Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Central nervous system neuroplasticity and the sensitization of hypertension


The causes of essential hypertension remain an enigma. Interactions between genetic and external factors are generally recognized to act as aetiological mechanisms that trigger the pathogenesis of high blood pressure. However, the questions of which genes and factors are involved, and when and where such interactions occur, remain unresolved. Emerging evidence indicates that the hypertensive response to pressor stimuli, like many other physiological and behavioural adaptations, can become sensitized to particular stimuli. Studies in animal models show that, similarly to other response systems controlled by the brain, hypertensive response sensitization (HTRS) is mediated by neuroplasticity. The brain circuitry involved in HTRS controls the sympathetic nervous system. This Review outlines evidence supporting the phenomenon of HTRS and describes the range of physiological and psychosocial stressors that can produce a sensitized hypertensive state. Also discussed are the cellular and molecular changes in the brain neural network controlling sympathetic tone involved in long-term storage of information relating to stressors, which could serve to maintain a sensitized state. Finally, this Review concludes with a discussion of why a sensitized hypertensive response might previously have been beneficial and increased biological fitness under some environmental conditions and why today it has become a health-related liability.

Key points

  • The aetiology of essential hypertension is still unknown.

  • Emerging evidence has shown that the hypertensive response can undergo sensitization.

  • Hypertensive response sensitization (HTRS) involves neuroplasticity induced by a wide range of physiological and behavioural challenges (stressors) occurring throughout life.

  • The cellular and molecular changes that mediate HTRS are located and maintained in the central neural network that controls sympathetic nervous system activity.

  • The neuroplasticity of the sympathetic nervous system provides adaptive blood pressure control, such that an increased hypertensive response (to physiological or psychosocial stressors) is learned and subsequently remembered.

  • Recognition of HTRS and the centrally mediated mechanisms driving the sensitized state provides a new paradigm for understanding essential hypertension and developing new strategies for its prevention and treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The hypothetical role of neuroplasticity and hypertensive response sensitization in the aetiology and progression of essential hypertension.
Fig. 2: A portion of the neural network controlling sympathetic tone and blood pressure.
Fig. 3: Mechanisms involved in hypertensive response sensitization and neuroplasticity.
Fig. 4: How a high-fat diet and obesity might induce hypertensive response sensitization.


  1. 1.

    Xue, B., Zhang, Z., Johnson, R. F. & Johnson, A. K. Sensitization of slow pressor angiotensin II (Ang II)-initiated hypertension: induction of sensitization by prior Ang II treatment. Hypertension 59, 459–466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Xue, B., Zhang, Z., Roncari, C. F., Guo, F. & Johnson, A. K. Aldosterone acting through the central nervous system sensitizes angiotensin II-induced hypertension. Hypertension 60, 1023–1030 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Cannon, W. B. The Wisdom of the Body (W. W. Norton & Company, Inc., 1932).

  4. 4.

    Cannon, W. B. The interrelations of emotions as suggested by recent physiological researches. Am. J. Psychol. 25, 256–282 (1914).

    Google Scholar 

  5. 5.

    Cannon, W. B. Bodily Changes in Pain, Hunger, Fear and Rage (D. Appleton and Company, 1929).

  6. 6.

    Hess, W. R. & Brugger, M. Das subkortikale Zentrum der affektiven Abewehrreaktion [German]. Helv. Physiol. Pharmacol. Acta 1, 33–52 (1943).

    Google Scholar 

  7. 7.

    Ranson, S. W. Some functions of the hypothalamus — Harvey lecture, December 17, 1936. Bull. NY Acad. Med. 13, 241–271 (1937).

    CAS  Google Scholar 

  8. 8.

    Hilton, S. M. & Zbrozyna, A. W. Amygdaloid region for defence reactions and its efferent pathway to the brain stem. J. Physiol. 165, 160–173 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Abrahams, V. C., Hilton, S. M. & Zbrozyna, A. Active muscle vasodilatation produced by stimulation of the brain stem: its significance in the defence reaction. J. Physiol. 154, 491–513 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Selye, H. Stress and the general adaptation syndrome. BMJ 1, 1383–1392 (1950).

    CAS  PubMed  Google Scholar 

  11. 11.

    Selye, H. The physiology and pathology of exposure to stress, a treatise based on the concepts of the general-adaptation syndrome and the diseases of adaptation. JAMA 144, 1414 (1950).

    Google Scholar 

  12. 12.

    Szabo, S., Tache, Y. & Somogyi, A. The legacy of Hans Selye and the origins of stress research: a retrospective 75 years after his landmark brief “letter” to the editor of Nature. Stress 15, 472–478 (2012).

    CAS  PubMed  Google Scholar 

  13. 13.

    Herman, J. P. & Cullinan, W. E. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 20, 78–84 (1997).

    CAS  PubMed  Google Scholar 

  14. 14.

    Pacak, K. & Palkovits, M. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr. Rev. 22, 502–548 (2001).

    CAS  PubMed  Google Scholar 

  15. 15.

    Sawchenko, P. E., Li, H. Y. & Ericsson, A. Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Prog. Brain Res. 122, 61–78 (2000).

    CAS  PubMed  Google Scholar 

  16. 16.

    Esler, M. et al. Chronic mental stress is a cause of essential hypertension: presence of biological markers of stress. Clin. Exp. Pharmacol. Physiol. 35, 498–502 (2008).

    CAS  PubMed  Google Scholar 

  17. 17.

    Folkow, B. Physiological aspects of primary hypertension. Physiol. Rev. 62, 347–504 (1982).

    CAS  PubMed  Google Scholar 

  18. 18.

    Folkow, B. Psychosocial and central nervous influences in primary hypertension. Circulation 76, I10–I19 (1987).

    CAS  PubMed  Google Scholar 

  19. 19.

    Folkow, B. Mental “stress” and hypertension — evidence from animal and experimental studies. Integr. Physiol. Behav. Sci. 26, 305–308 (1991).

    CAS  PubMed  Google Scholar 

  20. 20.

    Forouzanfar, M. H. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115mmHg, 1990–2015. JAMA 317, 165–182 (2017).

    PubMed  Google Scholar 

  21. 21.

    Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 389, 37–55 (2017).

    Google Scholar 

  23. 23.

    Chow, C. K. et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 310, 959–968 (2013).

    CAS  PubMed  Google Scholar 

  24. 24.

    Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension 71, 1269–1324 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    Chobanian, A. V. et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42, 1206–1252 (2003).

    CAS  PubMed  Google Scholar 

  26. 26.

    Page, I. H. Pathogenesis of arterial hypertension. J. Am. Med. Assoc. 140, 451–458 (1949).

    CAS  PubMed  Google Scholar 

  27. 27.

    Mayet, J. & Hughes, A. Cardiac and vascular pathophysiology in hypertension. Heart 89, 1104–1109 (2003).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Mulvany, M. J. Small artery remodelling in hypertension. Basic Clin. Pharmacol. Toxicol. 110, 49–55 (2012).

    CAS  PubMed  Google Scholar 

  29. 29.

    Page, I. H. The mosaic theory of arterial hypertension — its interpretation. Perspect. Biol. Med. 10, 325–333 (1967).

    CAS  PubMed  Google Scholar 

  30. 30.

    Sambhi, M. P. Fundamental Fault in Hypertension (Nijhoff, 1984).

  31. 31.

    Carretero, O. A. & Oparil, S. Essential hypertension: part II: treatment. Circulation 101, 446–453 (2000).

    CAS  PubMed  Google Scholar 

  32. 32.

    Cowley, A. W. Jr. et al. Report of the National Heart, Lung, and Blood Institute working group on epigenetics and hypertension. Hypertension 59, 899–905 (2012).

    CAS  PubMed  Google Scholar 

  33. 33.

    Guyton, A. C., Coleman, T. G. & Granger, H. J. Circulation: overall regulation. Annu. Rev. Physiol. 34, 13–46 (1972).

    CAS  PubMed  Google Scholar 

  34. 34.

    Guyton, A. C., Coleman, T. G., Young, D. B., Lohmeier, T. E. & DeClue, J. W. Salt balance and long-term blood pressure control. Annu. Rev. Med. 31, 15–27 (1980).

    CAS  PubMed  Google Scholar 

  35. 35.

    Guyton, A. C. et al. Integration and control of circulatory function. Int. Rev. Physiol. 9, 341–385 (1976).

    CAS  PubMed  Google Scholar 

  36. 36.

    Guyton, A. C. The relationship of cardiac output and arterial pressure control. Circulation 64, 1079–1088 (1981).

    CAS  PubMed  Google Scholar 

  37. 37.

    Cowley, A. W. Jr & Guyton, A. C. Baroreceptor reflex effects on transient and steady-state hemodynamics of salt-loading hypertension in dogs. Circ. Res. 36, 536–546 (1975).

    PubMed  Google Scholar 

  38. 38.

    Liard, J. F. et al. Renin, aldosterone, body fluid volumes, and the baroreceptor reflex in the development and reversal of Goldblatt hypertension in conscious dogs. Circ. Res. 34, 549–560 (1974).

    CAS  PubMed  Google Scholar 

  39. 39.

    Folkow, B. Sympathetic nervous control of blood pressure — role in primary hypertension. Am. J. Hypertens. 2, S103–S111 (1989).

    Google Scholar 

  40. 40.

    Grassi, G. & Ram, V. S. Evidence for a critical role of the sympathetic nervous system in hypertension. J. Am. Soc. Hypertens. 10, 457–466 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    Julius, S. & Majahalme, S. The changing face of sympathetic overactivity in hypertension. Ann. Med. 32, 365–370 (2000).

    CAS  PubMed  Google Scholar 

  42. 42.

    Mancia, G. & Grassi, G. The autonomic nervous system and hypertension. Circ. Res. 114, 1804–1814 (2014).

    CAS  PubMed  Google Scholar 

  43. 43.

    DiBona, G. F. Sympathetic nervous system and hypertension. Hypertension 61, 556–560 (2013).

    CAS  PubMed  Google Scholar 

  44. 44.

    Grassi, G., Mark, A. & Esler, M. The sympathetic nervous system alterations in human hypertension. Circ. Res. 116, 976–990 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Mancia, G., Grassi, G., Giannattasio, C. & Seravalle, G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 34, 724–728 (1999).

    CAS  PubMed  Google Scholar 

  46. 46.

    Esler, M., Lambert, E. & Schlaich, M. Point: chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. J. Appl. Physiol. 109, 1996–1998 (1985).

    Google Scholar 

  47. 47.

    Dampney, R. A. Functional organization of central pathways regulating the cardiovascular system. Physiol. Rev. 74, 323–364 (1994).

    CAS  PubMed  Google Scholar 

  48. 48.

    Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

    CAS  PubMed  Google Scholar 

  49. 49.

    Dampney, R. A. Central neural control of the cardiovascular system: current perspectives. Adv. Physiol. Educ. 40, 283–296 (2016).

    PubMed  Google Scholar 

  50. 50.

    Spyer, K. M. Annual review prize lecture. Central nervous mechanisms contributing to cardiovascular control. J. Physiol. 474, 1–19 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Johnson, A. K. & Gross, P. M. Sensory circumventricular organs and brain homeostatic pathways. FASEB J. 7, 678–686 (1993).

    CAS  PubMed  Google Scholar 

  52. 52.

    Johnson, A. K. & Thunhorst, R. L. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front. Neuroendocrinol. 18, 292–353 (1997).

    CAS  PubMed  Google Scholar 

  53. 53.

    Dampney, R. A. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R429–R443 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005).

    CAS  PubMed  Google Scholar 

  55. 55.

    Smith, O. A., Astley, C. A., DeVito, J. L., Stein, J. M. & Walsh, K. E. Functional analysis of hypothalamic control of the cardiovascular responses accompanying emotional behavior. Fed. Proc. 39, 2487–2494 (1980).

    CAS  PubMed  Google Scholar 

  56. 56.

    Smith, O. A., DeVito, J. L. & Astley, C. A. Neurons controlling cardiovascular responses to emotion are located in lateral hypothalamus-perifornical region. Am. J. Physiol. 259, R943–R954 (1990).

    CAS  PubMed  Google Scholar 

  57. 57.

    Iwata, J., LeDoux, J. E. & Reis, D. J. Destruction of intrinsic neurons in the lateral hypothalamus disrupts the classical conditioning of autonomic but not behavioral emotional responses in the rat. Brain Res. 368, 161–166 (1986).

    CAS  PubMed  Google Scholar 

  58. 58.

    LeDoux, J. E., Iwata, J., Cicchetti, P. & Reis, D. J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529 (1988).

    CAS  PubMed  Google Scholar 

  59. 59.

    DiMicco, J. A., Samuels, B. C., Zaretskaia, M. V. & Zaretsky, D. V. The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol. Biochem. Behav. 71, 469–480 (2002).

    CAS  PubMed  Google Scholar 

  60. 60.

    Stotz-Potter, E. H., Willis, L. R. & DiMicco, J. A. Muscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress. J. Neurosci. 16, 1173–1179 (1996).

    CAS  PubMed  Google Scholar 

  61. 61.

    Tigerstedt, R. & Bergmann, P. G. Niere und Kreislauf. Skand. Arch. Physiol. 8, 223 (1898).

    Google Scholar 

  62. 62.

    Bader, M. Tissue renin–angiotensin–aldosterone systems: targets for pharmacological therapy. Annu. Rev. Pharmacol. Toxicol. 50, 439–465 (2010).

    CAS  PubMed  Google Scholar 

  63. 63.

    Ferrario, C. M. New physiological concepts of the renin–angiotensin system from the investigation of precursors and products of angiotensin I metabolism. Hypertension 55, 445–452 (2010).

    CAS  PubMed  Google Scholar 

  64. 64.

    Santos, R. A. & Ferreira, A. J. Angiotensin1–7 and the renin–angiotensin system. Curr. Opin. Nephrol. Hypertens. 16, 122–128 (2007).

    CAS  PubMed  Google Scholar 

  65. 65.

    Fischer-Ferraro, C., Nahmod, V. E., Goldstein, D. J. & Finkielman, S. Angiotensin and renin in rat and dog brain. J. Exp. Med. 133, 353–361 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Ganten, D. et al. Angiotensin-forming enzyme in brain tissue. Science 173, 64–65 (1971).

    CAS  PubMed  Google Scholar 

  67. 67.

    de Morais, S. D. B., Shanks, J. & Zucker, I. H. Integrative physiological aspects of brain RAS in hypertension. Curr. Hypertens. Rep. 20, 10 (2018).

    PubMed  Google Scholar 

  68. 68.

    Grobe, J. L., Xu, D. & Sigmund, C. D. An intracellular renin–angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology 23, 187–193 (2008).

    CAS  PubMed  Google Scholar 

  69. 69.

    Jackson, L., Eldahshan, W., Fagan, S. C. & Ergul, A. Within the brain: the renin angiotensin system. Int. J. Mol. Sci. 19, 876 (2018).

    PubMed Central  Google Scholar 

  70. 70.

    Lavoie, J. L. & Sigmund, C. D. Minireview: overview of the renin–angiotensin system—an endocrine and paracrine system. Endocrinology 144, 2179–2183 (2003).

    CAS  PubMed  Google Scholar 

  71. 71.

    Wright, J. W. & Harding, J. W. The brain renin–angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch. 465, 133–151 (2013).

    CAS  PubMed  Google Scholar 

  72. 72.

    Johnson, A. K. The periventricular anteroventral third ventricle (AV3V): its relationship with the subfornical organ and neural systems involved in maintaining body fluid homeostasis. Brain Res. Bull. 15, 595–601 (1985).

    CAS  PubMed  Google Scholar 

  73. 73.

    Lind, R. W. & Johnson, A. K. in The Renin Angiotensin System in the Brain (eds Stober, T., Schimrigk, K., Ganten, D. & Sherman, D. G.) 353–364 (Springer, Boston, MA, 1982).

    Google Scholar 

  74. 74.

    Lind, R. W. & Johnson, A. K. Subfornical organ–median preoptic connections and drinking and pressor responses to angiotensin II. J. Neurosci. 2, 1043–1051 (1982).

    CAS  PubMed  Google Scholar 

  75. 75.

    Smith, P. M. & Ferguson, A. V. Circulating signals as critical regulators of autonomic state — central roles for the subfornical organ. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R405–R415 (2010).

    CAS  PubMed  Google Scholar 

  76. 76.

    de Kloet, A. D., Liu, M., Rodriguez, V., Krause, E. G. & Sumners, C. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R444–R458 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Marina, N., Teschemacher, A. G., Kasparov, S. & Gourine, A. V. Glia, sympathetic activity and cardiovascular disease. Exp. Physiol. 101, 565–576 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Felder, R. B. Mineralocorticoid receptors, inflammation and sympathetic drive in a rat model of systolic heart failure. Exp. Physiol. 95, 19–25 (2010).

    CAS  PubMed  Google Scholar 

  79. 79.

    Winklewski, P. J., Radkowski, M., Wszedybyl-Winklewska, M. & Demkow, U. Brain inflammation and hypertension: the chicken or the egg? J. Neuroinflamm. 12, 85 (2015).

    Google Scholar 

  80. 80.

    Shi, P., Raizada, M. K. & Sumners, C. Brain cytokines as neuromodulators in cardiovascular control. Clin. Exp. Pharmacol. Physiol. 37, e52–e57 (2010).

    CAS  PubMed  Google Scholar 

  81. 81.

    Sriramula, S., Haque, M., Majid, D. S. & Francis, J. Involvement of tumor necrosis factor-α in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 51, 1345–1351 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Shi, P. et al. Brain microglial cytokines in neurogenic hypertension. Hypertension 56, 297–303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Shen, X. Z. et al. Microglia participate in neurogenic regulation of hypertension. Hypertension 66, 309–316 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Wei, S. G., Yu, Y. & Felder, R. B. Blood-borne interleukin-1β acts on the subfornical organ to upregulate the sympathoexcitatory milieu of the hypothalamic paraventricular nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R447–R458 (2018).

    PubMed  Google Scholar 

  85. 85.

    Wei, S. G., Yu, Y., Zhang, Z. H. & Felder, R. B. Proinflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat. Hypertension 65, 1126–1133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Wei, S. G. et al. Subfornical organ mediates sympathetic and hemodynamic responses to blood-borne proinflammatory cytokines. Hypertension 62, 118–125 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    DeFelipe, J. Brain plasticity and mental processes: Cajal again. Nat. Rev. Neurosci. 7, 811–817 (2006).

    CAS  PubMed  Google Scholar 

  88. 88.

    Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, 1949).

  89. 89.

    Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    CAS  PubMed  Google Scholar 

  91. 91.

    Nicoll, R. A. A brief history of long-term potentiation. Neuron 93, 281–290 (2017).

    CAS  PubMed  Google Scholar 

  92. 92.

    Alkadhi, K. A., Alzoubi, K. H. & Aleisa, A. M. Plasticity of synaptic transmission in autonomic ganglia. Prog. Neurobiol. 75, 83–108 (2005).

    CAS  PubMed  Google Scholar 

  93. 93.

    Cifuentes, F., Arias, E. R. & Morales, M. A. Long-term potentiation in mammalian autonomic ganglia: an inclusive proposal of a calcium-dependent, trans-synaptic process. Brain Res. Bull. 97, 32–38 (2013).

    CAS  PubMed  Google Scholar 

  94. 94.

    Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).

    CAS  PubMed  Google Scholar 

  95. 95.

    Rahn, E. J., Guzman-Karlsson, M. C. & David Sweatt, J. Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory. Neurobiol. Learn. Mem. 105, 133–150 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Latremoliere, A. & Woolf, C. J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Ren, K. & Dubner, R. Central nervous system plasticity and persistent pain. J. Orofac. Pain 13, 155–163 (1999).

    CAS  PubMed  Google Scholar 

  98. 98.

    Ren, K. & Dubner, R. Pain facilitation and activity-dependent plasticity in pain modulatory circuitry: role of BDNF–TrkB signaling and NMDA receptors. Mol. Neurobiol. 35, 224–235 (2007).

    CAS  PubMed  Google Scholar 

  99. 99.

    Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565–598 (2006).

    CAS  PubMed  Google Scholar 

  100. 100.

    Robinson, M. J., Fischer, A. M., Ahuja, A., Lesser, E. N. & Maniates, H. Roles of “wanting” and “liking” in motivating behavior: gambling, food, and drug addictions. Curr. Top. Behav. Neurosci. 27, 105–136 (2016).

    CAS  PubMed  Google Scholar 

  101. 101.

    Steketee, J. D. & Kalivas, P. W. Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacol. Rev. 63, 348–365 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Wolf, M. E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679–720 (1998).

    CAS  PubMed  Google Scholar 

  103. 103.

    Hurley, S. W., Thunhorst, R. L. & Johnson, A. K. in Neurobiology of Body Fluid Homeostasis: Transduction and Integration (eds De Luca, L. A. Jr, Menani, J. V. & Johnson, A. K.) 279–301 (CRC Press, 2013).

  104. 104.

    Na, E. S., Morris, M. J., Johnson, R. F., Beltz, T. G. & Johnson, A. K. The neural substrates of enhanced salt appetite after repeated sodium depletions. Brain Res. 1171, 104–110 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Kline, D. D. Plasticity in glutamatergic NTS neurotransmission. Respir. Physiol. Neurobiol. 164, 105–111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Mifflin, S. W. Short-term potentiation of carotid sinus nerve inputs to neurons in the nucleus of the solitary tract. Respir. Physiol. 110, 229–236 (1997).

    CAS  PubMed  Google Scholar 

  107. 107.

    Pinsker, H. M., Hening, W. A., Carew, T. J. & Kandel, E. R. Long-term sensitization of a defensive withdrawal reflex in aplysia. Science 182, 1039–1042 (1973).

    CAS  PubMed  Google Scholar 

  108. 108.

    Barnett, W. H. et al. Chemoreception and neuroplasticity in respiratory circuits. Exp. Neurol. 287, 153–164 (2017).

    CAS  PubMed  Google Scholar 

  109. 109.

    Cunningham, J. T., Knight, W. D., Mifflin, S. W. & Nestler, E. J. An essential role for ΔFosB in the median preoptic nucleus in the sustained hypertensive effects of chronic intermittent hypoxia. Hypertension 60, 179–187 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Dempsey, J. A. et al. Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia. J. Appl. Physiol. 116, 858–866 (1985).

    Google Scholar 

  111. 111.

    Lovett-Barr, M. R. et al. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J. Neurosci. 32, 3591–3600 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Herman, J. P. Regulation of hypothalamo-pituitary-adrenocortical responses to stressors by the nucleus of the solitary tract/dorsal vagal complex. Cell. Mol. Neurobiol. 38, 25–35 (2018).

    CAS  PubMed  Google Scholar 

  113. 113.

    McCarty, R. Learning about stress: neural, endocrine and behavioral adaptations. Stress 19, 449–475 (2016).

    CAS  PubMed  Google Scholar 

  114. 114.

    Michelini, L. C. & Stern, J. E. Exercise-induced neuronal plasticity in central autonomic networks: role in cardiovascular control. Exp. Physiol. 94, 947–960 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Mueller, P. J. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clin. Exp. Pharmacol. Physiol. 34, 377–384 (2007).

    CAS  PubMed  Google Scholar 

  116. 116.

    Johnson, A. K. et al. The roles of sensitization and neuroplasticity in the long-term regulation of blood pressure and hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R1309–R1325 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Houk, J. C. Control strategies in physiological systems. FASEB J. 2, 97–107 (1988).

    CAS  PubMed  Google Scholar 

  118. 118.

    Korner, P. I. Essential Hypertension and Its Causes: Neural and Non-Neural Mechanisms (Oxford Univ. Press, 2007).

  119. 119.

    Dickinson, C. J. & Yu, R. The progressive pressor response to angiotensin in the rabbit. J. Physiol. 190, 91–99 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Dickinson, D. M., Lawrence, J. R. & Adelaide, M. B. A slowly developing pressor response to small concentrations of angiotensin: its bearing on the pathogenesis of chronic renal hyeprtension. Lancet 281, 1354–1356 (1963).

    Google Scholar 

  121. 121.

    McCubbin, J. W., DeMoura, R. S., Page, I. H. & Olmsted, F. Arterial hypertension elicited by subpressor amounts of angiotensin. Science 149, 1394–1395 (1965).

    CAS  PubMed  Google Scholar 

  122. 122.

    Brown, A. J., Casals-Stenzel, J., Gofford, S., Lever, A. F. & Morton, J. J. Comparison of fast and slow pressor effects of angiotensin II in the conscious rat. Am. J. Physiol. 241, H381–H388 (1981).

    CAS  PubMed  Google Scholar 

  123. 123.

    Kawada, N., Imai, E., Karber, A., Welch, W. J. & Wilcox, C. S. A mouse model of angiotensin II slow pressor response: role of oxidative stress. J. Am. Soc. Nephrol. 13, 2860–2868 (2002).

    CAS  PubMed  Google Scholar 

  124. 124.

    Hood, S. G., Cochrane, T., McKinley, M. J. & May, C. N. Investigation of the mechanisms by which chronic infusion of an acutely subpressor dose of angiotensin II induces hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1893–R1899 (2007).

    CAS  PubMed  Google Scholar 

  125. 125.

    Ames, R. P., Borkowski, A. J., Sicinski, A. M. & Laragh, J. H. Prolonged infusions of angiotensin II and norepinephrine and blood pressure, electrolyte balance, and aldosterone and cortisol secretion in normal man and in cirrhosis with ascites. J. Clin. Invest. 44, 1171–1186 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Bohr, D. F. in Angiotensin: Handbook of Experimental Pharmacology Vol. 37 (eds Bumpus, F. M., Page, I. H. & Allmann, D.) 424 (Springer-Verlag, 1974).

  127. 127.

    Godfraind, T. Angiotensin auto-potentiation. Br. J. Pharmacol. 40, 542P–543P (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Skulan, T. W., Brousseau, A. C. & Leonard, K. A. Accelerated induction to two-kidney hypertension in rats and renin-angiotensin sensitivity. Circ. Res. 35, 734–741 (1974).

    CAS  PubMed  Google Scholar 

  129. 129.

    ten Berg, R. & de Jong, W. Mechanism of enhanced blood pressure rise after reclipping following removal of a renal artery clip in rats. Hypertension 2, 4–13 (1980).

    PubMed  Google Scholar 

  130. 130.

    Aoki, K. & Masson, G. M. Pressor responsiveness to renin and angiotensin in renal hypertensive rats. Nephron 6, 484–497 (1969).

    CAS  PubMed  Google Scholar 

  131. 131.

    Xue, B. et al. Central renin–angiotensin system activation and inflammation induced by high-fat diet sensitize angiotensin II-elicited hypertension. Hypertension 67, 163–170 (2016).

    CAS  PubMed  Google Scholar 

  132. 132.

    Xue, B. et al. Post-traumatic stress sensitizes the angiotensin II-elicited hypertensive response [abstract]. FASEB J. 31, S866.2 (2017).

    Google Scholar 

  133. 133.

    Xue, B. et al. Post-traumatic stress-induced sensitization of angiotensin II hypertension is reversed by blockade of angiotensin-converting enzyme or tumor necrosis factor-α. Hypertension 404, 389 (2017).

    Google Scholar 

  134. 134.

    Xue, B. et al. Leptin mediates high-fat diet sensitization of angiotensin II-elicited hypertension by upregulating the brain renin–angiotensin system and inflammation. Hypertension 67, 970–976 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Zhang, Y. P. et al. Maternal high-fat diet acts on the brain to induce baroreflex dysfunction and sensitization of angiotensin II-induced hypertension in adult offspring. Am. J. Physiol. Heart Circ. Physiol. 314, H1061–H1069 (2018).

    CAS  PubMed  Google Scholar 

  136. 136.

    Barth, S. W. & Gerstberger, R. Differential regulation of angiotensinogen and AT1A receptor mRNA within the rat subfornical organ during dehydration. Brain Res. Mol. Brain Res. 64, 151–164 (1999).

    CAS  PubMed  Google Scholar 

  137. 137.

    Charron, G., Laforest, S., Gagnon, C., Drolet, G. & Mouginot, D. Acute sodium deficit triggers plasticity of the brain angiotensin type 1 receptors. FASEB J. 16, 610–612 (2002).

    CAS  PubMed  Google Scholar 

  138. 138.

    Chen, Y., da Rocha, M. J. & Morris, M. Osmotic regulation of angiotensin AT1 receptor subtypes in mouse brain. Brain Res. 965, 35–44 (2003).

    CAS  PubMed  Google Scholar 

  139. 139.

    Moellenhoff, E. et al. Effect of repetitive icv injections of ANG II on c-Fos and AT1-receptor expression in the rat brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1095–R1104 (2001).

    CAS  PubMed  Google Scholar 

  140. 140.

    Nunes, F. C. & Braga, V. A. Chronic angiotensin II infusion modulates angiotensin II type I receptor expression in the subfornical organ and the rostral ventrolateral medulla in hypertensive rats. J. Renin Angiotensin Aldosterone Syst. 12, 440–445 (2011).

    CAS  PubMed  Google Scholar 

  141. 141.

    Sanvitto, G. L., Johren, O., Hauser, W. & Saavedra, J. M. Water deprivation upregulates ANG II AT1 binding and mRNA in rat subfornical organ and anterior pituitary. Am. J. Physiol. 273, E156–E163 (1997).

    CAS  PubMed  Google Scholar 

  142. 142.

    Wilson, K. M., Sumners, C. & Fregly, M. J. Effects of increased circulating angiotensin II (AII) on fluid exchange and binding of AII in the brain. Brain Res. Bull. 20, 493–501 (1988).

    CAS  PubMed  Google Scholar 

  143. 143.

    King, S. J., Harding, J. W. & Moe, K. E. Elevated salt appetite and brain binding of angiotensin II in mineralocorticoid-treated rats. Brain Res. 448, 140–149 (1988).

    CAS  PubMed  Google Scholar 

  144. 144.

    Shelat, S. G., Flanagan-Cato, L. M. & Fluharty, S. J. Glucocorticoid and mineralocorticoid regulation of angiotensin II type 1 receptor binding and inositol triphosphate formation in WB cells. J. Endocrinol. 162, 381–391 (1999).

    CAS  PubMed  Google Scholar 

  145. 145.

    Shelat, S. G., King, J. L., Flanagan-Cato, L. M. & Fluharty, S. J. Mineralocorticoids and glucocorticoids cooperatively increase salt intake and angiotensin II receptor binding in rat brain. Neuroendocrinology 69, 339–351 (1999).

    CAS  PubMed  Google Scholar 

  146. 146.

    Wilson, K. M., Sumners, C., Hathaway, S. & Fregly, M. J. Mineralocorticoids modulate central angiotensin II receptors in rats. Brain Res. 382, 87–96 (1986).

    CAS  PubMed  Google Scholar 

  147. 147.

    Laragh, J. H. & Sealey, J. E. The plasma renin test reveals the contribution of body sodium-volume content (V) and renin-angiotensin (R) vasoconstriction to long-term blood pressure. Am. J. Hypertens. 24, 1164–1180 (2011).

    CAS  PubMed  Google Scholar 

  148. 148.

    McAreavey, D. & Robertson, J. I. Angiotensin converting enzyme inhibitors and moderate hypertension. Drugs 40, 326–345 (1990).

    CAS  PubMed  Google Scholar 

  149. 149.

    Castellucci, V. & Kandel, E. R. Presynaptic facilitation as a mechanism for behavioral sensitization in aplysia. Science 194, 1176–1178 (1976).

    CAS  PubMed  Google Scholar 

  150. 150.

    Clayton, S. C., Zhang, Z., Beltz, T., Xue, B. & Johnson, A. K. CNS neuroplasticity and salt-sensitive hypertension induced by prior treatment with subpressor doses of ANG II or aldosterone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R908–R917 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Huang, B. S., Ahmadi, S., Ahmad, M., White, R. A. & Leenen, F. H. Central neuronal activation and pressor responses induced by circulating ANG II: role of the brain aldosterone-”ouabain” pathway. Am. J. Physiol. Heart Circ. Physiol. 299, H422–H430 (2010).

    CAS  PubMed  Google Scholar 

  152. 152.

    Xue, B. et al. Central interactions of aldosterone and angiotensin II in aldosterone- and angiotensin II-induced hypertension. Am. J. Physiol. Heart Circ. Physiol. 300, H555–H564 (2011).

    CAS  PubMed  Google Scholar 

  153. 153.

    de Git, K. C. & Adan, R. A. Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes. Rev. 16, 207–224 (2015).

    PubMed  Google Scholar 

  154. 154.

    Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ. Res. 116, 991–1006 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Kalupahana, N. S. & Moustaid-Moussa, N. The renin–angiotensin system: a link between obesity, inflammation and insulin resistance. Obes. Rev. 13, 136–149 (2012).

    CAS  PubMed  Google Scholar 

  156. 156.

    Sriramula, S., Cardinale, J. P. & Francis, J. Inhibition of TNF in the brain reverses alterations in RAS components and attenuates angiotensin II-induced hypertension. PLOS ONE 8, e63847 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Yu, Y. et al. Early interference with p44/42 mitogen-activated protein kinase signaling in hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension. Hypertension 61, 842–849 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 355, 253–259 (2000).

    Google Scholar 

  159. 159.

    Alonso-Galicia, M., Brands, M. W., Zappe, D. H. & Hall, J. E. Hypertension in obese Zucker rats. Role of angiotensin II and adrenergic activity. Hypertension 28, 1047–1054 (1996).

    CAS  PubMed  Google Scholar 

  160. 160.

    Armitage, J. A. et al. Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet. Hypertension 60, 163–171 (2012).

    CAS  PubMed  Google Scholar 

  161. 161.

    Lim, K., Burke, S. L. & Head, G. A. Obesity-related hypertension and the role of insulin and leptin in high-fat-fed rabbits. Hypertension 61, 628–634 (2013).

    CAS  PubMed  Google Scholar 

  162. 162.

    Prior, L. J. et al. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension 55, 862–868 (2010).

    CAS  PubMed  Google Scholar 

  163. 163.

    Maric, T., Woodside, B. & Luheshi, G. N. The effects of dietary saturated fat on basal hypothalamic neuroinflammation in rats. Brain. Behav. Immun. 36, 35–45 (2014).

    CAS  PubMed  Google Scholar 

  164. 164.

    Hall, J. E., Crook, E. D., Jones, D. W., Wofford, M. R. & Dubbert, P. M. Mechanisms of obesity-associated cardiovascular and renal disease. Am. J. Med. Sci. 324, 127–137 (2002).

    PubMed  Google Scholar 

  165. 165.

    Tchernof, A. & Despres, J. P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93, 359–404 (2013).

    CAS  PubMed  Google Scholar 

  166. 166.

    Harlan, S. M. et al. Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ. Res. 108, 808–812 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Shi, Z., Li, B. & Brooks, V. L. Role of the paraventricular nucleus of the hypothalamus in the sympathoexcitatory effects of leptin. Hypertension 66, 1034–1041 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Young, C. N., Morgan, D. A., Butler, S. D., Mark, A. L. & Davisson, R. L. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects. Hypertension 61, 737–744 (2013).

    CAS  PubMed  Google Scholar 

  169. 169.

    Gao, Y. et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 62, 17–25 (2014).

    PubMed  Google Scholar 

  170. 170.

    de Kloet, A. D. et al. Obesity induces neuroinflammation mediated by altered expression of the renin–angiotensin system in mouse forebrain nuclei. Physiol. Behav. 136, 31–38 (2014).

    PubMed  Google Scholar 

  171. 171.

    Hilzendeger, A. M. et al. A brain leptin–renin angiotensin system interaction in the regulation of sympathetic nerve activity. Am. J. Physiol. Heart Circ. Physiol. 303, H197–H206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Fraser, A., Nelson, S. M., Macdonald-Wallis, C., Sattar, N. & Lawlor, D. A. Hypertensive disorders of pregnancy and cardiometabolic health in adolescent offspring. Hypertension 62, 614–620 (2013).

    CAS  PubMed  Google Scholar 

  174. 174.

    Himmelmann, A., Svensson, A. & Hansson, L. Five-year follow-up of blood pressure and left ventricular mass in children with different maternal histories of hypertension: the Hypertension in Pregnancy Offspring Study. J. Hypertens. 12, 89–95 (1994).

    CAS  PubMed  Google Scholar 

  175. 175.

    Himmelmann, A., Svensson, A. & Hansson, L. Relation of maternal blood pressure during pregnancy to birth weight and blood pressure in children. The Hypertension in Pregnancy Offspring Study. J. Intern. Med. 235, 347–352 (1994).

    CAS  PubMed  Google Scholar 

  176. 176.

    Lazdam, M. et al. Elevated blood pressure in offspring born premature to hypertensive pregnancy: is endothelial dysfunction the underlying vascular mechanism? Hypertension 56, 159–165 (2010).

    CAS  PubMed  Google Scholar 

  177. 177.

    Staley, J. R. et al. Associations of blood pressure in pregnancy with offspring blood pressure trajectories during childhood and adolescence: findings from a prospective study. J. Am. Heart Assoc. 4, e001422 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. 178.

    Tenhola, S., Rahiala, E., Halonen, P., Vanninen, E. & Voutilainen, R. Maternal preeclampsia predicts elevated blood pressure in 12-year-old children: evaluation by ambulatory blood pressure monitoring. Pediatr. Res. 59, 320–324 (2006).

    PubMed  Google Scholar 

  179. 179.

    Kajantie, E., Eriksson, J. G., Osmond, C., Thornburg, K. & Barker, D. J. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke 40, 1176–1180 (2009).

    PubMed  Google Scholar 

  180. 180.

    Liang, M., Cowley, A. W. Jr, Mattson, D. L., Kotchen, T. A. & Liu, Y. Epigenomics of hypertension. Semin. Nephrol. 33, 392–399 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Lopes, H. F. et al. Increased sympathetic activity in normotensive offspring of malignant hypertensive parents compared to offspring of normotensive parents. Braz. J. Med. Biol. Res. 41, 849–853 (2008).

    CAS  PubMed  Google Scholar 

  182. 182.

    Washburn, L. K. et al. The renin–angiotensin–aldosterone system in adolescent offspring born prematurely to mothers with preeclampsia. J. Renin Angiotensin Aldosterone Syst. 16, 529–538 (2015).

    CAS  PubMed  Google Scholar 

  183. 183.

    Alexander, B. T., Hendon, A. E., Ferril, G. & Dwyer, T. M. Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension 45, 754–758 (2005).

    CAS  PubMed  Google Scholar 

  184. 184.

    de Almeida Chaves Rodrigues, A. F. et al. Increased renal sympathetic nerve activity leads to hypertension and renal dysfunction in offspring from diabetic mothers. Am. J. Physiol. Renal Physiol. 304, F189–F197 (2013).

    PubMed  Google Scholar 

  185. 185.

    Intapad, S. et al. Renal denervation abolishes the age-dependent increase in blood pressure in female intrauterine growth-restricted rats at 12 months of age. Hypertension 61, 828–834 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Langley-Evans, S. C. & Jackson, A. A. Captopril normalises systolic blood pressure in rats with hypertension induced by fetal exposure to maternal low protein diets. Comp. Biochem. Physiol. A Physiol. 110, 223–228 (1995).

    CAS  Google Scholar 

  187. 187.

    Mansuri, A., Elmaghrabi, A., Legan, S. K., Gattineni, J. & Baum, M. Transient exposure of enalapril normalizes prenatal programming of hypertension and urinary angiotensinogen excretion. PLOS ONE 10, e0146183 (2015).

    PubMed  PubMed Central  Google Scholar 

  188. 188.

    Mizuno, M., Lozano, G., Siddique, K., Baum, M. & Smith, S. A. Enalapril attenuates the exaggerated sympathetic response to physical stress in prenatally programmed hypertensive rats. Hypertension 63, 324–329 (2014).

    CAS  PubMed  Google Scholar 

  189. 189.

    Mizuno, M., Siddique, K., Baum, M. & Smith, S. A. Prenatal programming of hypertension induces sympathetic overactivity in response to physical stress. Hypertension 61, 180–186 (2013).

    CAS  PubMed  Google Scholar 

  190. 190.

    Pladys, P. et al. Role of brain and peripheral angiotensin II in hypertension and altered arterial baroreflex programmed during fetal life in rat. Pediatr. Res. 55, 1042–1049 (2004).

    CAS  PubMed  Google Scholar 

  191. 191.

    Xue, B. et al. Maternal gestational hypertension-induced sensitization of angiotensin II hypertension in offspring and its reversal by renal denervation or angiotensin converting enzyme inhibition in rats. Hypertension 69, 669–677 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Xue, B., Beltz, T. G., Guo, F. & Johnson, A. K. Sex differences in maternal gestational hypertension-induced sensitization of angiotensin II hypertension in rat offspring: the protective effect of estrogen. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R274–R281 (2018).

    PubMed  Google Scholar 

  193. 193.

    Xue, B. et al. Estrogen regulation of the brain renin–angiotensin system in protection against angiotensin II-induced sensitization of hypertension. Am. J. Physiol. Heart Circ. Physiol. 307, H191–H198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Alexander, B. T., Dasinger, J. H. & Intapad, S. Fetal programming and cardiovascular pathology. Compr. Physiol. 5, 997–1025 (2015).

    PubMed  PubMed Central  Google Scholar 

  195. 195.

    Dong, M., Zheng, Q., Ford, S. P., Nathanielsz, P. W. & Ren, J. Maternal obesity, lipotoxicity and cardiovascular diseases in offspring. J. Mol. Cell. Cardiol. 55, 111–116 (2013).

    CAS  PubMed  Google Scholar 

  196. 196.

    Gademan, M. G. et al. Maternal prepregnancy body mass index and their children’s blood pressure and resting cardiac autonomic balance at age 5 to 6 years. Hypertension 62, 641–647 (2013).

    CAS  PubMed  Google Scholar 

  197. 197.

    Reynolds, R. M. et al. Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1 323 275 person years. BMJ 347, f4539 (2013).

    PubMed  PubMed Central  Google Scholar 

  198. 198.

    Prior, L. J. et al. Exposure to a high-fat diet during development alters leptin and ghrelin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension 63, 338–345 (2014).

    CAS  PubMed  Google Scholar 

  199. 199.

    Cesar, H. C. & Pisani, L. P. Fatty-acid-mediated hypothalamic inflammation and epigenetic programming. J. Nutr. Biochem. 42, 1–6 (2017).

    CAS  PubMed  Google Scholar 

  200. 200.

    Deng, Y. et al. Prenatal inflammation-induced NF-κB dyshomeostasis contributes to renin–angiotensin system over-activity resulting in prenatally programmed hypertension in offspring. Sci. Rep. 6, 21692 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. 201.

    Samuelsson, A. M. et al. Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats. Hypertension 55, 76–82 (2010).

    CAS  PubMed  Google Scholar 

  202. 202.

    Levine, S. & Mullins, R. F. Jr. Hormonal influences on brain organization in infant rats. Science 152, 1585–1592 (1966).

    CAS  PubMed  Google Scholar 

  203. 203.

    Scott, J. P. Critical periods in behavioral development. Science 138, 949–958 (1962).

    CAS  PubMed  Google Scholar 

  204. 204.

    Viken, R. J., Johnson, A. K. & Knutson, J. F. Blood pressure, heart rate, and regional resistance in behavioral defense. Physiol. Behav. 50, 1097–1101 (1991).

    CAS  PubMed  Google Scholar 

  205. 205.

    Finnell, J. E. & Wood, S. K. Neuroinflammation at the interface of depression and cardiovascular disease: evidence from rodent models of social stress. Neurobiol. Stress 4, 1–14 (2016).

    PubMed  PubMed Central  Google Scholar 

  206. 206.

    Michopoulos, V., Powers, A., Gillespie, C. F., Ressler, K. J. & Jovanovic, T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology 42, 254–270 (2017).

    CAS  PubMed  Google Scholar 

  207. 207.

    Brudey, C. et al. Autonomic and inflammatory consequences of posttraumatic stress disorder and the link to cardiovascular disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R315–R321 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. 208.

    Park, J. et al. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder. J. Physiol. 595, 4893–4908 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. 209.

    Edmondson, D. et al. The association of posttraumatic stress disorder with clinic and ambulatory blood pressure in healthy adults. Psychosom. Med. 80, 55–61 (2018).

    PubMed  Google Scholar 

  210. 210.

    Kibler, J. L., Joshi, K. & Ma, M. Hypertension in relation to posttraumatic stress disorder and depression in the US National Comorbidity Survey. Behav. Med. 34, 125–132 (2009).

    PubMed  Google Scholar 

  211. 211.

    Paulus, E. J., Argo, T. R. & Egge, J. A. The impact of posttraumatic stress disorder on blood pressure and heart rate in a veteran population. J. Trauma. Stress 26, 169–172 (2013).

    PubMed  Google Scholar 

  212. 212.

    Roy, S. S., Foraker, R. E., Girton, R. A. & Mansfield, A. J. Posttraumatic stress disorder and incident heart failure among a community-based sample of US veterans. Am. J. Public Health 105, 757–763 (2015).

    PubMed  PubMed Central  Google Scholar 

  213. 213.

    Khoury, N. M. et al. The renin–angiotensin pathway in posttraumatic stress disorder: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are associated with fewer traumatic stress symptoms. J. Clin. Psychiatry 73, 849–855 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214.

    Levkovitz, Y., Fenchel, D., Kaplan, Z., Zohar, J. & Cohen, H. Early post-stressor intervention with minocycline, a second-generation tetracycline, attenuates post-traumatic stress response in an animal model of PTSD. Eur. Neuropsychopharmacol. 25, 124–132 (2015).

    CAS  PubMed  Google Scholar 

  215. 215.

    Elijovich, F. et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension 68, e7–e46 (2016).

    CAS  PubMed  Google Scholar 

  216. 216.

    He, F. J. & MacGregor, G. A. Salt and sugar: their effects on blood pressure. Pflugers Arch. 467, 577–586 (2015).

    CAS  PubMed  Google Scholar 

  217. 217.

    MacGregor, G. A. & de Wardener, H. E. Salt, Diet, and Health (Cambridge Univ. Press, 1998).

  218. 218.

    Dahl, L. K., Heine, M. & Tassinari, L. Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 194, 480–482 (1962).

    CAS  PubMed  Google Scholar 

  219. 219.

    Denton, D. et al. The effect of increased salt intake on blood pressure of chimpanzees. Nat. Med. 1, 1009–1016 (1995).

    CAS  PubMed  Google Scholar 

  220. 220.

    Weinberger, M. H., Miller, J. Z., Luft, F. C., Grim, C. E. & Fineberg, N. S. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 8, II127–II134 (1986).

    CAS  PubMed  Google Scholar 

  221. 221.

    Kanbay, M., Chen, Y., Solak, Y. & Sanders, P. W. Mechanisms and consequences of salt sensitivity and dietary salt intake. Curr. Opin. Nephrol. Hypertens. 20, 37–43 (2011).

    PubMed  PubMed Central  Google Scholar 

  222. 222.

    Brooks, V. L., Scrogin, K. E. & McKeogh, D. F. The interaction of angiotensin II and osmolality in the generation of sympathetic tone during changes in dietary salt intake. Ann. NY Acad. Sci. 940, 380–394 (2001).

    CAS  PubMed  Google Scholar 

  223. 223.

    Huang, B. S., Amin, M. S. & Leenen, F. H. The central role of the brain in salt-sensitive hypertension. Curr. Opin. Cardiol. 21, 295–304 (2006).

    PubMed  Google Scholar 

  224. 224.

    Oki, K., Gomez-Sanchez, E. P. & Gomez-Sanchez, C. E. Role of mineralocorticoid action in the brain in salt-sensitive hypertension. Clin. Exp. Pharmacol. Physiol. 39, 90–95 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. 225.

    Osborn, J. W., Fink, G. D., Sved, A. F., Toney, G. M. & Raizada, M. K. Circulating angiotensin II and dietary salt: converging signals for neurogenic hypertension. Curr. Hypertens. Rep. 9, 228–235 (2007).

    CAS  PubMed  Google Scholar 

  226. 226.

    Florin, M., Lo, M., Liu, K. L. & Sassard, J. Salt sensitivity in genetically hypertensive rats of the Lyon strain. Kidney Int. 59, 1865–1872 (2001).

    CAS  PubMed  Google Scholar 

  227. 227.

    Lo, M., Liu, K. L., Clemitson, J. R., Sassard, J. & Samani, N. J. Chromosome 1 blood pressure QTL region influences renal function curve and salt sensitivity in SHR. Physiol. Genomics 8, 15–21 (2002).

    CAS  PubMed  Google Scholar 

  228. 228.

    Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    PubMed  PubMed Central  Google Scholar 

  229. 229.

    Haley, M. J., Brough, D., Quintin, J. & Allan, S. M. Microglial priming as trained immunity in the brain. Neuroscience (2017).

    Article  PubMed  Google Scholar 

  230. 230.

    Beldade, P., Mateus, A. R. & Keller, R. A. Evolution and molecular mechanisms of adaptive developmental plasticity. Mol. Ecol. 20, 1347–1363 (2011).

    PubMed  Google Scholar 

  231. 231.

    Trinkaus, E. Late Pleistocene adult mortality patterns and modern human establishment. Proc. Natl Acad. Sci. USA 108, 1267–1271 (2011).

    CAS  PubMed  Google Scholar 

  232. 232.

    Fournier, D., Luft, F. C., Bader, M., Ganten, D. & Andrade-Navarro, M. A. Emergence and evolution of the renin–angiotensin–aldosterone system. J. Mol. Med. 90, 495–508 (2012).

    PubMed  PubMed Central  Google Scholar 

  233. 233.

    Saavedra, J. M. & Benicky, J. Brain and peripheral angiotensin II play a major role in stress. Stress 10, 185–193 (2007).

    CAS  PubMed  Google Scholar 

  234. 234.

    Syvalahti, E., Lammintausta, R. & Pekkarinen, A. Effect of psychic stress of examination on serum growth hormone, serum insulin, and plasma renin activity. Acta Pharmacol. Toxicol. 38, 344–352 (1976).

    CAS  Google Scholar 

  235. 235.

    Sigg, E. B., Keim, K. L. & Sigg, T. D. On the mechanism of renin release by restraint stress in rats. Pharmacol. Biochem. Behav. 8, 47–50 (1978).

    CAS  PubMed  Google Scholar 

  236. 236.

    Golin, R. M., Gotoh, E., Said, S. I. & Ganong, W. F. Pharmacological evidence that the sympathetic nervous system mediates the increase in renin secretion produced by immobilization and head-up tilt in rats. Neuropharmacology 27, 1209–1213 (1988).

    CAS  PubMed  Google Scholar 

  237. 237.

    Blair, M. L., Feigl, E. O. & Smith, O. A. Elevation of plasma renin activity during avoidance performance in baboons. Am. J. Physiol. 231, 772–776 (1976).

    CAS  PubMed  Google Scholar 

  238. 238.

    Bozovic, L. & Castenfors, J. Effect of ganglionic blocking on plasma renin activity in exercising and pain-stressed rats. Acta Physiol. Scand. 70, 290–292 (1967).

    CAS  PubMed  Google Scholar 

  239. 239.

    Otsuka, K., Assaykeen, T. A., Goldfien, A. & Ganong, W. F. Effect of hypoglycemia on plasma renin activity in dogs. Endocrinology 87, 1306–1317 (1970).

    CAS  PubMed  Google Scholar 

  240. 240.

    Grippo, A. J., Francis, J., Beltz, T. G., Felder, R. B. & Johnson, A. K. Neuroendocrine and cytokine profile of chronic mild stress-induced anhedonia. Physiol. Behav. 84, 697–706 (2005).

    CAS  PubMed  Google Scholar 

  241. 241.

    Xue, B., Beltz, T. G., Guo, F., Thunhorst, R. L. & Johnson, A. K. Controlled hypotensive hemorrhage sensitizes angiotensin II-elicited hypertension. FASEB J. 30, 1234.2 (2016).

    Google Scholar 

  242. 242.

    Xue, B., Beltz, T. G., Fuo, F. & Johnson, A. K. Blockade of glutamate receptors abolishes the sensitization of the angiotensin II-elicited hypertensive response in rats. FASEB J. 32, 732.1 (2018).

    Google Scholar 

Download references


The authors thank M. Dennis of the Department of Psychological and Brain Sciences at the University of Iowa for help in preparing the manuscript. The authors’ work described in this Review was supported by US National Institutes of Health (NIH) grants HL14388, MH080241, HL73986, HL84027 and HL139575 (to A.K.J.) and HL98207 (to A.K.J. and B.X.).

Author information




Both authors contributed to discussions of the article content, researched data for the article and drafted and edited the manuscript before submission.

Corresponding author

Correspondence to Alan Kim Johnson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Response sensitization

Sensitization is operationally defined and occurs when repeated administration of a stimulus results in an increase in the magnitude of a response.

General adaptation syndrome

A term describing the three predictable stages of behavioural and physiological responses to stressors. The ‘alarm reaction’ stage provides a burst of energy to deal with the onset of a stressor. In the ‘resistance’ stage, the body attempts to overcome or adapt to the stressor. Maintenance of the resistance stage is hypothesized to lead to ‘exhaustion’, with depletion of bodily resources, morbidity and mortality.


A threatening or noxious stimulus that produces a stress response and is associated with the state defined as stress (that is, an inferred state or hypothetical construct).

Classical or Pavlovian conditioning

A learning paradigm first developed by the physiologist Ivan Pavlov. A biologically potent stimulus (such as food or an electric shock) is paired with a previously neutral stimulus (such as a tone or light). Pairing produces an association between the two stimuli, such that the neutral stimulus comes to elicit a response similar to that originally produced by a prepotent stimulus.

Limbic system

An extensive set of phylogenetically old, interconnected brain structures located in the rostral part of the nervous system (forebrain). The limbic system was originally identified as a functional system related to emotion. Today, limbic structures are implicated in the control of many physiological, behavioural and cognitive functions.

Lamina terminalis

The single layer of ependymal cells that forms the rostral wall of the third cerebral ventricle. Four structures — the subfornical organ, median preoptic nucleus, the organum vasculosum of the lamina terminalis and the anterior commissure — lie immediately rostral to the lamina terminalis and are often, albeit technically erroneously, commonly referred to as the lamina terminalis.


A substance released by neurons that acts to increase or decrease the actions of neurotransmitters. Neuromodulators affect large numbers of neurons by acting in a diffuse paracrine fashion, which is in contrast to the tight coupling between neurons using synaptic neurotransmitters to communicate.


Proteins that are important in autocrine, paracrine and endocrine signalling, particularly in the immune system. Pro-inflammatory cytokines promote inflammation, whereas anti-inflammatory cytokines reduce inflammation. Adipokines are cytokines secreted by adipose tissue.

Long-term potentiation

The strengthening of synapses that results from increased neural activity. Long-term potentiation facilitates synaptic transmission between adjacent neurons.

Operant conditioning

Also known as instrumental conditioning. A type of learning in which a response is modified by positive or negative reinforcement, that is, by association with the presentation of either a reward (such as food) or a punishment (such as electric shock).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnson, A.K., Xue, B. Central nervous system neuroplasticity and the sensitization of hypertension. Nat Rev Nephrol 14, 750–766 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing