Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifaceted role of complement in kidney transplantation

Abstract

Increasing evidence indicates an integral role for the complement system in the deleterious inflammatory reactions that occur during critical phases of the transplantation process, such as brain or cardiac death of the donor, surgical trauma, organ preservation and ischaemia–reperfusion injury, as well as in humoral and cellular immune responses to the allograft. Ischaemia is the most common cause of complement activation in kidney transplantation and in combination with reperfusion is a major cause of inflammation and graft damage. Complement also has a prominent role in antibody-mediated rejection (ABMR) owing to ABO and HLA incompatibility, which leads to devastating damage to the transplanted kidney. Emerging drugs and treatment modalities that inhibit complement activation at various stages in the complement cascade are being developed to ameliorate the damage caused by complement activation in transplantation. These promising new therapies have various potential applications at different stages in the process of transplantation, including inhibiting the destructive effects of ischaemia and/or reperfusion injury, treating ABMR, inducing accommodation and modulating the adaptive immune response.

Key points

  • Complement activation in the donor, the graft and the recipient before, during and after transplantation is a major cause of damage to the kidney transplant.

  • Ischaemia and subsequent reperfusion of the graft is the most important mechanism that triggers complement activation; reperfusion is generally regarded as the most detrimental phase of the transplantation process.

  • Following transplantation, complement has a role in innate immunological and inflammatory processes that further damage the graft and result in a gradual decrease in its functional mass.

  • Complement-targeted strategies might have a role in optimizing graft quality as well as in the treatment of antibody-mediated rejection, induction of accommodation and modulation of the adaptive immune response.

  • Promising data from preclinical and clinical studies suggest that complement-targeted therapies could potentially become part of the standard of care for kidney transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the complement system.
Fig. 2: Hypothetical model of complement-related deterioration in kidney graft function.
Fig. 3: Ischaemia–reperfusion injury in glomerular capillaries.
Fig. 4: Ischaemia-related activation of the lectin pathway in the proximal tubule.
Fig. 5: Antibody-mediated rejection in peritubular capillaries.
Fig. 6: C4d formation and the reactivity of polyclonal anti-C4d antibodies.

Similar content being viewed by others

References

  1. Rana, A. et al. Survival outcomes following pediatric liver transplantation (Pedi-SOFT) score: a novel predictive index. Am. J. Transplant. 15, 1855–1863 (2015).

    CAS  PubMed  Google Scholar 

  2. Vautmans, H. & Jakovc˘ic´, I. Organ donation and transplant in the EU – progress but much more to do. European Commision http://ec.europa.eu/health/newsletter/183/focus_newsletter_en.htm (2016).

  3. Colvin, R. B. & Smith, R. N. Antibody-mediated organ-allograft rejection. Nat. Rev. Immunol. 5, 807–817 (2005).

    CAS  PubMed  Google Scholar 

  4. Ekberg, H. et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N. Engl. J. Med. 357, 2562–2575 (2007).

    CAS  PubMed  Google Scholar 

  5. Halloran, P. F. et al. Disappearance of T cell-mediated rejection despite continued antibody-mediated rejection in late kidney transplant recipients. J. Am. Soc. Nephrol. 26, 1711–1720 (2015).

    CAS  PubMed  Google Scholar 

  6. Halloran, P. F., Famulski, K. S. & Reeve, J. Molecular assessment of disease states in kidney transplant biopsy samples. Nat. Rev. Nephrol. 12, 534–548 (2016).

    CAS  PubMed  Google Scholar 

  7. D’Alessandro, A. M. et al. Living unrelated renal donation: the University of Wisconsin experience. Surgery 124, 604–610; discussion 610–611 (1998).

    PubMed  Google Scholar 

  8. Terasaki, P. I., Cecka, J. M., Gjertson, D. W. & Takemoto, S. High survival rates of kidney transplants from spousal and living unrelated donors. N. Engl. J. Med. 333, 333–336 (1995).

    CAS  PubMed  Google Scholar 

  9. Voiculescu, A. et al. Kidney transplantation from related and unrelated living donors in a single German centre. Nephrol. Dial. Transplant. 18, 418–425 (2003).

    PubMed  Google Scholar 

  10. Yarlagadda, S. G., Coca, S. G., Formica, R. N., Poggio, E. D. & Parikh, C. R. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol. Dial. Transplant. 24, 1039–1047 (2009).

    Google Scholar 

  11. Farrar, C. A., Kupiec-Weglinski, J. W. & Sacks, S. H. The innate immune system and transplantation. Cold Spring Harb. Perspect. Med. 3, a015479 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Baldwin, W. M., Ota, H. & Rodriguez, E. R. Complement in transplant rejection: diagnostic and mechanistic considerations. Springer Semin. Immunopathol. 25, 181–197 (2003).

    CAS  Google Scholar 

  13. Damman, J. et al. Targeting complement activation in brain-dead donors improves renal function after transplantation. Transpl. Immunol. 24, 233–237 (2011).

    CAS  PubMed  Google Scholar 

  14. Lin, T., Zhou, W. & Sacks, S. H. The role of complement and Toll-like receptors in organ transplantation. Transpl. Int. 20, 481–489 (2007).

    CAS  PubMed  Google Scholar 

  15. Sacks, S. H. & Zhou, W. The role of complement in the early immune response to transplantation. Nat. Rev. Immunol. 12, 431–442 (2012).

    CAS  PubMed  Google Scholar 

  16. Cravedi, P. & Heeger, P. S. Complement as a multifaceted modulator of kidney transplant injury. J. Clin. Invest. 124, 2348–2354 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fuquay, R. et al. Renal ischemia-reperfusion injury amplifies the humoral immune response. J. Am. Soc. Nephrol. 24, 1063–1072 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, W. K., Famure, O., Li, Y. & Kim, S. J. Delayed graft function and the risk of acute rejection in the modern era of kidney transplantation. Kidney Int. 88, 851–858 (2015).

    CAS  PubMed  Google Scholar 

  19. Mizuno, M., Suzuki, Y. & Ito, Y. Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology. Clin. Exp. Nephrol. 22, 3–14 (2018).

    CAS  PubMed  Google Scholar 

  20. Reis, E. S. et al. Therapeutic C3 inhibitor Cp40 abrogates complement activation induced by modern hemodialysis filters. Immunobiology 220, 476–482 (2015).

    CAS  PubMed  Google Scholar 

  21. Ekdahl, K. N., Soveri, I., Hilborn, J., Fellstrom, B. & Nilsson, B. Cardiovascular disease in haemodialysis: role of the intravascular innate immune system. Nat. Rev. Nephrol. 13, 285–296 (2017).

    CAS  PubMed  Google Scholar 

  22. Mares, J. et al. Proteomic profiling of blood-dialyzer interactome reveals involvement of lectin complement pathway in hemodialysis-induced inflammatory response. Proteomics Clin. Appl. 4, 829–838 (2010).

    CAS  Google Scholar 

  23. Huang, Z., Gao, D., Letteri, J. J. & Clark, W. R. Blood-membrane interactions during dialysis. Semin. Dial. 22, 623–628 (2009).

    PubMed  Google Scholar 

  24. Nilsson, B., Ekdahl, K. N., Mollnes, T. E. & Lambris, J. D. The role of complement in biomaterial-induced inflammation. Mol. Immunol. 44, 82–94 (2007).

    CAS  PubMed  Google Scholar 

  25. Andersson, J., Ekdahl, K. N., Larsson, R., Nilsson, U. R. & Nilsson, B. C3 adsorbed to a polymer surface can form an initiating alternative pathway convertase. J. Immunol. 168, 5786–5791 (2002).

    CAS  PubMed  Google Scholar 

  26. Tengvall, P., Askendal, A. & Lundström, I. Complement activation by IgG immobilized on methylated silicon. J. Biomed. Mater. Res. 31, 305–312 (1996).

    CAS  PubMed  Google Scholar 

  27. Van Biesen, W., Veys, N., Vanholder, R. & Lameire, N. The impact of the pre-transplant renal replacement modality on outcome after cadaveric kidney transplantation: the ghent experience. Contrib. Nephrol. 150, 254–258 (2006).

    PubMed  Google Scholar 

  28. Fehrman-Ekholm, I., Elinder, C. G., Stenbeck, M., Tydén, G. & Groth, C. G. Kidney donors live longer. Transplantation 64, 976–978 (1997).

    CAS  PubMed  Google Scholar 

  29. Ibrahim, H. N. et al. Long-term consequences of kidney donation. N. Engl. J. Med. 360, 459–469 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiberd, B. A. & Tennankore, K. K. Lifetime risks of kidney donation: a medical decision analysis. BMJ Open 7, e016490 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Damman, J. et al. Hypoxia and complement-and-coagulation pathways in the deceased organ donor as the major target for intervention to improve renal allograft outcome. Transplantation 99, 1293–1300 (2015).

    CAS  PubMed  Google Scholar 

  32. Blogowski, W. et al. Clinical analysis of perioperative complement activity during ischemia/reperfusion injury following renal transplantation. Clin. J. Am. Soc. Nephrol. 7, 1843–1851 (2012).

    PubMed  PubMed Central  Google Scholar 

  33. Damman, J. et al. Systemic complement activation in deceased donors is associated with acute rejection after renal transplantation in the recipient. Transplantation 92, 163–169 (2011).

    CAS  PubMed  Google Scholar 

  34. Burk, A.-M. et al. Early complementopathy after multiple injuries in humans. Shock 37, 348–354 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. Halbgebauer, R. et al. Hemorrhagic shock drives glycocalyx, barrier and organ dysfunction early after polytrauma. J. Crit. Care 44, 229–237 (2017).

    PubMed  Google Scholar 

  36. Huber-Lang, M., Lambris, J. D. & Ward, P. A. Innate immune responses to trauma. Nat. Immunol. 19, 327–341 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. van Griensven, M. et al. Protective effects of the complement inhibitor compstatin CP40 in hemorrhagic shock. Shock https://doi.org/10.1097/SHK.0000000000001127 (2018).

    Article  PubMed  Google Scholar 

  38. Brown, K. M. et al. Influence of donor C3 allotype on late renal-transplantation outcome. N. Engl. J. Med. 354, 2014–2023 (2006).

    CAS  PubMed  Google Scholar 

  39. Damman, J. et al. Association of complement C3 gene variants with renal transplant outcome of deceased cardiac dead donor kidneys. Am. J. Transplant. 12, 660–668 (2012).

    CAS  PubMed  Google Scholar 

  40. Sim, E. & Sim, R. B. Enzymic assay of C3b receptor on intact cells and solubilized cells. Biochem. J. 210, 567–576 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Denk, S. et al. Complement C5a functions as a master switch for the pH balance in neutrophils exerting fundamental immunometabolic effects. J. Immunol. 198, 4846–4854 (2017).

    CAS  PubMed  Google Scholar 

  42. Farrar, C. A. et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J. Clin. Invest. 126, 1911–1925 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Kolár˘ová, H., Ambru˚zová, B., Svihálková Šindlerová, L., Klinke, A. & Kubala, L. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm. 2014, 694312–694317 (2014).

    Google Scholar 

  44. Sieve, I., Münster-Kühnel, A. K. & Hilfiker-Kleiner, D. Regulation and function of endothelial glycocalyx layer in vascular diseases. Vascul. Pharmacol. 100, 26–33 (2018).

    CAS  PubMed  Google Scholar 

  45. Yang, G. et al. Novel mechanisms of endothelial dysfunction in diabetes. J. Cardiovasc. Dis. Res. 1, 59–63 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Nguyen, H. X., Galvan, M. D. & Anderson, A. J. Characterization of early and terminal complement proteins associated with polymorphonuclear leukocytes in vitro and in vivo after spinal cord injury. J. Neuroinflamm. 5, 26 (2008).

    Google Scholar 

  47. Triantafilou, K., Hughes, T. R., Triantafilou, M. & Morgan, B. P. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J. Cell. Sci. 126, 2903–2913 (2013).

    CAS  PubMed  Google Scholar 

  48. Danobeitia, J. et al. Complement blockade prevents delayed graft function in a non-human primate model of kidney allo-transplantation [abstract]. Am. J Transplant. 13 (Suppl. 5), 119 (2013).

    Google Scholar 

  49. Mathern, D. R. & Heeger, P. S. Molecules great and small: the complement system. Clin. J. Am. Soc. Nephrol. 10, 1636–1650 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pratt, J. R., Basheer, S. A. & Sacks, S. H. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat. Med. 8, 582–587 (2002).

    CAS  PubMed  Google Scholar 

  51. Farrar, C. A., Zhou, W., Lin, T. & Sacks, S. H. Local extravascular pool of C3 is a determinant of postischemic acute renal failure. FASEB J. 20, 217–226 (2006).

    CAS  PubMed  Google Scholar 

  52. Damman, J. et al. Local renal complement C3 induction by donor brain death is associated with reduced renal allograft function after transplantation. Nephrol. Dial. Transplant. 26, 2345–2354 (2011).

    CAS  Google Scholar 

  53. Siedlecki, A., Irish, W. & Brennan, D. C. Delayed graft function in the kidney transplant. Am. J. Transplant. 11, 2279–2296 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kapitsinou, P. P. & Haase, V. H. Molecular mechanisms of ischemic preconditioning in the kidney. Am. J. Physiol. Renal Physiol. 309, F821–F834 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. de Vries, D. K. et al. Acute but transient release of terminal complement complex after reperfusion in clinical kidney transplantation. Transplantation 95, 816–820 (2013).

    PubMed  Google Scholar 

  56. Castellano, G. et al. Complement modulation of anti-aging factor klotho in ischemia/reperfusion injury and delayed graft function. Am. J. Transplant. 16, 325–333 (2015).

    PubMed  Google Scholar 

  57. Delpech, P.-O. et al. Inhibition of complement improves graft outcome in a pig model of kidney autotransplantation. J. Transl Med. 14, 701–713 (2016).

    Google Scholar 

  58. Thurman, J. M. et al. Treatment with an inhibitory monoclonal antibody to mouse factor B protects mice from induction of apoptosis and renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 17, 707–715 (2006).

    CAS  PubMed  Google Scholar 

  59. Asgari, E. et al. Mannan-binding lectin-associated serine protease 2 is critical for the development of renal ischemia reperfusion injury and mediates tissue injury in the absence of complement C4. FASEB J. 28, 3996–4003 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Walsh, M. C. et al. Mannose-binding lectin is a regulator of inflammation that accompanies myocardial ischemia and reperfusion injury. J. Immunol. 175, 541–546 (2005).

    CAS  PubMed  Google Scholar 

  61. Orsini, F. et al. Mannan binding lectin-associated serine protease-2 (MASP-2) critically contributes to post-ischemic brain injury independent of MASP-1. J. Neuroinflamm. 13, 213 (2016).

    Google Scholar 

  62. Einecke, G. et al. Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure. Am. J. Transplant. 9, 2520–2531 (2009).

    CAS  PubMed  Google Scholar 

  63. Haas, M. et al. Banff 2013 meeting report: inclusion of c4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am. J. Transplant. 14, 272–283 (2014).

    CAS  PubMed  Google Scholar 

  64. Wang, H., Ricklin, D. & Lambris, J. D. Complement-activation fragment C4a mediates effector functions by binding as untethered agonist to protease-activated receptors 1 and 4. Proc. Natl Acad. Sci. USA 114, 10948–10953 (2017).

    CAS  PubMed  Google Scholar 

  65. Laumonnier, Y., Karsten, C. M. & Köhl, J. Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol. Immunol. 89, 44–58 (2017).

    CAS  PubMed  Google Scholar 

  66. Valenzuela, N. M., Mulder, A. & Reed, E. F. HLA class I antibodies trigger increased adherence of monocytes to endothelial cells by eliciting an increase in endothelial P-selectin and, depending on subclass, by engaging FcγRs. J. Immunol. 190, 6635–6650 (2013).

    CAS  PubMed  Google Scholar 

  67. Tedesco, F. et al. The cytolytically inactive terminal complement component complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J. Exp. Med. 185, 1619–1627 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Brunn, G. J. Differential regulation of endothelial cell activation by complement and interleukin 1. Circ. Res. 98, 793–800 (2006).

    CAS  Google Scholar 

  69. Foreman, K. E. et al. C5a-induced expression of P-selectin in endothelial cells. J. Clin. Invest. 94, 1147–1155 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ikeda, K. et al. C5a induces tissue factor activity on endothelial cells. Thromb. Haemost. 77, 394–398 (1997).

    CAS  PubMed  Google Scholar 

  71. Jane-wit, D. et al. Alloantibody and complement promote T cell-mediated cardiac allograft vasculopathy through noncanonical nuclear factor-B signaling in endothelial cells. Circulation 128, 2504–2516 (2013).

    CAS  PubMed  Google Scholar 

  72. Stegall, M. D., Chedid, M. F. & Cornell, L. D. The role of complement in antibody-mediated rejection in kidney transplantation. Nat. Rev. Nephrol. 8, 670–678 (2012).

    CAS  PubMed  Google Scholar 

  73. Panda, S. & Ding, J. L. Natural antibodies bridge innate and adaptive immunity. J. Immunol. 194, 13–20 (2015).

    CAS  PubMed  Google Scholar 

  74. Garcia de Mattos Barbosa, M., Cascalho, M. & Platt, J. L. Accommodation in ABO-incompatible organ transplants. Xenotransplantation 25, e12418 (2018).

    PubMed  Google Scholar 

  75. Sheil, A. G., Stewart, J. H., Tiller, D. J. & May, J. ABO blood group incompatibility in renal transplantation. Transplantation 8, 299–300 (1969).

    CAS  PubMed  Google Scholar 

  76. Ugurlar, D. et al. Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement. Science 359, 794–797 (2018).

    CAS  PubMed  Google Scholar 

  77. De Clippel, D. et al. Screening for HLA antibodies in plateletpheresis donors with a history of transfusion or pregnancy. Transfusion 54, 3036–3042 (2014).

    PubMed  Google Scholar 

  78. Saadi, S., Takahashi, T., Holzknecht, R. A. & Platt, J. L. Pathways to acute humoral rejection. Am. J. Pathol. 164, 1073–1080 (2004).

    PubMed  PubMed Central  Google Scholar 

  79. Valenzuela, N. M., McNamara, J. T. & Reed, E. F. Antibody-mediated graft injury: complement-dependent and complement-independent mechanisms. Curr. Opin. Organ Transplant. 19, 33–40 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dahlbäck, B. & Hildebrand, B. Degradation of human complement component C4b in the presence of the C4b-binding protein-protein S complex. Biochem. J. 209, 857–863 (1983).

    PubMed  PubMed Central  Google Scholar 

  81. Hamer, R. et al. Human leukocyte antigen-specific antibodies and gamma-interferon stimulate human microvascular and glomerular endothelial cells to produce complement factor C4. Transplantation 93, 867–873 (2012).

    CAS  PubMed  Google Scholar 

  82. Loupy, A. et al. Complement-binding anti-HLA antibodies and kidney-allograft survival. N. Engl. J. Med. 369, 1215–1226 (2013).

    CAS  PubMed  Google Scholar 

  83. Sicard, A. et al. Detection of C3d-binding donor-specific anti-HLA antibodies at diagnosis of humoral rejection predicts renal graft loss. J. Am. Soc. Nephrol. 26, 457–467 (2015).

    PubMed  Google Scholar 

  84. Lefaucheur, C. et al. Complement-activating anti-HLA antibodies in kidney transplantation: allograft gene expression profiling and response to treatment. J. Am. Soc. Nephrol. 29, 620–635 (2018).

    PubMed  Google Scholar 

  85. Zipfel, P. F. et al. The role of complement in C3 glomerulopathy. Mol. Immunol. 67, 21–30 (2015).

    CAS  PubMed  Google Scholar 

  86. Sethi, S. & Fervenza, F. C. Membranoproliferative glomerulonephritis—a new look at an old entity. N. Engl. J. Med. 366, 1119–1131 (2012).

    CAS  PubMed  Google Scholar 

  87. Le Quintrec, M. et al. Complement genes strongly predict recurrence and graft outcome in adult renal transplant recipients with atypical hemolytic and uremic syndrome. Am. J. Transplant. 13, 663–675 (2013).

    PubMed  Google Scholar 

  88. Salvadori, M. & Bertoni, E. Complement related kidney diseases: recurrence after transplantation. World J. Transplant. 6, 632–645 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Poppelaars, F. et al. C1-inhibitor treatment decreases renal injury in an established brain-dead rat model. Transplantation 102, 79–87 (2017).

    Google Scholar 

  90. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02435732 (2017).

  91. Lewis, A. G., Kohl, G., Ma, Q., Devarajan, P. & Kohl, J. Pharmacological targeting of C5a receptors during organ preservation improves kidney graft survival. Clin. Exp. Immunol. 153, 117–126 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rich, M. C. et al. Site-targeted complement inhibition by a complement receptor 2-conjugated inhibitor (mTT30) ameliorates post-injury neuropathology in mouse brains. Neurosci. Lett. 617, 188–194 (2016).

    CAS  PubMed  Google Scholar 

  93. Ruseva, M. M., Ramaglia, V., Morgan, B. P. & Harris, C. L. An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice. Proc. Natl Acad. Sci. USA 112, 14319–14324 (2015).

    CAS  PubMed  Google Scholar 

  94. Yu, Z. X. et al. Targeting complement pathways during cold ischemia and reperfusion prevents delayed graft function. Am. J. Transplant. 16, 2589–2597 (2016).

    CAS  PubMed  Google Scholar 

  95. Emlen, W., Li, W. & Kirschfink, M. Therapeutic complement inhibition: new developments. Semin. Thromb. Hemost. 36, 660–668 (2010).

    CAS  PubMed  Google Scholar 

  96. Ricklin, D., Mastellos, D. C., Reis, E. S. & Lambris, J. D. The renaissance of complement therapeutics. Nat. Rev. Nephrol. 14, 26–47 (2018).

    CAS  PubMed  Google Scholar 

  97. Parker, C. Eculizumab for paroxysmal nocturnal haemoglobinuria. Lancet 373, 759–767 (2009).

    CAS  PubMed  Google Scholar 

  98. Zuber, J. et al. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat. Rev. Nephrol. 8, 643–657 (2012).

    CAS  PubMed  Google Scholar 

  99. Howard, J. F. et al. A randomized, double-blind, placebo-controlled phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle Nerve 48, 76–84 (2013).

    CAS  PubMed  Google Scholar 

  100. Burbach, M. et al. Report of the inefficacy of eculizumab in two cases of severe antibody-mediated rejection of renal grafts. Transplantation 98, 1056–1059 (2014).

    PubMed  Google Scholar 

  101. Cornell, L. D., Schinstock, C. A., Gandhi, M. J., Kremers, W. K. & Stegall, M. D. Positive crossmatch kidney transplant recipients treated with eculizumab: outcomes beyond 1 year. Am. J. Transplant. 15, 1293–1302 (2015).

    CAS  PubMed  Google Scholar 

  102. González-Roncero, F. et al. Eculizumab treatment of acute antibody-mediated rejection in renal transplantation: case reports. Transplant. Proc. 44, 2690–2694 (2012).

    PubMed  Google Scholar 

  103. Locke, J. E. et al. The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection. Am. J. Transplant. 9, 231–235 (2009).

    CAS  PubMed  Google Scholar 

  104. Stegall, M. D. et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am. J. Transplant. 11, 2405–2413 (2011).

    CAS  PubMed  Google Scholar 

  105. Yelken, B. et al. Eculizumab for treatment of refractory antibody-mediated rejection in kidney transplant patients: a single-center experience. Transplant. Proc. 47, 1754–1759 (2015).

    CAS  PubMed  Google Scholar 

  106. Orandi, B. J. et al. Eculizumab and splenectomy as salvage therapy for severe antibody-mediated rejection after HLA-incompatible kidney transplantation. Transplantation 98, 857–863 (2014).

    CAS  PubMed  Google Scholar 

  107. Biglarnia, A.-R. et al. Prompt reversal of a severe complement activation by eculizumab in a patient undergoing intentional ABO-incompatible pancreas and kidney transplantation. Transplant Int. 24, e61–e66 (2011).

    Google Scholar 

  108. West-Thielke, P. et al. Eculizumab for prevention of antibody-mediated rejection in blood group-incompatible renal transplantation. Transplant. Proc. 50, 66–69 (2018).

    CAS  PubMed  Google Scholar 

  109. Bentall, A. et al. Antibody-mediated rejection despite inhibition of terminal complement. Transpl. Int. 27, 1235–1243 (2014).

    CAS  PubMed  Google Scholar 

  110. Alexion. Alexion provides update on phase 2 clinical trial with eculizumab in antibody mediated rejection (AMR) in living-donor kidney transplant recipients. AlexionPharma https://news.alexionpharma.com/press-release/company-news/alexion-provides-update-phase-2-clinical-trial-eculizumab-antibody-mediat (2015).

  111. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01399593 (2018).

  112. Harder, M. J. et al. Incomplete inhibition by eculizumab: mechanistic evidence for residual C5 activity during strong complement activation. Blood 129, 970–980 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kirschfink, M. C1-inhibitor and transplantation. Immunobiology 205, 534–541 (2002).

    CAS  PubMed  Google Scholar 

  114. Tillou, X. et al. Recombinant human C1-inhibitor prevents acute antibody-mediated rejection in alloimmunized baboons. Kidney Int. 78, 152–159 (2010).

    CAS  PubMed  Google Scholar 

  115. Vo, A. A. et al. A phase I/II placebo-controlled trial of C1-inhibitor for prevention of antibody-mediated rejection in HLA sensitized patients. Transplantation 99, 299–308 (2015).

    CAS  PubMed  Google Scholar 

  116. Viglietti, D. et al. C1 inhibitor in acute antibody-mediated rejection nonresponsive to conventional therapy in kidney transplant recipients: a pilot study. Am. J. Transplant. 16, 1596–1603 (2016).

    CAS  PubMed  Google Scholar 

  117. Montgomery, R. A. et al. Plasma-derived C1 esterase inhibitor for acute antibody-mediated rejection following kidney transplantation: results of a randomized double-blind placebo-controlled pilot study. Am. J. Transplant. 16, 3468–3478 (2016).

    CAS  PubMed  Google Scholar 

  118. Halloran, P. F., Reeve, J. P., Pereira, A. B., Hidalgo, L. G. & Famulski, K. S. Antibody-mediated rejection, T cell–mediated rejection, and the injury-repair response: new insights from the Genome Canada studies of kidney transplant biopsies. Kidney Int. 85, 258–264 (2014).

    CAS  PubMed  Google Scholar 

  119. Eskandary, F. et al. Anti-C1s monoclonal antibody BIVV009 in late antibody-mediated kidney allograft rejection-results from a first-in-patient phase 1 trial. Am. J. Transplant. 8, 670–926 (2017).

    Google Scholar 

  120. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03347396 (2018).

  121. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03316521 (2018).

  122. Mastellos, D. C. et al. Compstatin: a C3-targeted complement inhibitor reaching its prime for bedside intervention. Eur. J. Clin. Invest. 45, 423–440 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Qu, H. et al. New analogs of the clinical complement inhibitor compstatin with subnanomolar affinity and enhanced pharmacokinetic properties. Immunobiology 218, 496–505 (2013).

    CAS  PubMed  Google Scholar 

  124. Pawel-Rammingen, von, U. & Björck, L. IdeS and SpeB: immunoglobulin-degrading cysteine proteinases of Streptococcus pyogenes. Curr. Opin. Microbiol. 6, 50–55 (2003).

    Google Scholar 

  125. Brezski, R. J. et al. Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge. Proc. Natl Acad. Sci. USA 106, 17864–17869 (2009).

    CAS  PubMed  Google Scholar 

  126. Jordan, S. C. et al. IgG endopeptidase in highly sensitized patients undergoing transplantation. N. Engl. J. Med. 377, 442–453 (2017).

    CAS  PubMed  Google Scholar 

  127. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02224820 (2017).

  128. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02426684 (2017).

  129. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02475551 (2018).

  130. Platt, J. L. et al. Transplantation of discordant xenografts: a review of progress. Immunol. Today 11, 450–456 (1990).

    CAS  PubMed  Google Scholar 

  131. Park, W. D. et al. Accommodation in ABO-incompatible kidney allografts, a novel mechanism of self-protection against antibody-mediated injury. Am. J. Transplant. 3, 952–960 (2003).

    CAS  PubMed  Google Scholar 

  132. Zhong, S. et al. Complement inhibition enables renal allograft accommodation and long-term engraftment in presensitized nonhuman primates. Am. J. Transplant. 11, 2057–2066 (2011).

    PubMed  Google Scholar 

  133. Narayanan, K., Jendrisak, M. D., Phelan, D. L. & Mohanakumar, T. HLA class I antibody mediated accommodation of endothelial cells via the activation of PI3K/cAMP dependent PKA pathway. Transpl. Immunol. 15, 187–197 (2006).

    CAS  PubMed  Google Scholar 

  134. Dijke, E. I. et al. B cells in transplantation. J. Heart Lung Transplant. 35, 704–710 (2016).

    PubMed  PubMed Central  Google Scholar 

  135. Chen Song, S. et al. Complement inhibition enables renal allograft accommodation and long-term engraftment in presensitized nonhuman primates. Am. J. Transplant. 11, 2057–2066 (2011).

    CAS  PubMed  Google Scholar 

  136. Dehoux, J.-P. & Gianello, P. Accommodation and antibodies. Transpl. Immunol. 21, 106–110 (2009).

    CAS  PubMed  Google Scholar 

  137. Benson, B. A., Vercellotti, G. M. & Dalmasso, A. P. IL-4 and IL-13 induce protection from complement and melittin in endothelial cells despite initial loss of cytoplasmic proteins: membrane resealing impairs quantifying cytotoxicity with the lactate dehydrogenase permeability assay. Xenotransplantation 22, 295–301 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. Suhr, B. D., Black, S. M., Guzman-Paz, M., Matas, A. J. & Dalmasso, A. P. Inhibition of the membrane attack complex of complement for induction of accommodation in the hamster-to-rat heart transplant model. Xenotransplantation 14, 572–579 (2007).

    PubMed  Google Scholar 

  139. Tan, C. D. et al. Correlation of donor-specific antibodies, complement and its regulators with graft dysfunction in cardiac antibody-mediated rejection. Am. J. Transplant. 9, 2075–2084 (2009).

    CAS  PubMed  Google Scholar 

  140. Griesemer, A. D. et al. Upregulation of CD59: potential mechanism of accommodation in a large animal model. Transplantation 87, 1308–1317 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Platt, J. L., Kaufman, C. L., Garcia de Mattos Barbosa, M. & Cascalho, M. Accommodation and related conditions in vascularized composite allografts. Curr. Opin. Organ Transplant. 22, 470–476 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Bannett, A. D., McAlack, R. F., Morris, M., Chopek, M. W. & Platt, J. L. ABO incompatible renal transplantation: a qualitative analysis of native endothelial tissue ABO antigens after transplantation. Transplant. Proc. 21, 783–785 (1989).

    CAS  Google Scholar 

  143. Chopek, M. W., Simmons, R. L. & Platt, J. L. ABO-incompatible kidney transplantation: initial immunopathologic evaluation. Transplant. Proc. 19, 4553–4557 (1987).

    CAS  Google Scholar 

  144. Wang, H. et al. Inhibition of terminal complement components in presensitized transplant recipients prevents antibody-mediated rejection leading to long-term graft survival and accommodation. J. Immunol. 179, 4451–4463 (2007).

    CAS  PubMed  Google Scholar 

  145. Wang, H. et al. Prevention of acute vascular rejection by a functionally blocking anti-C5 monoclonal antibody combined with cyclosporine. Transplantation 79, 1121–1127 (2005).

    CAS  PubMed  Google Scholar 

  146. Vogel, C.-W. & Fritzinger, D. C. Cobra venom factor: structure, function, and humanization for therapeutic complement depletion. Toxicon 56, 1198–1222 (2010).

    CAS  PubMed  Google Scholar 

  147. Montero, R. M., Sacks, S. H. & Smith, R. A. Complement-here, there and everywhere, but what about the transplanted organ? Semin. Immunol. 28, 250–259 (2016).

    CAS  PubMed  Google Scholar 

  148. Pepys, M. B. Role of complement in induction of antibody production in vivo. Effect of cobra factor and other C3-reactive agents on thymus-dependent and thymus-independent antibody responses. J. Exp. Med. 140, 126–145 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Carroll, M. C. Complement and humoral immunity. Vaccine 26 (Suppl. 8), I28–133 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Heyman, B., Wiersma, E. J. & Kinoshita, T. In vivo inhibition of the antibody response by a complement receptor-specific monoclonal antibody. J. Exp. Med. 172, 665–668 (1990).

    CAS  PubMed  Google Scholar 

  151. Carter, R. H. & Fearon, D. T. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105–107 (1992).

    CAS  PubMed  Google Scholar 

  152. Prodeus, A. P. et al. A critical role for complement in maintenance of self-tolerance. Immunity 9, 721–731 (1998).

    CAS  PubMed  Google Scholar 

  153. Sacks, S., Lee, Q., Wong, W. & Zhou, W. The role of complement in regulating the alloresponse. Curr. Opin. Organ Transplant 14, 10–15 (2009).

    PubMed  Google Scholar 

  154. Heeger, P. S. & Kemper, C. Novel roles of complement in T effector cell regulation. Immunobiology 217, 216–224 (2012).

    CAS  PubMed  Google Scholar 

  155. Arbore, G. et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science 352, aad1210 (2016).

    PubMed  PubMed Central  Google Scholar 

  156. Quell, K. M. et al. Monitoring C3aR expression using a floxed tdTomato-C3aR reporter knock-in mouse. J. Immunol. 199, 688–706 (2017).

    CAS  PubMed  Google Scholar 

  157. Karsten, C. M. et al. Monitoring C5aR2 expression using a floxed tdTomato-C5aR2 knock-in mouse. J. Immunol. 199, 3234–3248 (2017).

    CAS  PubMed  Google Scholar 

  158. Kwan, W.-H., van der Touw, W., Paz-Artal, E., Li, M. O. & Heeger, P. S. Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells. J. Exp. Med. 210, 257–268 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Strainic, M. G. et al. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28, 425–435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Le Friec, G., Köhl, J. & Kemper, C. A complement a day keeps the Fox(p3) away. Nat. Immunol. 14, 110–112 (2013).

    PubMed  Google Scholar 

  161. Ellinghaus, U. et al. Dysregulated CD46 shedding interferes with Th1-contraction in systemic lupus erythematosus. Eur. J. Immunol. 47, 1200–1210 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Strainic, M. G., Shevach, E. M., An, F., Lin, F. & Medof, M. E. Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+ regulatory T cells. Nat. Immunol. 14, 162–171 (2013).

    CAS  PubMed  Google Scholar 

  163. van der Touw, W. et al. Cutting edge: receptors for C3a and C5a modulate stability of alloantigen-reactive induced regulatory T cells. J. Immunol. 190, 5921–5925 (2013).

    PubMed  PubMed Central  Google Scholar 

  164. Braza, F., Durand, M., Degauque, N. & Brouard, S. Regulatory T cells in kidney transplantation: new directions? Am. J. Transplant. 15, 2288–2300 (2015).

    CAS  PubMed  Google Scholar 

  165. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02129881 (2014).

  166. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02088931 (2016).

  167. Jiménez-Reinoso, A. et al. Human plasma C3 is essential for the development of memory B, but not T, lymphocytes. J. Allergy Clin. Immunol. 141, 1151–1154.e14 (2017).

    PubMed  Google Scholar 

  168. Gueler, F. et al. Complement 5a receptor inhibition improves renal allograft survival. J. Am. Soc. Nephrol. 19, 2302–2312 (2008).

    PubMed  PubMed Central  Google Scholar 

  169. Li, Q. et al. Deficiency of C5aR prolongs renal allograft survival. J. Am. Soc. Nephrol. 21, 1344–1353 (2010).

    PubMed  PubMed Central  Google Scholar 

  170. Farrar, C. A., Zhou, W. & Sacks, S. H. Role of the lectin complement pathway in kidney transplantation. Immunobiology 221, 1068–1072 (2016).

    CAS  PubMed  Google Scholar 

  171. Wijkstrom, M. et al. Islet allograft survival in nonhuman primates immunosuppressed with basiliximab, RAD, and FTY7201. Transplantation 77, 827–835 (2004).

    CAS  PubMed  Google Scholar 

  172. Atkinson, J. P., Oglesby, T. J., White, D., Adams, E. A. & Liszewski, M. K. Separation of self from non-self in the complement system: a role for membrane cofactor protein and decay accelerating factor. Clin. Exp. Immunol. 86 (Suppl. 1), 27–30 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Cooper, D. K. C., Ekser, B., Ramsoondar, J., Phelps, C. & Ayares, D. The role of genetically engineered pigs in xenotransplantation research. J. Pathol. 238, 288–299 (2016).

    PubMed  Google Scholar 

  174. Yamanaka, K. et al. Depression of complement regulatory factors in rat and human renal grafts is associated with the progress of acute T-cell mediated rejection. PLOS ONE 11, e0148881 (2016).

    PubMed  PubMed Central  Google Scholar 

  175. Souza, D. G., Esser, D., Bradford, R., Vieira, A. T. & Teixeira, M. M. APT070 (Mirococept), a membrane-localised complement inhibitor, inhibits inflammatory responses that follow intestinal ischaemia and reperfusion injury. Br. J. Pharmacol. 145, 1027–1034 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Patel, H. Therapeutic strategy with a membrane-localizing complement regulator to increase the number of usable donor organs after prolonged cold storage. J. Am. Soc. Nephrol. 17, 1102–1111 (2006).

    CAS  PubMed  Google Scholar 

  177. Kassimatis, T. et al. A double-blind randomised controlled investigation into the efficacy of Mirococept (APT070) for preventing ischaemia reperfusion injury in the kidney allograft (EMPIRIKAL): study protocol for a randomised controlled trial. Trials 18, 2279–2211 (2017).

    Google Scholar 

  178. Nilsson, P. H. et al. Autoregulation of thromboinflammation on biomaterial surfaces by a multicomponent therapeutic coating. Biomaterials 34, 985–994 (2013).

    CAS  PubMed  Google Scholar 

  179. Hinglais, N. et al. Immunohistochemical study of the C5b-9 complex of complement in human kidneys. Kidney Int. 30, 399–410 (1986).

    CAS  PubMed  Google Scholar 

  180. Okada, M. et al. Immunohistochemical localization of C3d fragment of complement and S-protein (vitronectin) in normal and diseased human kidneys: association with the C5b-9 complex and vitronectin receptor. Virchows Arch. A Pathol. Anat. Histopathol. 422, 367–373 (1993).

    CAS  PubMed  Google Scholar 

  181. Sacks, S. H., Zhou, W., Pani, A., Campbell, R. D. & Martin, J. Complement C3 gene expression and regulation in human glomerular epithelial cells. Immunology 79, 348–354 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Mekori, Y. A., Steiner, P., Farkash, R., Moalem, T. & Klajman, A. Deposits of immunoglobulins and C3 in the walls of human renal arteries. Clin. Exp. Immunol. 43, 254–259 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Feucht, H. E. et al. Detection of both isotypes of complement C4, C4A and C4B, in normal human glomeruli. Kidney Int. 30, 932–936 (1986).

    CAS  PubMed  Google Scholar 

  184. Zwirner, J., Felber, E., Herzog, V., Riethmüller, G. & Feucht, H. E. Classical pathway of complement activation in normal and diseased human glomeruli. Kidney Int. 36, 1069–1077 (1989).

    CAS  PubMed  Google Scholar 

  185. Song, D., Zhou, W., Sheerin, S. H. & Sacks, S. H. Compartmental localization of complement component transcripts in the normal human kidney. Nephron 78, 15–22 (1998).

    CAS  PubMed  Google Scholar 

  186. Cosio, F. G., Sedmak, D. D., Mahan, J. D. & Nahman, N. S. Localization of decay accelerating factor in normal and diseased kidneys. Kidney Int. 36, 100–107 (1989).

    CAS  PubMed  Google Scholar 

  187. Nakanishi, I. et al. Identification and characterization of membrane cofactor protein (CD46) in the human kidneys. Eur. J. Immunol. 24, 1529–1535 (1994).

    CAS  PubMed  Google Scholar 

  188. Endoh, M. et al. Immunohistochemical demonstration of membrane cofactor protein (MCP) of complement in normal and diseased kidney tissues. Clin. Exp. Immunol. 94, 182–188 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Ichida, S., Yuzawa, Y., Okada, H., Yoshioka, K. & Matsuo, S. Localization of the complement regulatory proteins in the normal human kidney. Kidney Int. 46, 89–96 (1994).

    CAS  PubMed  Google Scholar 

  190. Jokiranta, T. S. et al. Binding of complement factor H to endothelial cells is mediated by the carboxy-terminal glycosaminoglycan binding site. Am. J. Pathol. 167, 1173–1181 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Lesher, A. M. & Song, W.-C. Review: complement and its regulatory proteins in kidney diseases. Nephrology (Carlton) 15, 663–675 (2010).

    CAS  Google Scholar 

  192. Appay, M. D., Kazatchkine, M. D., Levi-Strauss, M., Hinglais, N. & Bariety, J. Expression of CR1 (CD35) mRNA in podocytes from adult and fetal human kidneys. Kidney Int. 38, 289–293 (1990).

    CAS  PubMed  Google Scholar 

  193. Fayyazi, A. et al. The C5a receptor is expressed in normal renal proximal tubular but not in normal pulmonary or hepatic epithelial cells. Immunology 99, 38–45 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Zahedi, R. et al. The C5a receptor is expressed by human renal proximal tubular epithelial cells. Clin. Exp. Immunol. 121, 226–233 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Braun, M. C. et al. Renal expression of the C3a receptor and functional responses of primary human proximal tubular epithelial cells. J. Immunol. 173, 4190–4196 (2004).

    CAS  PubMed  Google Scholar 

  196. Li, X., Ding, F., Zhang, X., Li, B. & Ding, J. The expression profile of complement components in podocytes. Int. J. Mol. Sci. 17, 471 (2016).

    PubMed  PubMed Central  Google Scholar 

  197. Liu, L. et al. C3a, C5a renal expression and their receptors are correlated to severity of IgA nephropathy. J. Clin. Immunol. 34, 224–232 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Deborah McClellan for excellent editorial assistance before the manuscript was submitted. The European Community’s Seventh Framework Programme under the grant agreement n°602699 (DIREKT) has been a major contributor to the authors’ work, which was further supported by grant 2016-2075-5.1 and 2016–04519 from the Swedish Research Council (VR), and by the Deutsche Forschungsgemeinschaft (DFG) grant CRC1149 A01.

Reviewer information

Nature Reviews Nephrology thanks S. Jordan, D. Ricklin and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, made substantial contributions to discussions of the content, wrote the text and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Bo Nilsson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Endotheliopathy

Disorder of the endothelial layer leading to morphological changes of the glycocalyx, exposure of intercellular adhesion molecules and changes in the global function of the endothelium.

Glycocalyx

A glycoprotein and glycolipid shield that protects the membranes of endothelial cells and other cell types.

Anaphylatoxin

A complement activation product that can induce a substantial inflammatory response. C3a, C4a and C5a are anaphylatoxins.

Nucleophile

A molecule that donates an electron pair to form a new covalent bond.

Inflammasome

A intracellular protein complex that upon activation induces the generation of IL-1β and inflammation.

Alloresponse

An immune response resulting from the recognition of antigens expressed on the surface of cells of non-self origin.

Endopeptidase

A proteolytic enzyme that cleaves peptide non-terminal bonds within a protein substrate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biglarnia, AR., Huber-Lang, M., Mohlin, C. et al. The multifaceted role of complement in kidney transplantation. Nat Rev Nephrol 14, 767–781 (2018). https://doi.org/10.1038/s41581-018-0071-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-018-0071-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing