD. J. Am. Soc. Nephrol. 26, 2011–2022 (2015).

    PubMed  PubMed Central  Google Scholar 

  237. Pruthi, D. et al. Exposure to experimental preeclampsia in mice enhances the vascular response to future injury. Hypertension 65, 863–870 (2015).

    CAS  PubMed  Google Scholar 

  238. Bytautiene, E. et al. Long-term alterations in maternal plasma proteome after sFlt1-induced preeclampsia in mice. Am. J. Obstet. Gynecol. 208, 388.e1–388.e10 (2013).

    CAS  Google Scholar 

  239. Wang, A. et al. Circulating anti-angiogenic factors during hypertensive pregnancy and increased risk of respiratory distress syndrome in preterm neonates. J. Matern. Fetal Neonatal Med. 25, 1447–1452 (2012).

    CAS  PubMed  Google Scholar 

  240. Hansen, A. R., Barnes, C. M., Folkman, J. & McElrath, T. F. Maternal preeclampsia predicts the development of bronchopulmonary dysplasia. J. Pediatr. 156, 532–536 (2010).

    PubMed  Google Scholar 

  241. Thebaud, B. & Abman, S. H. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am. J. Respir. Crit. Care Med. 175, 978–985 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Vuorela, P. et al. Amniotic fluid—soluble vascular endothelial growth factor receptor-1 in preeclampsia. Obstet. Gynecol. 95, 353–357 (2000).

    CAS  PubMed  Google Scholar 

  243. Tang, J. R., Karumanchi, S. A., Seedorf, G., Markham, N. & Abman, S. H. Excess soluble vascular endothelial growth factor receptor-1 in amniotic fluid impairs lung growth in rats: linking preeclampsia with bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L36–L46 (2012).

    CAS  PubMed  Google Scholar 

  244. Yu, X. D., Branch, D. W., Karumanchi, S. A. & Zhang, J. Preeclampsia and retinopathy of prematurity in preterm births. Pediatrics 130, e101–e107 (2012).

    PubMed  Google Scholar 

  245. Sibai, B. M. et al. Risk factors associated with preeclampsia in healthy nulliparous women. The Calcium for Preeclampsia Prevention (CPEP) Study Group. Am. J. Obstet. Gynecol. 177, 1003–1010 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank I. Stillman at the Department of Pathology, Beth Israel Deaconess Medical Center, USA, for providing the histology image used in figure 3.

Reviewer information

Nature Reviews Nephrology thanks A. Hennessy and the other anonymous reviewers for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

E.A.P and S.A.K. researched the data for and wrote the article. All authors made substantial contributions to discussions of the content and reviewed or edited the text before submission.

Corresponding author

Correspondence to S. Ananth Karumanchi.

Ethics declarations

Competing interests

S.A.K. is co-inventor on multiple patents (US Patent and Trademark Office (USPTO) #7,740,849, #7,407,658, #7,335,362, #7,344,892 and #8969322B2) related to the use of angiogenic markers for the diagnosis, prediction and therapy of pre-eclampsia. R.T. is a co-inventor on a patent (USPTO #7,344,892) related to the use of angiogenic proteins for the prediction of pre-eclampsia. These patents are held at Harvard Hospitals (Beth Israel Deaconess Medical Center and Massachusetts General Hospital). S.A.K and R.T. have financial interests in Aggamin Therapeutics LLC and have previously served as consultants for Roche Diagnostics and ThermoFisher. S.A.K. has received a research grant from Siemens. R.T. and T.B. have received a research grant from Kaneka Pharmaceuticals. The other authors report no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Hydatidiform mole

A gestational, trophoblastic disease that occurs after aberrant fertilization, originates in the placenta and has potential to invade the uterus and metastasize.

Trisomy 13

A severe chromosomal disorder caused by an extra copy of chromosome 13 that is characterized by multiple congenital abnormalities with a classic triad of abnormally small or missing eyes, cleft lip and/or palate and extra digits.

Genome-wide association study

An analysis of markers (usually single-nucleotide polymorphisms) across the entire genome to identify those that are statistically more or less common in one population (often patients with a specific disease) than in another population (typically people who are unaffected by the specific disease).

Spiral arteries

Small arteries derived from uterine arteries that supply blood to the endometrium of the uterus during the luteal phase of the menstrual cycle. These arteries are remodelled into highly dilated vessels by the action of invading trophoblasts during normal pregnancy to support the growing demands of the fetus.

Foam cells

Cells that contain vacuoles or fat-laden macrophages seen in atherosclerosis.

HELLP syndrome

A complication of pregnancy that is characterized by a syndrome of haemolysis, elevated liver enzymes and low platelet count.

Haemosiderin

An insoluble form of tissue storage iron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phipps, E.A., Thadhani, R., Benzing, T. et al. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 15, 275–289 (2019). https://doi.org/10.1038/s41581-019-0119-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0119-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing