Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolism and mitochondria in polycystic kidney disease research and therapy

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common, potentially lethal, monogenic diseases and is caused predominantly by mutations in polycystic kidney disease 1 (PKD1) and PKD2, which encode polycystin 1 (PC1) and PC2, respectively. Over the decades-long course of the disease, patients develop large fluid-filled renal cysts that impair kidney function, leading to end-stage renal disease in ~50% of patients. Despite the identification of numerous dysregulated pathways in ADPKD, the molecular mechanisms underlying the renal dysfunction from mutations in PKD genes and the physiological functions of the polycystin proteins are still unclear. Alterations in cell metabolism have emerged in the past decade as a hallmark of ADPKD. ADPKD cells shift their mode of energy production from oxidative phosphorylation to alternative pathways, such as glycolysis. In addition, the polycystins seem to play regulatory roles in modulating mechanisms and machinery related to energy production and utilization, including AMPK, PPARα, PGC1α, calcium signalling at mitochondria-associated membranes, mTORC1, cAMP and CFTR-mediated ion transport as well as the expression of crucial components of the mitochondrial energy production apparatus. In this Review, we explore these metabolic changes and discuss in detail the relationship between energy metabolism and ADPKD pathogenesis and identify potential therapeutic targets.

Key points

  • Metabolic reprogramming has emerged as an important aspect of the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD).

  • Increased glycolysis, defective fatty acid β-oxidation and altered mitochondrial function have been observed both in vitro and in vivo in animal models of ADPKD and in tissues from patients with ADPKD.

  • Polycystin proteins can directly regulate mitochondrial function; for example, the polycystin 1 (PC1)–PC2 complex at mitochondria-associated membranes can directly regulate oxidative phosphorylation by mediating mitochondrial calcium uptake.

  • Polycystin proteins can indirectly affect mitochondrial function through regulation of calcium signalling, reduction of cAMP levels, inhibition of miR-17, maintenance of mitochondrial DNA (mtDNA) copy number and modulation of mitochondrial morphology.

  • The energy sensor AMP-activated protein kinase (AMPK) regulates at least two key processes that are altered in ADPKD, mechanistic target of rapamycin complex 1 (mTORC1) signalling and the activity of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel.

  • Targeting the metabolic alterations in ADPKD ameliorates cyst progression in rodent and non-rodent models of ADPKD, and thus, these alterations might be novel therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Signalling pathways that are regulated by polycystin proteins.
Fig. 2: Polycystin proteins positively regulate mitochondrial function by several mechanisms.
Fig. 3: Therapeutic targets in metabolic pathways that are affected in ADPKD.

Similar content being viewed by others

References

  1. Harris, P. C. & Torres, V. E. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J. Clin. Invest. 124, 2315–2324 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Solazzo, A. et al. The prevalence of autosomal dominant polycystic kidney disease (ADPKD): a meta-analysis of European literature and prevalence evaluation in the Italian province of Modena suggest that ADPKD is a rare and underdiagnosed condition. PLoS ONE 13, e0190430 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. Willey, C. J. et al. Prevalence of autosomal dominant polycystic kidney disease in the European Union. Nephrol. Dial Transplant 32, 1356–1363 (2017).

    PubMed  Google Scholar 

  4. Halvorson, C. R., Bremmer, M. S. & Jacobs, S. C. Polycystic kidney disease: inheritance, pathophysiology, prognosis, and treatment. Int. J. Nephrol. Renovasc Dis. 3, 69–83 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gabow, P. A. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 329, 332–342 (1993).

    CAS  PubMed  Google Scholar 

  6. Cornec-Le Gall, E. et al. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol. 24, 1006–1013 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. Rossetti, S. et al. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 18, 2143–2160 (2007).

    CAS  PubMed  Google Scholar 

  8. Audrezet, M. P. et al. Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum. Mutat. 33, 1239–1250 (2012).

    CAS  PubMed  Google Scholar 

  9. Porath, B. et al. Mutations in GANAB, encoding the glucosidase iiα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am. J. Hum. Genet. 98, 1193–1207 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Qian, F., Watnick, T. J., Onuchic, L. F. & Germino, G. G. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87, 979–987 (1996).

    CAS  PubMed  Google Scholar 

  11. Hopp, K. et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J. Clin. Invest. 122, 4257–4273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Leeuwen, I. S. L.-v. et al. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum. Mol. Genet. 13, 3069–3077 (2004).

    Google Scholar 

  13. Rossetti, S. et al. Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease. Kidney Int. 75, 848–855 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Losekoot, M. et al. Neonatal onset autosomal dominant polycystic kidney disease (ADPKD) in a patient homozygous for a PKD2 missense mutation due to uniparental disomy. J. Med. Genet. 49, 37 (2012).

    CAS  PubMed  Google Scholar 

  15. van Adelsberg, J. S. & Frank, D. The PKD1 gene produces a developmentally regulated protein in mesenchyme and vasculature. Nat. Med. 1, 359 (1995).

    PubMed  Google Scholar 

  16. Nims, N., Vassmer, D. & Maser, R. L. Transmembrane domain analysis of polycystin-1, the product of the polycystic kidney disease-1 (PKD1) gene: evidence for 11 membrane-spanning domains. Biochemistry 42, 13035–13048 (2003).

    CAS  PubMed  Google Scholar 

  17. Cai, Y. et al. Identification and characterization of polycystin-2, the PKD2 gene product. J. Biol. Chem. 274, 28557–28565 (1999).

    CAS  PubMed  Google Scholar 

  18. Mochizuki, T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272, 1339–1342 (1996).

    CAS  PubMed  Google Scholar 

  19. Gonzalez-Perrett, S. et al. Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc. Natl Acad. Sci. USA 98, 1182–1187 (2001).

    CAS  PubMed  Google Scholar 

  20. Koulen, P. et al. Polycystin-2 is an intracellular calcium release channel. Nat. Cell Biol. 4, 191–197 (2002).

    CAS  PubMed  Google Scholar 

  21. Qian, F. et al. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat. Genet. 16, 179 (1997).

    CAS  PubMed  Google Scholar 

  22. Tsiokas, L., Kim, E., Arnould, T., Sukhatme, V. P. & Walz, G. Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc. Natl Acad. Sci. 94, 6965–6970 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Salehi-Najafabadi, Z. et al. Extracellular loops are essential for the assembly and function of polycystin receptor-ion channel complexes. J. Biol. Chem. 292, 4210–4221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoder, B. K., Hou, X. & Guay-Woodford, L. M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    CAS  PubMed  Google Scholar 

  25. Hogan, M. C. et al. Characterization of PKD protein-positive exosome-like vesicles. J. Am. Soc. Nephrol. 20, 278–288 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Scheffers, M. S. et al. Distinct subcellular expression of endogenous polycystin-2 in the plasma membrane and Golgi apparatus of MDCK cells. Hum. Mol. Genet. 11, 59–67 (2002).

    CAS  PubMed  Google Scholar 

  27. Ibraghimov-Beskrovnaya, O. et al. Polycystin: in vitro synthesis, in vivo tissue expression, and subcellular localization identifies a large membrane-associated protein. Proc. Natl Acad. Sci. 94, 6397–6402 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129 (2003).

    CAS  PubMed  Google Scholar 

  29. Delling, M., DeCaen, P. G., Doerner, J. F., Febvay, S. & Clapham, D. E. Primary cilia are specialized calcium signalling organelles. Nature 504, 311 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Saigusa, T. & Bell, P. D. Molecular pathways and therapies in autosomal-dominant polycystic kidney disease. Physiology 30, 195–207 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Takiar, V. & Caplan, M. J. Polycystic kidney disease: pathogenesis and potential therapies. Biochim. Biophys. Acta 1812, 1337–1343 (2011).

    CAS  PubMed  Google Scholar 

  33. Rowe, I. et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 19, 488–493 (2013). This study provides early evidence of metabolic reprogramming in ADPKD.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Menezes, L. F., Lin, C., Zhou, F. & Germino, G. G. Fatty acid oxidation is impaired in an orthologous mouse model of autosomal dominant polycystic kidney disease. EBioMedicine 5, 183–192 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Priolo, C. & Henske, E. P. Metabolic reprogramming in polycystic kidney disease. Nat. Med. 19, 407 (2013).

    CAS  PubMed  Google Scholar 

  36. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Google Scholar 

  37. Riwanto, M. et al. Inhibition of aerobic glycolysis attenuates disease progression in polycystic kidney disease. PLoS ONE 11, e0146654 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Chen, L. et al. Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease. J. Clin. Invest. 125, 2399–2412 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Warner, G. et al. Food restriction ameliorates the development of polycystic kidney disease. J. Am. Soc. Nephrol. 27, 1437–1447 (2016). This study shows that the metabolic alterations in ADPKD can be targeted by dietary changes, resulting in reduced cyst progression.

    CAS  PubMed  Google Scholar 

  40. Muir, A. et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. eLife 6, e27713 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272.e17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chiaravalli, M. et al. 2-deoxy-d-glucose ameliorates PKD progression. J. Am. Soc. Nephrol. 27, 1958–1969 (2016).

    CAS  PubMed  Google Scholar 

  43. Takiar, V. et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl Acad. Sci. USA 108, 2462–2467 (2011). This study provides evidence that the energy sensor AMPK might be a target of drugs that were developed to slow cyst progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lian, X. et al. The changes in glucose metabolism and cell proliferation in the kidneys of polycystic kidney disease mini-pig models. Biochem. Biophys. Res. Commun. 488, 374–381 (2017).

    CAS  PubMed  Google Scholar 

  45. Menezes, L. F. et al. Network analysis of a Pkd1-mouse model of autosomal dominant polycystic kidney disease identifies HNF4α as a disease modifier. PLoS Genet. 8, e1003053 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamagata, K. et al. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature 384, 458 (1996).

    CAS  PubMed  Google Scholar 

  47. Hajarnis, S. et al. microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat. Commun. 8, 14395 (2017). This study demonstrates that elevated expression of miR-17 might account for some of the mitochondrial alterations in ADPKD and that miR-17 might be a therapeutic target.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Song, X. et al. Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum. Mol. Genet. 18, 2328–2343 (2009).

    CAS  PubMed  Google Scholar 

  49. Hackl, A. et al. Disorders of fatty acid oxidation and autosomal recessive polycystic kidney disease-different clinical entities and comparable perinatal renal abnormalities. Pediatr. Nephrol. 32, 791–800 (2017).

    PubMed  Google Scholar 

  50. Whitfield, J. et al. Fetal polycystic kidney disease associated with glutaric aciduria type ii: an inborn error of energy metabolism. Amer J. Perinatol 13, 131–134 (1996).

    CAS  Google Scholar 

  51. Jayapalan, S., Saboorian, M. H., Edmunds, J. W. & Aukema, H. M. High dietary fat intake increases renal cyst disease progression in Han:SPRD-cy rats. J. Nutr. 130, 2356–2360 (2000).

    CAS  PubMed  Google Scholar 

  52. Padovano, V. et al. The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function. Mol. Biol. Cell 28, 261–269 (2017). This study provides evidence that reduced calcium uptake by mitochondria is a potential cause of mitochondrial dysfunction in ADPKD cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin, C. C. et al. A cleavage product of Polycystin-1 is a mitochondrial matrix protein that affects mitochondria morphology and function when heterologously expressed. Sci. Rep. 8, 2743 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. Ishimoto, Y. et al. Mitochondrial abnormality facilitates cyst formation in autosomal dominant polycystic kidney disease. Mol. Cell. Biol. 37, e00337-17 (2017). This research shows that both mitochondrial function and morphology are altered in ADPKD.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fan, W. & Evans, R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr. Opin. Cell Biol. 33, 49–54 (2015).

    CAS  PubMed  Google Scholar 

  56. Desvergne, B.a. & Wahli, W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688 (1999).

    CAS  PubMed  Google Scholar 

  57. Lakhia, R. et al. PPARα agonist fenofibrate enhances fatty acid β-oxidation and attenuates polycystic kidney and liver disease in mice. Am. J. Physiol. Renal Physiol. 314, F122–F131 (2018).

    PubMed  Google Scholar 

  58. Picard, M., Shirihai, O. S., Gentil, B. J. & Burelle, Y. Mitochondrial morphology transitions and functions: implications for retrograde signaling? Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R393–R406 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Reznik, E. et al. Mitochondrial DNA copy number variation across human cancers. eLife 5, e10769 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. 107, 8788–8793 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shibazaki, S. et al. Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Hum. Mol. Genet. 17, 1505–1516 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. (2007).

  63. Towler, M. C. & Hardie, D. G. AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100, 328–341 (2007).

    CAS  PubMed  Google Scholar 

  64. Atkinson, D. E. & Walton, G. M. Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J. Biol. Chem. 242, 3239–3241 (1967).

    CAS  PubMed  Google Scholar 

  65. Davies, S. P. et al. Purification of the AMP-activated protein kinase on ATP-γ-sepharose and analysis of its subunit structure. Eur. J. Biochem. 223, 351–357 (1994).

    CAS  PubMed  Google Scholar 

  66. Hardie, D. G. & Sakamoto, K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 21, 48–60 (2006).

    CAS  PubMed  Google Scholar 

  67. Hardie, D. G. & Pan, D. A. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem. Soc. Trans. 30, 1064–1070 (2002).

    CAS  PubMed  Google Scholar 

  68. Sarbassov, D. D., Ali, S. M. & Sabatini, D. M. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17, 596–603 (2005).

    CAS  PubMed  Google Scholar 

  69. Mamane, Y., Petroulakis, E., LeBacquer, O. & Sonenberg, N. mTOR, translation initiation and cancer. Oncogene 25, 6416–6422 (2006).

    CAS  PubMed  Google Scholar 

  70. Dowling, R. J. et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328, 1172–1176 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Astrinidis, A. & Henske, E. P. Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. Oncogene 24, 7475–7481 (2005).

    CAS  PubMed  Google Scholar 

  72. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    CAS  PubMed  Google Scholar 

  73. Ma, M., Tian, X., Igarashi, P., Pazour, G. J. & Somlo, S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004–1012 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shillingford, J. M. et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl Acad. Sci. USA 103, 5466–5471 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Becker, J. U. et al. The mTOR pathway is activated in human autosomal-recessive polycystic kidney disease. Kidney Blood Press Res. 33, 129–138 (2010).

    CAS  PubMed  Google Scholar 

  76. Belibi, F., Ravichandran, K., Zafar, I., He, Z. & Edelstein, C. L. mTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease. Am. J. Physiol. Renal Physiol. 300, F236–244 (2011).

    CAS  PubMed  Google Scholar 

  77. Distefano, G. et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol. Cell. Biol. 29, 2359–2371 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fischer, D. C. et al. Activation of the AKT/mTOR pathway in autosomal recessive polycystic kidney disease (ARPKD). Nephrol. Dial Transplant 24, 1819–1827 (2009).

    CAS  PubMed  Google Scholar 

  79. Ibraghimov-Beskrovnaya, O. & Natoli, T. A. mTOR signaling in polycystic kidney disease. Trends Mol. Med. 17, 625–633 (2011).

    CAS  PubMed  Google Scholar 

  80. Wahl, P. R. et al. Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol. Dial Transplant 21, 598–604 (2006).

    CAS  PubMed  Google Scholar 

  81. Wu, M. et al. Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney Blood Press Res. 30, 253–259 (2007).

    PubMed  Google Scholar 

  82. Zafar, I., Belibi, F. A., He, Z. & Edelstein, C. L. Long-term rapamycin therapy in the Han:SPRD rat model of polycystic kidney disease (PKD). Nephrol. Dial Transplant 24, 2349–2353 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zafar, I., Ravichandran, K., Belibi, F. A., Doctor, R. B. & Edelstein, C. L. Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease. Kidney Int. 78, 754–761 (2010).

    CAS  PubMed  Google Scholar 

  84. Davidow, C. J., Maser, R. L., Rome, L. A., Calvet, J. P. & Grantham, J. J. The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int. 50, 208–218 (1996).

    CAS  PubMed  Google Scholar 

  85. Magenheimer, B. S. et al. Early embryonic renal tubules of wild-type and polycystic kidney disease kidneys respond to cAMP stimulation with cystic fibrosis transmembrane conductance regulator/Na(+),K(+),2Cl(-) Co-transporter-dependent cystic dilation. J. Am. Soc. Nephrol. 17, 3424–3437 (2006).

    CAS  PubMed  Google Scholar 

  86. Hallows, K. R., Kobinger, G. P., Wilson, J. M., Witters, L. A. & Foskett, J. K. Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells. Am. J. Physiol. Cell Physiol. 284, C1297–C1308 (2003).

    CAS  PubMed  Google Scholar 

  87. Hallows, K. R., McCane, J. E., Kemp, B. E., Witters, L. A. & Foskett, J. K. Regulation of channel gating by AMP-activated protein kinase modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells. J. Biol. Chem. 278, 998–1004 (2003).

    CAS  PubMed  Google Scholar 

  88. Hallows, K. R., Raghuram, V., Kemp, B. E., Witters, L. A. & Foskett, J. K. Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase. J. Clin. Invest. 105, 1711–1721 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Belibi, F. A. et al. Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int. 66, 964–973 (2004).

    CAS  PubMed  Google Scholar 

  90. Johanns, M. et al. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B. Nat. Commun. 7, 10856 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. López-Cotarelo, P. et al. A novel MEK-ERK-AMPK signaling axis controls chemokine receptor CCR7-dependent survival in human mature dendritic cells. J. Biol. Chem. 290, 827–840 (2015).

    PubMed  Google Scholar 

  92. Damm, E., Buech, T. R. H., Gudermann, T. & Breit, A. Melanocortin-induced PKA activation inhibits AMPK activity via ERK-1/2 and LKB-1 in hypothalamic GT1-7 cells. Mol. Endocrinol. 26, 643–654 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Flowers, E. M. et al. Lkb1 deficiency confers glutamine dependency in polycystic kidney disease. Nat. Commun. 9, 814 (2018).

  94. Wick, A. N., Drury, D. R., Nakada, H. I. & Wolfe, J. B. Localization of the primary metabolic block produced by 2-deoxyglucose. J. Biol. Chem. 224, 963–969 (1957).

    CAS  PubMed  Google Scholar 

  95. Kipp, K. R., Rezaei, M., Lin, L., Dewey, E. C. & Weimbs, T. A mild reduction of food intake slows disease progression in an orthologous mouse model of polycystic kidney disease. Am. J. Physiol. Renal Physiol. 310, F726–F731 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Pelicano, H., Martin, D. S., Xu, R. H. & Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633–4646 (2006).

    CAS  PubMed  Google Scholar 

  97. Mudaliar, S. & Henry, R. R. New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers. Annu. Rev. Med. 52, 239–257 (2001).

    CAS  PubMed  Google Scholar 

  98. Nofziger, C. et al. PPARγ agonists inhibit vasopressin-mediated anion transport in the MDCK-C7 cell line. Am. J. Physiol. Renal Physiol. 297, F55–F62 (2009).

    CAS  PubMed  Google Scholar 

  99. Dai, B. et al. Rosiglitazone attenuates development of polycystic kidney disease and prolongs survival in Han:SPRD rats. Clin. Sci. 119, 323–333 (2010).

    CAS  Google Scholar 

  100. Muto, S. et al. Pioglitazone improves the phenotype and molecular defects of a targeted Pkd1 mutant. Hum. Mol. Genet. 11, 1731–1742 (2002).

    CAS  PubMed  Google Scholar 

  101. Raphael, K. L. et al. Effect of pioglitazone on survival and renal function in a mouse model of polycystic kidney disease. Am. J. Nephrol. 30, 468–473 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yoshihara, D. et al. PPAR-γ agonist ameliorates kidney and liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease. Am. J. Physiol. Renal Physiol. 300, F465–F474 (2011).

    CAS  PubMed  Google Scholar 

  103. Blazer-Yost, B. L. et al. Pioglitazone attenuates cystic burden in the PCK rodent model of polycystic kidney disease. PPAR Res. 2010, 274376 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. Flaig, S. M., Gattone, V. H. & Blazer-Yost, B. L. Inhibition of cyst growth in PCK and Wpk rat models of polycystic kidney disease with low doses of peroxisome proliferator-activated receptor γ agonists. J. Transl Int. Med. 4, 118–126 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. Nolan, J. J., Ludvik, B., Beerdsen, P., Joyce, M. & Olefsky, J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N. Engl. J. Med. 331, 1188–1193 (1994).

    CAS  PubMed  Google Scholar 

  106. Hardie, D. G., Ross, F. A. & Hawley, S. A. AMP-activated protein kinase: a target for drugs both ancient and modern. Chem. Biol. 19, 1222–1236 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim, J., Yang, G., Kim, Y., Kim, J. & Ha, J. AMPK activators: mechanisms of action and physiological activities. Exp. Mol. Med. 48, e224 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Babraj, J. A. et al. Blunting of AICAR-induced human skeletal muscle glucose uptake in type 2 diabetes is dependent on age rather than diabetic status. Am. J. Physiol. Endocrinol. Metab. 296, E1042–1048 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Boon, H. et al. Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients. Diabetologia 51, 1893–1900 (2008).

    CAS  PubMed  Google Scholar 

  110. Cuthbertson, D. J. et al. 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside acutely stimulates skeletal muscle 2-deoxyglucose uptake in healthy men. Diabetes 56, 2078–2084 (2007).

    CAS  PubMed  Google Scholar 

  111. Rena, G., Hardie, D. G. & Pearson, E. R. The mechanisms of action of metformin. Diabetologia 60, 1577–1585 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hawley, S. A., Gadalla, A. E., Olsen, G. S. & Hardie, D. G. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51, 2420–2425 (2002).

    CAS  PubMed  Google Scholar 

  113. Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Seo-Mayer, P. W. et al. Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia. Am. J. Physiol. Renal Physiol. 301, F1346–F1357 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Mekahli, D. et al. Polycystin-1 but not polycystin-2 deficiency causes upregulation of the mTOR pathway and can be synergistically targeted with rapamycin and metformin. Pflugers Arch. 466, 1591–1604 (2014).

    CAS  PubMed  Google Scholar 

  117. Chang, M. Y. et al. Metformin inhibits cyst formation in a zebrafish model of polycystin-2 deficiency. Sci. Rep. 7, 7161 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. Miller, R. A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cusi, K., Consoli, A. & DeFronzo, R. A. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 81, 4059–4067 (1996).

    CAS  PubMed  Google Scholar 

  120. Seliger, S. L. et al. A randomized clinical trial of metformin to treat autosomal dominant polycystic kidney disease. Am. J. Neph. 47, 352–360 (2018).

    CAS  PubMed  Google Scholar 

  121. Fryer, L. G., Parbu-Patel, A. & Carling, D. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J. Biol. Chem. 277, 25226–25232 (2002).

    CAS  PubMed  Google Scholar 

  122. LeBrasseur, N. K. et al. Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am. J. Physiol. Endocrinol. Metab. 291, E175–E181 (2006).

    CAS  PubMed  Google Scholar 

  123. Brunmair, B. et al. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53, 1052–1059 (2004).

    CAS  PubMed  Google Scholar 

  124. Fassett, R. G., Coombes, J. S., Packham, D., Fairley, K. F. & Kincaid-Smith, P. Effect of pravastatin on kidney function and urinary protein excretion in autosomal dominant polycystic kidney disease. Scand. J. Urol. Nephrol. 44, 56–61 (2010).

    CAS  PubMed  Google Scholar 

  125. Gile, R. D. et al. Effect of lovastatin on the development of polycystic kidney disease in the Han:SPRD rat. Am. J. Kidney Dis. 26, 501–507 (1995).

    CAS  PubMed  Google Scholar 

  126. Klawitter, J. et al. Effects of lovastatin treatment on the metabolic distributions in the Han:SPRD rat model of polycystic kidney disease. BMC Nephrol. 14, 165 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Namli, S. et al. Improvement of endothelial dysfunction with simvastatin in patients with autosomal dominant polycystic kidney disease. Ren. Fail. 29, 55–59 (2007).

    CAS  PubMed  Google Scholar 

  128. van Dijk, M. A., Kamper, A. M., van Veen, S., Souverijn, J. H. & Blauw, G. J. Effect of simvastatin on renal function in autosomal dominant polycystic kidney disease. Nephrol. Dial Transplant 16, 2152–2157 (2001).

    PubMed  Google Scholar 

  129. Zafar, I. et al. Effect of statin and angiotensin-converting enzyme inhibition on structural and hemodynamic alterations in autosomal dominant polycystic kidney disease model. Am. J. Physiol. Renal Physiol. 293, F854–F859 (2007).

    CAS  PubMed  Google Scholar 

  130. Babcook, M. A. et al. Synergistic simvastatin and metformin combination chemotherapy for osseous metastatic castration-resistant prostate cancer. Mol. Cancer Ther. 13, 2288–2302 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Sun, W. et al. Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation 114, 2655–2662 (2006).

    CAS  PubMed  Google Scholar 

  132. Ma, L., Niknejad, N., Gorn-Hondermann, I., Dayekh, K. & Dimitroulakos, J. Lovastatin induces multiple stress pathways including LKB1/AMPK activation that regulate its cytotoxic effects in squamous cell carcinoma cells. PLoS ONE 7, e46055 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Hawley, S. A. et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918–922 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Yue, W., Yang, C. S., DiPaola, R. S. & Tan, X. L. Repurposing of metformin and aspirin by targeting AMPK-mTOR and inflammation for pancreatic cancer prevention and treatment. Cancer Prev. Res. (Phila) 7, 388–397 (2014).

    CAS  Google Scholar 

  135. Ibrahim, N. H. et al. Cyclooxygenase product inhibition with acetylsalicylic acid slows disease progression in the Han:SPRD-Cy rat model of polycystic kidney disease. Prostaglandins Other Lipid Mediat. 116–117, 19–25 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues in their laboratories for very helpful and thought-provoking discussions. Relevant work from the authors’ laboratories was supported by the US National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grant R01DK072614 (M.J.C.), US Department of Defense (DoD) grant W81XWH-15-1-0419 (M.J.C.), the Italian Ministry of Health grant RF11-12 (A.B.), the PKD Foundation grant 187G14a/b (A.B.) and the Italian Association for PKD (AIRP) (A.B.).

Reviewer information

Nature Reviews Nephrology thanks J. Calvet, V. Torres and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of its content, writing the article and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Michael J. Caplan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Warburg effect

The use of glycolysis as the major cellular energy source without using oxygen, even when it is available, resulting in lactate production. First reported in cancer cells but also observed in other hyperproliferative cell types.

Oxidative phosphorylation

(OXPHOS). The production of ATP from ADP using the electrochemical gradient created through the activity of the electron transport chain of the inner membrane of mitochondrion.

Fatty acid β-oxidation

(FAO). The production of energy by the catabolism of fatty acids.

Han:SPRD rat

A non-orthologous rat model of chronic, progressive renal cystic disease that is caused by a missense mutation in ankyrin repeat and sterile α-motif domain-containing 6 (Anks6; also known as Pkdr1).

Network node

A central hub where different gene expression networks interconnect.

Maturity onset diabetes of the young, type 1

(MODY1). An autosomal dominant condition, usually with an early adult onset and characterized by features of metabolic syndrome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padovano, V., Podrini, C., Boletta, A. et al. Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat Rev Nephrol 14, 678–687 (2018). https://doi.org/10.1038/s41581-018-0051-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-018-0051-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing