Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal disease in tuberous sclerosis complex: pathogenesis and therapy

Abstract

Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterized by hamartomatous tumours of the brain, heart, skin, lung and kidney. Patients with TSC show a diverse range of neurological features (including seizures, cognitive disability and autism) and renal manifestations (including angiomyolipomas, epithelial cysts and renal cell carcinoma (RCC)). TSC is caused by inactivating mutations in TSC1 and TSC2, which encode hamartin and tuberin, respectively. These two proteins form a complex that negatively regulates mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of cellular growth and metabolism. In clinical trials, allosteric inhibitors of mTORC1 decrease angiomyolipoma size, but the tumours regrow after treatment cessation. Therefore, the development of strategies to eliminate rather than suppress angiomyolipomas remains a high priority. This Review describes important advances in the TSC field and highlights several remaining critical knowledge gaps: the factors that promote aggressive behaviour by a subset of TSC-associated RCCs; the molecular mechanisms underlying early-onset cystogenesis in TSC2PKD1 contiguous gene deletion syndrome; the effect of early, long-term mTORC1 inhibition on the development of TSC renal disease; and the identification of the cell or cells of origin of angiomyolipomas.

Key points

  • Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome caused by germline inactivating mutations in either allele of the tumour suppressor genes TSC1 or TSC2.

  • Annual surveillance of renal disease is recommended for most patients with TSC.

  • Nephron-sparing treatments for TSC-related renal disease (rapalogues, embolization and partial nephrectomy) should always be prioritized.

  • Activation of mechanistic target of rapamycin complex 1 (mTORC1) promotes TSC by accelerating cell growth and inhibiting autophagy.

  • mTORC1 hyperactivation increases oxidative stress, rendering TSC-related tumour cells vulnerable to agents that increase oxidative stress or inhibit antioxidant biosynthesis.

  • The interactions of TSC-related tumour cells with their microenvironment remain a key area of research; for example, tumour cells might be responsive to immune checkpoint inhibition.

  • Critical knowledge gaps include the angiomyolipoma cell of origin, aggressive behaviour of renal cell carcinomas and molecular mechanisms underlying early-onset cystic disease in PKD1TSC2 contiguous gene deletion syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The hamartin–tuberin complex regulates mTORC1 signalling by integrating extracellular and intracellular signals that promote metabolic homeostasis.
Fig. 2: Renal manifestations of TSC.
Fig. 3: Metabolic and molecular changes associated with mTORC1 hyperactivation in TSC.
Fig. 4: Role of oxidative stress in the pathogenesis of TSC.
Fig. 5: Possible therapies for TSC that target immune pathways.

Similar content being viewed by others

References

  1. Henske, E. P., Jozwiak, S., Kingswood, J. C., Sampson, J. R. & Thiele, E. A. Tuberous sclerosis complex. Nat. Rev. Dis. Primers 2, 16035 (2016).

    PubMed  Google Scholar 

  2. Crino, P. B., Nathanson, K. L. & Henske, E. P. The tuberous sclerosis complex. N. Engl. J. Med. 355, 1345–1356 (2006).

    CAS  PubMed  Google Scholar 

  3. Curatolo, P., Bombardieri, R. & Jozwiak, S. Tuberous sclerosis. Lancet 372, 657–668 (2008).

    CAS  PubMed  Google Scholar 

  4. Krueger, D. A. & Northrup, H. International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr. Neurol. 49, 255–265 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Robertson, F. M., Cendron, M., Klauber, G. T. & Harris, B. H. Renal cell carcinoma in association with tuberous sclerosis in children. J. Pediatr. Surg. 31, 729–730 (1996).

    CAS  PubMed  Google Scholar 

  6. Kulkarni, S., Uddar, M., Deshpande, S. G., Vaid, S. & Wadia, R. S. Renal cell carcinoma as significant manifestation of tuberous sclerosis complex. J. Assoc. Physicians India 48, 351–353 (2000).

    CAS  PubMed  Google Scholar 

  7. Yang, P. et al. Renal cell carcinoma in tuberous sclerosis complex. Am. J. Surg. Pathol. 38, 895–909 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Holt, J. F. & Dickerson, W. W. The osseous lesions of tuberous sclerosis. Radiology 58, 1–8 (1952).

    CAS  PubMed  Google Scholar 

  9. Hizawa, K. et al. Gastrointestinal involvement in tuberous sclerosis. Two case reports. J. Clin. Gastroenterol. 19, 46–49 (1994).

    CAS  PubMed  Google Scholar 

  10. Gould, S. R. Hamartomatous rectal polyps are common in tuberous sclerosis. Ann. NY Acad. Sci. 615, 71–80 (1991).

    CAS  PubMed  Google Scholar 

  11. Jozwiak, S., Michalowicz, R., Pedich, M. & Rajszys, P. Hepatic hamartoma in tuberous sclerosis. Lancet 339, 180 (1992).

    CAS  PubMed  Google Scholar 

  12. Larson, A. M. et al. Pancreatic neuroendocrine tumors in patients with tuberous sclerosis complex. Clin. Genet. 82, 558–563 (2012).

    CAS  PubMed  Google Scholar 

  13. Wang, J. H. et al. Multi-modality imaging findings of splenic hamartoma: a report of nine cases and review of the literature. Abdom. Imag. 38, 154–162 (2013).

    Google Scholar 

  14. O’Callaghan, F. J., Noakes, M. J., Martyn, C. N. & Osborne, J. P. An epidemiological study of renal pathology in tuberous sclerosis complex. BJU Int. 94, 853–857 (2004).

    PubMed  Google Scholar 

  15. Osborne, J. P., Fryer, A. & Webb, D. Epidemiology of tuberous sclerosis. Ann. NY Acad. Sci. 615, 125–127 (1991).

    CAS  PubMed  Google Scholar 

  16. Henske, E. P. & McCormack, F. X. Lymphangioleiomyomatosis — a wolf in sheep’s clothing. J. Clin. Invest. 122, 3807–3816 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rakowski, S. K. et al. Renal manifestations of tuberous sclerosis complex: incidence, prognosis, and predictive factors. Kidney Int. 70, 1777–1782 (2006).

    CAS  PubMed  Google Scholar 

  18. Henske, E. P. et al. Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band 16p13 occurs in sporadic as well as TSC-associated renal angiomyolipomas. Genes Chromosomes Cancer 13, 295–298 (1995).

    CAS  PubMed  Google Scholar 

  19. van Slegtenhorst, M. et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277, 805–808 (1997).

    PubMed  Google Scholar 

  20. Plank, T. L., Yeung, R. S. & Henske, E. P. Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res. 58, 4766–4770 (1998).

    CAS  PubMed  Google Scholar 

  21. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dibble, C. C. & Cantley, L. C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 25, 545–555 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kwiatkowski, D. J. & Manning, B. D. Molecular basis of giant cells in tuberous sclerosis complex. N. Engl. J. Med. 371, 778–780 (2014).

    PubMed  Google Scholar 

  24. Im, K. et al. Altered structural brain networks in tuberous sclerosis complex. Cereb. Cortex 26, 2046–2058 (2016).

    PubMed  Google Scholar 

  25. Tsai, P. T. et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488, 647–651 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tyburczy, M. E. et al. A shower of second hit events as the cause of multifocal renal cell carcinoma in tuberous sclerosis complex. Hum. Mol. Genet. 24, 1836–1842 (2015).

    CAS  PubMed  Google Scholar 

  27. Jones, A. C. et al. Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Hum. Mol. Genet. 6, 2155–2161 (1997).

    CAS  PubMed  Google Scholar 

  28. Dabora, S. L. et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am. J. Hum. Genet. 68, 64–80 (2001).

    CAS  PubMed  Google Scholar 

  29. Tyburczy, M. E. et al. Mosaic and intronic mutations in TSC1/TSC2 explain the majority of TSC patients with no mutation identified by conventional testing.PLOS Genet. 11, e1005637 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Jones, A. C. et al. Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am. J. Hum. Genet. 64, 1305–1315 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. van Eeghen, A. M., Black, M. E., Pulsifer, M. B., Kwiatkowski, D. J. & Thiele, E. A. Genotype and cognitive phenotype of patients with tuberous sclerosis complex. Eur. J. Hum. Genet. 20, 510–515 (2012).

    PubMed  Google Scholar 

  32. de Vries, P. J. et al. Tuberous sclerosis associated neuropsychiatric disorders (TAND) and the TAND checklist. Pediatr. Neurol. 52, 25–35 (2015).

    PubMed  Google Scholar 

  33. Yu, J. J. et al. Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells. Proc. Natl Acad. Sci. USA 106, 2635–2640 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McCormack, F. X. et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N. Engl. J. Med. 364, 1595–1606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Muir, T. E. et al. Micronodular pneumocyte hyperplasia. Am. J. Surg. Pathol. 22, 465–472 (1998).

    CAS  PubMed  Google Scholar 

  36. Hayashi, T. et al. Loss of heterozygosity on tuberous sclerosis complex genes in multifocal micronodular pneumocyte hyperplasia. Mod. Pathol. 23, 1251–1260 (2010).

    PubMed  Google Scholar 

  37. Shepherd, C. W., Gomez, M. R., Lie, J. T. & Crowson, C. S. Causes of death in patients with tuberous sclerosis. Mayo Clin. Proc. 66, 792–796 (1991).

    CAS  PubMed  Google Scholar 

  38. Eijkemans, M. J. et al. Long-term follow-up assessing renal angiomyolipoma treatment patterns, morbidity, and mortality: an observational study in tuberous sclerosis complex patients in the Netherlands. Am. J. Kidney. Dis. 66, 638–645 (2015).

    PubMed  Google Scholar 

  39. European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75, 1305–1315 (1993).

    Google Scholar 

  40. Bissler, J. J. et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 381, 817–824 (2013).

    CAS  PubMed  Google Scholar 

  41. Bissler, J. J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 358, 140–151 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dabora, S. L. et al. Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress and VEGF-D levels decrease. PLOS ONE 6, e23379 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, J., Kim, S. G. & Blenis, J. Rapamycin: one drug, many effects. Cell Metab. 19, 373–379 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Krueger, D. A. et al. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology 80, 574–580 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Krueger, D. A. et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N. Engl. J. Med. 363, 1801–1811 (2010).

    CAS  PubMed  Google Scholar 

  46. Krueger, D. A. et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex.Ann. Neurol. 74, 679–687 (2013).

    CAS  PubMed  Google Scholar 

  47. Krueger, D. A. et al. Long-term treatment of epilepsy with everolimus in tuberous sclerosis. Neurology 87, 2408–2415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Siroky, B. J. et al. Improvement in renal cystic disease of tuberous sclerosis complex after treatment with mammalian target of rapamycin inhibitor. J. Pediatr. 187, 318–322.e2 (2017).

    CAS  PubMed  Google Scholar 

  49. Franz, D. N. et al. Long-term use of everolimus in patients with tuberous sclerosis complex: final results from the EXIST-1 study. PLOS ONE 11, e0158476 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. French, J. A. et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388, 2153–2163 (2016).

    CAS  PubMed  Google Scholar 

  51. Amin, S. et al. Causes of mortality in individuals with tuberous sclerosis complex. Dev. Med. Child Neurol. 59, 612–617 (2017).

    PubMed  Google Scholar 

  52. Ewalt, D. H., Sheffield, E., Sparagana, S. P., Delgado, M. R. & Roach, E. S. Renal lesion growth in children with tuberous sclerosis complex. J. Urol. 160, 141–145 (1998).

    CAS  PubMed  Google Scholar 

  53. Guo, J. et al. Tuberous sclerosis-associated renal cell carcinoma: a clinicopathologic study of 57 separate carcinomas in 18 patients. Am. J. Surg. Pathol. 38, 1457–1467 (2014).

    PubMed  Google Scholar 

  54. Henske, E. P. et al. Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am. J. Hum. Genet. 59, 400–406 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Henske, E. P. et al. Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am. J. Pathol. 151, 1639–1647 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Karbowniczek, M., Yu, J. & Henske, E. P. Renal angiomyolipomas from patients with sporadic lymphangiomyomatosis contain both neoplastic and non-neoplastic vascular structures. Am. J. Pathol. 162, 491–500 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Delaney, S. P., Julian, L. M. & Stanford, W. L. The neural crest lineage as a driver of disease heterogeneity in tuberous sclerosis complex and lymphangioleiomyomatosis. Front. Cell Dev. Biol. 2, 69 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Siroky, B. J. et al. Evidence for pericyte origin of TSC-associated renal angiomyolipomas and implications for angiotensin receptor inhibition therapy. Am. J. Physiol. Renal Physiol. 307, F560–F570 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Goncalves, A. F. et al. Evidence of renal angiomyolipoma neoplastic stem cells arising from renal epithelial cells. Nat. Commun. 8, 1466 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Webb, D. W., Kabala, J. & Osborne, J. P. A population study of renal disease in patients with tuberous sclerosis. Br. J. Urol. 74, 151–154 (1994).

    CAS  PubMed  Google Scholar 

  61. Robert, A. et al. Renal involvement in tuberous sclerosis complex with emphasis on cystic lesions. Radiol. Med. 121, 402–408 (2016).

    PubMed  Google Scholar 

  62. Cook, J. A., Oliver, K., Mueller, R. F. & Sampson, J. A cross sectional study of renal involvement in tuberous sclerosis. J. Med. Genet. 33, 480–484 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ren, S. et al. Inactivation of Tsc2 in mesoderm-derived cells causes polycystic kidney lesions and impairs lung alveolarization. Am. J. Pathol. 186, 3261–3272 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Brook-Carter, P. T. et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease.—.a contiguous gene syndrome. Nat. Genet. 8, 328–332 (1994).

    CAS  PubMed  Google Scholar 

  65. Torra, R. et al. Facilitated diagnosis of the contiguous gene syndrome: tuberous sclerosis and polycystic kidneys by means of haplotype studies. Am. J. Kidney Dis. 31, 1038–1043 (1998).

    CAS  PubMed  Google Scholar 

  66. Sampson, J. R. et al. Renal cystic disease in tuberous sclerosis: role of the polycystic kidney disease 1 gene. Am. J. Hum. Genet. 61, 843–851 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pema, M. et al. mTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex. Nat. Commun. 7, 10786 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hartman, T. R. et al. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum. Mol. Genet. 18, 151–163 (2009).

    CAS  PubMed  Google Scholar 

  69. Al-Saleem, T. et al. Malignant tumors of the kidney, brain, and soft tissues in children and young adults with the tuberous sclerosis complex. Cancer 83, 2208–2216 (1998).

    CAS  PubMed  Google Scholar 

  70. Bjornsson, J., Short, M. P., Kwiatkowski, D. J. & Henske, E. P. Tuberous sclerosis-associated renal cell carcinoma. Clinical, pathological, and genetic features. Am. J. Pathol. 149, 1201–1208 (1996).

    CAS  PubMed  Google Scholar 

  71. Kubo, M., Iwashita, K., Oyachi, N., Oyama, T. & Yamamoto, T. Two different types of infantile renal cell carcinomas associated with tuberous sclerosis. J. Pediatr. Surg. 46, E37–E41 (2011).

    PubMed  Google Scholar 

  72. Giannikou, K. et al. Whole exome sequencing identifies TSC1/TSC2 biallelic loss as the primary and sufficient driver event for renal angiomyolipoma development. PLOS Genet. 12, e1006242 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Kang, S. G. et al. Two different renal cell carcinomas and multiple angiomyolipomas in a patient with tuberous sclerosis. Kor. J. Urol. 51, 729–732 (2010).

    Google Scholar 

  74. Jimenez, R. E. et al. Concurrent angiomyolipoma and renal cell neoplasia: a study of 36 cases. Mod. Pathol. 14, 157–163 (2001).

    CAS  PubMed  Google Scholar 

  75. Paul, E., Thiele, E. A., Shailam, R., Rosales, A. M. & Sadow, P. M. Case records of the Massachusetts general hospital. Case 26–2011. A 7-year-old boy with a complex cyst in the kidney. N. Engl. J. Med. 365, (743–751 (2011).

    Google Scholar 

  76. Buj Pradilla, M. J., Marti Balleste, T., Torra, R. & Villacampa Auba, F. Recommendations for imaging-based diagnosis and management of renal angiomyolipoma associated with tuberous sclerosis complex. Clin. Kidney J. 10, (728–737 (2017).

    Google Scholar 

  77. Jinzaki, M., Silverman, S. G., Akita, H., Mikami, S. & Oya, M. Diagnosis of renal angiomyolipomas: classic, fat-poor, and epithelioid types. Semin. Ultrasound CT MR 38, 37–46 (2017).

    PubMed  Google Scholar 

  78. Potretzke, A. M. et al. Computed tomography and magnetic resonance findings of fat-poor angiomyolipomas. J. Endourol. 31, 119–128 (2017).

    PubMed  Google Scholar 

  79. Kingswood, J. C. et al. Review of the tuberous sclerosis renal guidelines from the 2012 consensus conference: current data and future study. Nephron 134, 51–58 (2016).

    CAS  PubMed  Google Scholar 

  80. Bissler, J. J. & Kingswood, J. C. Optimal treatment of tuberous sclerosis complex associated renal angiomyolipomata: a systematic review. Ther. Adv. Urol. 8, 279–290 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yamakado, K. et al. Renal angiomyolipoma: relationships between tumor size, aneurysm formation, and rupture. Radiology 225, 78–82 (2002).

    PubMed  Google Scholar 

  82. Williams, J. M., Racadio, J. M., Johnson, N. D., Donnelly, L. F. & Bissler, J. J. Embolization of renal angiomyolipomata in patients with tuberous sclerosis complex. Am. J. Kidney Dis. 47, 95–102 (2006).

    PubMed  Google Scholar 

  83. Bissler, J. J. et al. The effect of everolimus on renal angiomyolipoma in pediatric patients with tuberous sclerosis being treated for subependymal giant cell astrocytoma. Pediatr. Nephrol. 33, 101–109 (2018).

    PubMed  Google Scholar 

  84. Bissler, J. J. et al. Everolimus long-term use in patients with tuberous sclerosis complex: four-year update of the EXIST-2 study. PLOS ONE 12, e0180939 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Malinowska, I. A. et al. Similar trends in serum VEGF-D levels and kidney angiomyolipoma responses with longer duration sirolimus treatment in adults with tuberous sclerosis. PLOS ONE 8, e56199 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Franz, D. N. et al. Everolimus for subependymal giant cell astrocytoma in patients with tuberous sclerosis complex: 2-year open-label extension of the randomised EXIST-1 study. Lancet Oncol. 15, 1513–1520 (2014).

    CAS  PubMed  Google Scholar 

  87. Cardamone, M. et al. Mammalian target of rapamycin inhibitors for intractable epilepsy and subependymal giant cell astrocytomas in tuberous sclerosis complex. J. Pediatr. 164, 1195–1200 (2014).

    CAS  PubMed  Google Scholar 

  88. Cheng, S., Hawkins, C., Taylor, M. D. & Bartels, U. Pathological findings of a subependymal giant cell astrocytoma following treatment with rapamycin. Pediatr. Neurol. 53, 238–242 (2015).

    PubMed  Google Scholar 

  89. Davies, D. M. et al. Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N. Engl. J. Med. 358, 200–203 (2008).

    CAS  PubMed  Google Scholar 

  90. Franz, D. N. et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381, 125–132 (2013).

    CAS  PubMed  Google Scholar 

  91. Bissler, J. J. et al. Everolimus for renal angiomyolipoma in patients with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis: extension of a randomized controlled trial. Nephrol. Dial. Transplant. 31, 111–119 (2016).

    CAS  PubMed  Google Scholar 

  92. Brakemeier, S. et al. Treatment effect of mTOR-inhibition on tissue composition of renal angiomyolipomas in tuberous sclerosis complex (TSC). PLOS ONE 12, e0189132 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Samuels, J. A. Treatment of renal angiomyolipoma and other hamartomas in patients with tuberous sclerosis complex. Clin. J. Am. Soc. Nephrol. 12, 1196–1202 (2017).

    PubMed  PubMed Central  Google Scholar 

  94. Sheth, R. A., Feldman, A. S., Paul, E., Thiele, E. A. & Walker, T. G. Sporadic versus tuberous sclerosis complex-associated angiomyolipomas: predictors for long-term outcomes following transcatheter embolization. J. Vasc. Interv. Radiol. 27, 1542–1549 (2016).

    PubMed  Google Scholar 

  95. Bissler, J. J., Racadio, J., Donnelly, L. F. & Johnson, N. D. Reduction of postembolization syndrome after ablation of renal angiomyolipoma. Am. J. Kidney Dis. 39, 966–971 (2002).

    PubMed  Google Scholar 

  96. Shillingford, J. M. et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl Acad. Sci. USA 103, 5466–5471 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bonnet, C. S. et al. Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum. Mol. Genet. 18, 2166–2176 (2009).

    CAS  PubMed  Google Scholar 

  98. Braun, W. E., Schold, J. D., Stephany, B. R., Spirko, R. A. & Herts, B. R. Low-dose rapamycin (sirolimus) effects in autosomal dominant polycystic kidney disease: an open-label randomized controlled pilot study. Clin. J. Am. Soc. Nephrol. 9, 881–888 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    CAS  PubMed  Google Scholar 

  100. Serra, A. L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).

    CAS  PubMed  Google Scholar 

  101. Perico, N. et al. Sirolimus therapy to halt the progression of ADPKD. J. Am. Soc. Nephrol. 21, 1031–1040 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, H. S. et al. The use of everolimus to target carcinogenic pathways in a patient with renal cell carcinoma and tuberous sclerosis complex: a case report. J. Med. Case Rep. 8, 95 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. Alsidawi, S. & Kasi, P. M. Exceptional response to everolimus in a novel tuberous sclerosis complex-2 mutation-associated metastatic renal-cell carcinoma. Cold Spring Harb. Mol. Case Stud. 4, a002220 (2018).

    PubMed  PubMed Central  Google Scholar 

  104. Yu, J., Astrinidis, A., Howard, S. & Henske, E. P. Estradiol and tamoxifen stimulate LAM-associated angiomyolipoma cell growth and activate both genomic and nongenomic signaling pathways. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, L694–L700 (2004).

    CAS  PubMed  Google Scholar 

  105. Ogorek, B. et al. TSC2 regulates microRNA biogenesis via mTORC1 and GSK3β. Hum. Mol. Genet. 27, 1654–1663 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. Parkhitko, A. A. et al. Autophagy-dependent metabolic reprogramming sensitizes TSC2-deficient cells to the antimetabolite 6-aminonicotinamide. Mol. Cancer Res. 12, 48–57 (2014).

    CAS  PubMed  Google Scholar 

  107. Filippakis, H. et al. Lysosomal regulation of cholesterol homeostasis in tuberous sclerosis complex is mediated via NPC1 and LDL-R. Oncotarget 8, 38099–38112 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. Liu, H. J. et al. TSC2-deficient tumors have evidence of T cell exhaustion and respond to anti-PD-1/anti-CTLA-4 immunotherapy. JCI Insight 3, 98674 (2018).

    PubMed  Google Scholar 

  109. Csibi, A. et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840–854 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lam, H. C. et al. p62/SQSTM1 cooperates with hyperactive mTORC1 to regulate glutathione production, maintain mitochondrial integrity, and promote tumorigenesis. Cancer Res. 77, 3255–3267 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Onda, H., Lueck, A., Marks, P. W., Warren, H. B. & Kwiatkowski, D. J. Tsc2 +/− mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J. Clin. Invest. 104, 687–695 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee, L. et al. Efficacy of a rapamycin analog (CCI-779) and IFN-γ in tuberous sclerosis mouse models. Genes Chromosomes Cancer 42, 213–227 (2005).

    CAS  PubMed  Google Scholar 

  113. Liang, N. et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J. Exp. Med. 211, 2249–2263 (2014).

    PubMed  PubMed Central  Google Scholar 

  114. Traykova-Brauch, M. et al. An efficient and versatile system for acute and chronic modulation of renal tubular function in transgenic mice. Nat. Med. 14, 979–984 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhou, J., Brugarolas, J. & Parada, L. F. Loss of Tsc1, but not Pten, in renal tubular cells causes polycystic kidney disease by activating mTORC1. Hum. Mol. Genet. 18, 4428–4441 (2009).

    CAS  PubMed  Google Scholar 

  116. Buller, C. L. et al. A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am. J. Physiol. Cell Physiol. 295, C836–C843 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Csibi, A. & Blenis, J. Appetite for destruction: the inhibition of glycolysis as a therapy for tuberous sclerosis complex-related tumors. BMC Biol. 9, 69 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Choo, A. Y. et al. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol. Cell 38, 487–499 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323–1328 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M. & Manning, B. D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Priolo, C. et al. Tuberous sclerosis complex 2 loss increases lysophosphatidylcholine synthesis in lymphangioleiomyomatosis. Am. J. Respir. Cell. Mol. Biol. 53, 33–41 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lee, G. et al. Post-transcriptional regulation of de novo lipogenesis by mTORC1-S6K1-SRPK2 signaling. Cell 171, 1545–1558 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Goncharova, E. A. et al. mTORC2 is required for proliferation and survival of TSC2-null cells. Mol. Cell. Biol. 31, 2484–2498 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Taveira-DaSilva, A. M., Jones, A. M., Julien-Williams, P. A., Stylianou, M. & Moss, J. Retrospective review of combined sirolimus and simvastatin therapy in lymphangioleiomyomatosis. Chest 147, 180–187 (2015).

    PubMed  Google Scholar 

  125. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02061397 (2017).

  126. Li, C. et al. Estradiol and mTORC2 cooperate to enhance prostaglandin biosynthesis and tumorigenesis in TSC2-deficient LAM cells. J. Exp. Med. 211, 15–28 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02484664 (2018).

  128. Siroky, B. J. et al. Human TSC-associated renal angiomyolipoma cells are hypersensitive to ER stress. Am. J. Physiol. Renal Physiol. 303, F831–F844 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Di Nardo, A. et al. Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner. J. Neurosci. 29, 5926–5937 (2009).

    PubMed  PubMed Central  Google Scholar 

  130. Zhang, Y. et al. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 513, 440–443 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Morita, M. et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 18, 698–711 (2013).

    CAS  PubMed  Google Scholar 

  132. Morita, M. et al. mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol. Cell. 67, 922–935 (2017).

    CAS  PubMed  Google Scholar 

  133. Ebrahimi-Fakhari, D. et al. Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep. 17, 1053–1070 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature 450, 736–740 (2007).

    CAS  PubMed  Google Scholar 

  135. Filipczak, P. T. et al. TSC2 deficiency unmasks a novel necrosis pathway that is suppressed by the RIP1/RIP3/MLKL signaling cascade. Cancer Res. 76, 7130–7139 (2016).

    CAS  PubMed  Google Scholar 

  136. Medvetz, D. et al. High-throughput drug screen identifies chelerythrine as a selective inducer of death in a TSC2-null setting. Mol. Cancer Res. 13, 50–62 (2015).

    CAS  PubMed  Google Scholar 

  137. Li, J. et al. Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells. Proc. Natl Acad. Sci. USA 112, E21–E29 (2015).

    CAS  PubMed  Google Scholar 

  138. Dunlop, E. A., Johnson, C. E., Wiltshire, M., Errington, R. J. & Tee, A. R. Targeting protein homeostasis with nelfinavir/salinomycin dual therapy effectively induces death of mTORC1 hyperactive cells. Oncotarget 8, 48711–48724 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Parkhitko, A. et al. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc. Natl Acad. Sci. USA 108, 12455–12460 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. El-Chemaly, S. et al. Sirolimus and autophagy inhibition in lymphangioleiomyomatosis: results of a phase I clinical trial. Chest 151, 1302–1310 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Alayev, A. et al. Effects of combining rapamycin and resveratrol on apoptosis and growth of TSC2-deficient xenograft tumors. Am. J. Respir. Cell. Mol. Biol. 53, 637–646 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Cui, Y. et al. Aberrant SYK kinase signaling is essential for tumorigenesis induced by TSC2 inactivation. Cancer Res. 77, 1492–1502 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kingswood, J. C. et al. Renal angiomyolipoma in patients with tuberous sclerosis complex: findings from the tuberous sclerosis registry to increase disease awareness. Nephrol. Dial. Transplant. https://doi.org/10.1093/ndt/gfy063 (2018).

    Article  PubMed Central  Google Scholar 

  144. Kwiatkowski, D. J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 11, 525–534 (2002).

    CAS  PubMed  Google Scholar 

  145. Hernandez, O., Way, S., McKenna, J. 3rd & Gambello, M. J. Generation of a conditional disruption of the Tsc2 gene. Genesis 45, 101–106 (2007).

    CAS  PubMed  Google Scholar 

  146. Finlay, G. A., Malhowski, A. J., Polizzi, K., Malinowska-Kolodziej, I. & Kwiatkowski, D. J. Renal and liver tumors in Tsc2 +/− mice, a model of tuberous sclerosis complex, do not respond to treatment with atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Mol. Cancer Ther. 8, 1799–1807 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee, N. et al. Rapamycin weekly maintenance dosing and the potential efficacy of combination sorafenib plus rapamycin but not atorvastatin or doxycycline in tuberous sclerosis preclinical models. BMC Pharmacol. 9, 8 (2009).

    PubMed  PubMed Central  Google Scholar 

  148. Zhang, D. et al. Green tea extract inhibits proliferation of uterine leiomyoma cells in vitro and in nude mice. Am. J. Obstet. Gynecol. 202, 289.e1–289.e9 (2010).

    Google Scholar 

  149. Li, J. et al. mTORC1-Driven tumor cells are highly sensitive to therapeutic targeting by antagonists of oxidative stress. Cancer Res. 76, 4816–4827 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Valvezan, A. J. et al. mTORC1 couples nucleotide synthesis to nucleotide demand resulting in a targetable metabolic vulnerability. Cancer Cell 32, 624–638 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Nijmeh, N. Alesi and C. Filippakis (Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA) for critical help in table generation, image acquisition and proofreading.

Reviewer information

Nature Reviews Nephrology thanks I. Frew, J. Kingswood and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in researching data for the article, discussions of its content, writing the draft and review or editing of the manuscript before submission.

Corresponding authors

Correspondence to Hilaire C. Lam or Elizabeth P. Henske.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tuberous sclerosis complex

(TSC). A rare tumour suppressor genetic disorder that causes benign tumours in various organs, primarily the brain, eyes, heart, kidneys, skin and lungs; this disorder is also the leading genetic cause of both epilepsy and autism.

Renal cell carcinoma

(RCC). The most common kidney cancer, originating in the lining of the proximal convoluted tubes in the kidney. Occurs in both adults and children with tuberous sclerosis complex.

Lymphangioleiomyomatosis

A rare progressive lung disease that is the pulmonary manifestation of tuberous sclerois complex, primarily affecting women of childbearing age, that typically results in cystic lung destruction.

Mechanistic target of rapamycin (mTOR) complex 1

(mTORC1). A protein complex that functions as a master regulator. This complex senses and integrates nutrient, energy and redox signals and either potentiates growth and anabolic processes or limits catabolic processes, such as autophagy.

GTP-binding protein Rheb

Also known as Ras homologue enriched in brain, this protein is ubiquitously expressed in humans and other mammals and is principally involved in the mechanistic target of rapamycin pathway and in regulation of the cell cycle.

Autophagy

A conserved regulated intracellular process for degradation and recycling of the cellular components in enzyme-filled compartments, known as autophagosomes.

Knudson two-hit hypothesis

Most loss-of-function mutations in tumour suppressor genes are recessive, meaning that both alleles of the gene must be mutated for function to be lost and for the cell to become cancerous. The germline mutation is the first hit, but disease onset requires a second-hit event affecting the other allele.

Angiomyolipomas

A form of perivascular epithelioid cell tumour characterized by varying contributions of adipocytes, smooth muscle cells and abnormal vasculature.

Mosaicism

The presence, within the same individual, of different cell populations with distinct genetic make-up.

Pneumothorax

A condition in which air is trapped between the lungs and chest wall, leading a portion or all of the lung to collapse.

Multifocal micronodular pneumocyte hyperplasia

A subtype of pneumocytic hyperplasia that presents as a diffuse, benign nodular proliferation of epithelial cells and occurs in many patients with tuberous sclerosis.

Sirolimus

An FDA-approved drug with immunosuppressive and antiproliferative properties due to inhibition of mechanistic target of rapamycin.

Everolimus

An FDA-approved mechanistic target of rapamycin inhibitor that is a derivative of sirolimus and has a similar mechanism of action.

Autosomal dominant polycystic kidney disease

(ADPKD). One of the most common, life-threatening genetic diseases. It causes small, fluid-filled sacs called cysts to develop and enlarge in the kidneys, which eventually leads to kidney failure.

Mizoribine

An FDA-approved selective inhibitor of inosine monophosphate synthetase and GMP synthetase, resulting in the inhibition of de novo nucleotide synthesis, which inhibits DNA synthesis. Also has immunosuppressive properties.

Simvastatin

An FDA-approved statin that works by slowing the production of cholesterol in the body to prevent atherosclerosis-related complications.

Celecoxib

An FDA-approved nonsteroidal anti-inflammatory drug (NSAID), specifically a cyclooxygenase 2 inhibitor, that relieves pain and swelling by reducing prostaglandins.

Endoplasmic reticulum stress

An accumulation of unfolded proteins in the endoplasmic reticulum that overloads its peptide processing and recycling capacity.

Unfolded protein response

An adaptive mechanism, initiated in response to the accumulation of unfolded proteins, that involves transcriptional activation of genes responsible for enhancing the protein-folding capacity of the endoplasmic reticulum and promotes endoplasmic reticulum-associated misfolded protein degradation.

l-Buthionine sulfoximine

(BSO). A compound that inhibits γ-glutamyl cysteine synthetase, the enzyme required in the first step of glutathione synthesis, thus reducing glutathione levels.

Chelerythrine chloride

A potent and selective inhibitor of protein kinase C.

Nelfinavir

An FDA-approved antiretroviral drug that belongs to the protease inhibitor family.

Salinomycin

An antibacterial drug that has been shown in mice to kill cancer stem cells.

Chloroquine

An FDA-approved drug that neutralizes lysosomal acidification, thus blocking autophagosomal degradation, and mildly suppresses the immune system.

Pentose phosphate pathway

An alternative to the glucose-oxidizing metabolic pathway. It is the major source to generate NADPH but also generates pentoses (five-carbon sugars) as well as ribose 5-phosphate, a precursor for the synthesis of nucleotides.

6-Aminonicotinamide

An inhibitor of 6-phosphogluconate dehydrogenase, thus used to block the pentose phosphate pathway.

Resveratrol

A type of natural phenol found in plants that acts as an antioxidant.

T cell exhaustion

The loss of T cells’ ability to perform their effector functions efficiently, which leads to low proliferative capacity and poor survival following antigen stimulation. Exhausted T cells co-express multiple inhibitory receptors that negatively regulate their function, such as programmed cell death protein 1, a major target of clinical immunotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, H.C., Siroky, B.J. & Henske, E.P. Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nat Rev Nephrol 14, 704–716 (2018). https://doi.org/10.1038/s41581-018-0059-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-018-0059-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer