Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pericytes in the renal vasculature: roles in health and disease

Abstract

In the dense circulatory system of the kidney, as in all vascularized tissues, pericytes enwrap capillaries and microvessels to regulate angiogenesis, stabilize microvascular networks and control blood flow by vasoconstriction. Specialized renal pericytes known as mesangial cells provide physical support to glomerular capillaries, whereas a subset of juxtaglomerular arteriolar pericytes control the local blood pressure in the glomerulus via contraction and influence systemic blood pressure by secreting renin. Similar to pericytes from many other organs, cultured human renal pericytes give rise to mesenchymal stem/stromal cells, suggesting a role of perivascular cells in renal homeostasis and regeneration. On the other hand, pericytes directly contribute to renal fibrosis, and mesangial cells may have an essential role in the development of glomerulosclerosis and other nephropathies. From their early emergence in the renal embryonic rudiment to their distribution in diverse perivascular niches in the adult organ, we review the anatomy and function of pericytes in the healthy and diseased kidney. Many aspects of the ontogeny, specification and functional specialization of renal pericytes remain elusive. The development of powerful models in the easily accessible and genetically tractable zebrafish will help to uncover the multiple facets of these cells.

Key points

  • Perivascular niches in the kidney are highly heterogeneous, leading to multiple subtypes of perivascular cells with distinct functional roles.

  • Although shown to arise from a forkhead box protein D1 (FOXD1)+ progenitor pool, the precise embryonic origins and developmental signals that determine renal perivascular subpopulations remain undefined or ambiguous.

  • Renal pericytes have key roles in homeostasis; for example, they can regulate blood pressure either directly by their contraction or indirectly by the secretion of renin by certain subpopulations.

  • Renal pericytes can give rise to mesenchymal stem and/or stromal cells, which have shown promise for the treatment of acute kidney injury and chronic kidney disease.

  • Renal pericytes are important in the pathogenesis of kidney disease; they are key to vascular survival, can interact with the immune system and can contribute to glomerular and interstitial fibrosis.

  • Powerful molecular tools for the study of renal pericytes are beginning to emerge in the zebrafish model organism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Renal pericytes.
Fig. 2: Perivascular niches in the kidney.
Fig. 3: Fibrosis of vascular origin in a mouse kidney.
Fig. 4: Renin-expressing mural cells in the adult zebrafish mesonephros.

Similar content being viewed by others

References

  1. Kennedy-Lydon, T. M., Crawford, C., Wildman, S. S. P. & Peppiatt-Wildman, C. M. Renal pericytes: regulators of medullary blood flow. Acta Physiol. 207, 212–225 (2013).

    Article  CAS  Google Scholar 

  2. Lindblom, P. et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 17, 1835–1840 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kramann, R. et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16, 51–66 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Murray, I. R. et al. αv integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis. Nat. Commun. 8, 1118 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Corselli, M. et al. Perivascular support of human hematopoietic stem/progenitor cells. Blood 121, 2891–2901 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Volz, K. S. et al. Pericytes are progenitors for coronary artery smooth muscle. eLife 4, e10036 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. Chen, C.-W. et al. Human pericytes for ischemic heart repair. Stem Cells 31, 305–316 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Meyers, C. A. et al. Early immunomodulatory effects of implanted human perivascular stromal cells during bone formation. Tissue Eng. Part A 24, 448–457 (2017).

    Article  PubMed  CAS  Google Scholar 

  10. Tawonsawatruk, T. et al. Adipose derived pericytes rescue fractures from a failure of healing-non-union. Sci. Rep. 6, 22779 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Stefanska, A. et al. Human kidney pericytes produce renin. Kidney Int. 90, 1251–1261 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Johnson, R. J. et al. Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J. Clin. Invest. 87, 847–858 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. Sims, D. E. The pericyte-a review. Tissue Cell 18, 153–174 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. Lin, S.-L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669–682 (2015).

    Article  PubMed  CAS  Google Scholar 

  17. Ribatti, D., Nico, B. & Crivellato, E. The role of pericytes in angiogenesis. Int. J. Dev. Biol. 55, 261–268 (2011).

    Article  PubMed  CAS  Google Scholar 

  18. Navar, L. G. et al. The renal microcirculation. Microcirculation https://doi.org/10.1016/B978-0-12-374530-9.00015-2 (2008).

    Article  Google Scholar 

  19. Tonelli, M. et al. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol. 17, 2034–2047 (2006).

    Article  PubMed  Google Scholar 

  20. Foley, R. N. & Ibrahim, H. N. Long-term outcomes of kidney donors. Curr. Opin. Nephrol. Hypertens. 19, 129–133 (2010).

    Article  PubMed  Google Scholar 

  21. Sakai, T., Billo, R. & Kriz, W. The structural organization of the kidney of typhlonectes compressicaudus (Amphibia. Gymnophiona). Anat. Embryol. 174, 243–252 (1986).

    Article  CAS  Google Scholar 

  22. Pallone, T. L., Turner, M. R., Edwards, A. & Jamison, R. L. Countercurrent exchange in the renal medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1153–R1175 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. Dinour, D. & Brezis, M. Effects of adenosine on intrarenal oxygenation. Am. J. Physiol. 261, F787–F791 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. Beeuwkes, R. & Bonventre, J. V. Tubular organization and vascular-tubular relations in the dog kidney. Am. J. Physiol. 229, 695–713 (1975).

    PubMed  Google Scholar 

  25. Short, K. M. & Smyth, I. M. The contribution of branching morphogenesis to kidney development and disease. Nat. Rev. Nephrol. 12, 754–767 (2016).

    Article  PubMed  CAS  Google Scholar 

  26. Osathanondh, V. & Potter, E. L. Development of human kidney as shown by microdissection. I. Preparation of tissue with reasons for possible misinterpretation of observations. Arch. Pathol. 76, 271–276 (1963).

    PubMed  CAS  Google Scholar 

  27. Short, K. M. et al. Global quantification of tissue dynamics in the developing mouse kidney. Dev. Cell 29, 188–202 (2014).

    Article  PubMed  CAS  Google Scholar 

  28. Oliver, J. Nephrons and Kidneys: A Quantitative Study of Development and Evolutionary Mammalian Renal Architectonics (Harper & Row, 1968).

  29. Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kobayashi, A. et al. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep. 3, 650–662 (2014).

    Article  CAS  Google Scholar 

  31. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bohnenpoll, T. et al. Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Dev. Biol. 380, 25–36 (2013).

    Article  PubMed  CAS  Google Scholar 

  33. Asada, N. et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J. Clin. Invest. 121, 3981–3990 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Guillaume, R., Bressan, M. & Herzlinger, D. Paraxial mesoderm contributes stromal cells to the developing kidney. Dev. Biol. 329, 169–175 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lemos, D. R. et al. Maintenance of vascular integrity by pericytes is essential for normal kidney function. Am. J. Physiol. Renal Physiol. 311, F1230–F1242 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Das, A. et al. Stromal–epithelial crosstalk regulates kidney progenitor cell differentiation. Nat. Cell Biol. 15, 1035–1044 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hum, S., Rymer, C., Schaefer, C., Bushnell, D. & Sims-Lucas, S. Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS ONE 9, e88400 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Raj, B. et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain by scGESTALT. Nat. Biotechnol. 36, 442–450 (2017).

    Article  CAS  Google Scholar 

  39. Fetting, J. L. et al. FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney. Development 141, 17–27 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hatini, V., Huh, S. O., Herzlinger, D., Soares, V. C. & Lai, E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 10, 1467–1478 (1996).

    Article  PubMed  CAS  Google Scholar 

  41. Karner, C. M. et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138, 1247–1257 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ohmori, T., Tanigawa, S., Kaku, Y., Fujimura, S. & Nishinakamura, R. Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors. Sci. Rep. 5, 15676 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bagherie-Lachidan, M. et al. Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool. Development 142, 2564–2573 (2015).

  44. Mao, Y., Francis-West, P. & Irvine, K. D. Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development 142, 2574–2585 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Boivin, F. J. et al. Stromally expressed β-catenin modulates Wnt9b signaling in the ureteric epithelium. PLoS ONE 10, e0120347 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Li, W., Hartwig, S. & Rosenblum, N. D. Developmental origins and functions of stromal cells in the normal and diseased mammalian kidney. Dev. Dyn. 243, 853–863 (2014).

    Article  PubMed  Google Scholar 

  47. Lindahl, P. et al. Paracrine PDGF-B/PDGF-Rβ signaling controls mesangial cell development in kidney glomeruli. Development 125, 3313–3322 (1998).

    PubMed  CAS  Google Scholar 

  48. Lin, E. E., Sequeira-Lopez, M. L. S. & Gomez, R. A. RBP-J in FOXD1+ renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells. Am. J. Physiol. Renal Physiol. 306, F249–F258 (2014).

    Article  PubMed  CAS  Google Scholar 

  49. McCright, B. et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128, 491–502 (2001).

    PubMed  CAS  Google Scholar 

  50. Hickmann, L. et al. Persistent and inducible neogenesis repopulates progenitor renin lineage cells in the kidney. Kidney Int. 92, 1419–1432 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Sequeira Lopez, M. L., Pentz, E. S., Robert, B., Abrahamson, D. R. & Gomez, R. A. Embryonic origin and lineage of juxtaglomerular cells. Am. J. Physiol. Renal Physiol. 281, F345–F356 (2001).

    Article  PubMed  CAS  Google Scholar 

  52. Sequeira López, M. L. S., Pentz, E. S., Nomasa, T., Smithies, O. & Gomez, R. A. Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev. Cell 6, 719–728 (2004).

    Article  PubMed  Google Scholar 

  53. Sequeira-Lopez, M. L. S. et al. The MicroRNA-processing enzyme dicer maintains juxtaglomerular cells. J. Am. Soc. Nephrol. 21, 460–467 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Brunskill, E. W. et al. Genes that confer the identity of the renin cell. J. Am. Soc. Nephrol. 22, 2213–2225 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Berg, A. C. Pericytes synthesize renin. World J. Nephrol. 2, 11 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Song, R., Lopez, M. L. S. S. & Yosypiv, I. V. Foxd1 is an upstream regulator of the renin–angiotensin system during metanephric kidney development. Pediatr. Res. 82, 855–862 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sequeira-Lopez, M. L. S. et al. The earliest metanephric arteriolar progenitors and their role in kidney vascular development. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R138–R149 (2015).

    Article  PubMed  CAS  Google Scholar 

  58. Hyink, D. P. et al. Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys. Am. J. Physiol. 270, F886–F899 (1996).

    PubMed  CAS  Google Scholar 

  59. Abrahamson, D. R., Robert, B., Hyink, D. P., St John, P. L. & Daniel, T. O. Origins and formation of microvasculature in the developing kidney. Kidney Int. 67, S7–S11 (1998).

    Article  Google Scholar 

  60. Robert, B., St John, P. L. & Abrahamson, D. R. Direct visualization of renal vascular morphogenesis in Flk1 heterozygous mutant mice. Am. J. Physiol. 275, F164–F172 (1998).

    PubMed  CAS  Google Scholar 

  61. Gattone II, V. H. & Goldowitz, D. The renal glomerulus and vasculature in ‘aggregation’ chimeric mice. Nephron 90, 267–272 (2002).

    Article  PubMed  Google Scholar 

  62. Sequeira Lopez, M. L. S. & Gomez, R. A. Development of the renal arterioles. J. Am. Soc. Nephrol. 22, 2156–2165 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Stolz, D. B. & Sims-Lucas, S. Unwrapping the origins and roles of the renal endothelium. Pediatr. Nephrol. 30, 865–872 (2015).

    Article  PubMed  Google Scholar 

  64. Herzlinger, D. & Hurtado, R. Patterning the renal vascular bed. Semin. Cell Dev. Biol. 36, 50–56 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Robert, B., St John, P. L., Hyink, D. P. & Abrahamson, D. R. Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am. J. Physiol. 271, F744–F753 (1996).

    PubMed  CAS  Google Scholar 

  66. Munro, D. A. D., Hohenstein, P. & Davies, J. A. Cycles of vascular plexus formation within the nephrogenic zone of the developing mouse kidney. Sci. Rep. 7, 3273 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sims-Lucas, S. et al. Endothelial progenitors exist within the kidney and lung mesenchyme. PLoS ONE 8, e65993 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Halt, K. J. et al. CD146+ cells are essential for kidney vasculature development. Kidney Int. 90, 311–324 (2016).

    Article  PubMed  CAS  Google Scholar 

  69. Gao, X. et al. Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa. Development 132, 5437–5449 (2005).

    Article  PubMed  CAS  Google Scholar 

  70. Naruse, K. et al. An immunohistochemical study of developing glomeruli in human fetal kidneys, see editorial by Oliver and Al-Awqati, 2167. Kidney Int. 57, 1836–1846 (2000).

    Article  PubMed  CAS  Google Scholar 

  71. Terry, P., Y., Dumont, D. J., Conlon, R. A., Breitman, M. L. & Rossant, J. flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118, 489–498 (1993).

    Google Scholar 

  72. Dumont, D. J. et al. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev. Dyn. 203, 80–92 (1995).

    Article  PubMed  CAS  Google Scholar 

  73. Satchell, S. C. et al. Human podocytes express angiopoietin 1, a potential regulator of glomerular vascular endothelial growth factor. J. Am. Soc. Nephrol. 13, 544–550 (2002).

    PubMed  CAS  Google Scholar 

  74. Rosselot, C. et al. Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137, 283–292 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mendelsohn, C., Batourina, E., Fung, S., Gilbert, T. & Dodd, J. Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126, 1139–1148 (1999).

    PubMed  CAS  Google Scholar 

  76. Paroly, S. S. et al. Stromal protein Ecm1 regulates ureteric bud patterning and branching. PLoS ONE 8, e84155 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Munro, D. A. D., Hohenstein, P., Coate, T. M. & Davies, J. A. Refuting the hypothesis that semaphorin-3f/neuropilin-2 exclude blood vessels from the cap mesenchyme in the developing kidney. Dev. Dyn. 246, 1047–1056 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Reddi, V., Zaglul, A., Pentz, E. S. & Gomez, R. A. Renin-expressing cells are associated with branching of the developing kidney vasculature. J. Am. Soc. Nephrol. 9, 63–71 (1998).

    PubMed  CAS  Google Scholar 

  79. Oliverio, M. I. et al. Reduced growth, abnormal kidney structure, and type 2 (AT(2)) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT(1A) and AT(1B) receptors for angiotensin II. Proc. Natl Acad. Sci. USA 95, 15496–15501 (1998).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Daïkha-Dahmane, F., Levy-Beff, E., Jugie, M. & Lenclen, R. Foetal kidney maldevelopment in maternal use of angiotensin II type I receptor antagonists. Pediatr. Nephrol. 21, 729–732 (2006).

    Article  PubMed  Google Scholar 

  81. Matsui, T. et al. Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. J. Cell Sci. 119, 3513–3526 (2006).

    Article  PubMed  CAS  Google Scholar 

  82. Atlas, S. A. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J. Manag. Care Pharm. 13, 9–20 (2007).

    PubMed  Google Scholar 

  83. Peppiatt-Wildman, C. M. The evolving role of renal pericytes. Curr. Opin. Nephrol. Hypertens. 22, 10–16 (2013).

    Article  PubMed  Google Scholar 

  84. Stefanska, A. M., Peault, B. & Mullins, J. J. Renal pericytes: multifunctional cells of the kidneys. Eur. J. Physiol. 465, 767–773 (2013).

    Article  CAS  Google Scholar 

  85. Zhang, Q. et al. Membrane current oscillations in descending vasa recta pericytes. Am. J. Physiol. Renal Physiol. 294, F656–F666 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Crawford, C., Wildman, S. S. P., Kelly, M. C., Kennedy-Lydon, T. M. & Peppiatt-Wildman, C. M. Sympathetic nerve-derived ATP regulates renal medullary vasa recta diameter via pericyte cells: a role for regulating medullary blood flow? Front. Physiol. 4, 307 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Dickhout, J. G., Mori, T. & Cowley, A. W. Tubulovascular nitric oxide crosstalk: buffering of angiotensin II-induced medullary vasoconstriction. Circ. Res. 91, 487–493 (2002).

    Article  PubMed  CAS  Google Scholar 

  88. Kennedy-Lydon, T. M. et al. Inhibition of medullary prostaglandin E2 (PGE2) by non-steroidal anti-inflammatory drugs (NSAIDs) adversely affects medullary blood flow. FASEB J. 27, 984.4–984.4 (2013).

    Google Scholar 

  89. Zhang, Z., Payne, K. & Pallone, T. L. Descending vasa recta endothelial membrane potential response requires pericyte communication. PLoS ONE 11, e0154948 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zhang, Z., Lin, H., Cao, C., Payne, K. & Pallone, T. L. Descending vasa recta endothelial cells and pericytes form mural syncytia. Am. J. Physiol. 306, F751–F763 (2014).

    CAS  Google Scholar 

  91. Baumann, M. et al. Renal medullary effects of transient prehypertensive treatment in young spontaneously hypertensive rats. Acta Physiol. 196, 231–237 (2008).

    Article  CAS  Google Scholar 

  92. Murray, I. R. & Péault, B. Q&A: mesenchymal stem cells - where do they come from and is it important? BMC Biol. 13, 99 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Schwab, K. E. & Gargett, C. E. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum. Reprod. 22, 2903–2911 (2007).

    Article  PubMed  CAS  Google Scholar 

  94. Traktuev, D. O. et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ. Res. 102, 77–85 (2008).

    Article  PubMed  CAS  Google Scholar 

  95. da Silva Meirelles, L., Caplan, A. I. & Nardi, N. B. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26, 2287–2299 (2008).

    Article  PubMed  Google Scholar 

  96. Corselli, M. et al. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev. 21, 1299–1308 (2012).

    Article  PubMed  CAS  Google Scholar 

  97. Eirin, A. & Lerman, L. O. Mesenchymal stem cell treatment for chronic renal failure. Stem Cell Res. Ther. 5, 83 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Choi, S. et al. The role of mesenchymal stem cells in the functional improvement of chronic renal failure. Stem Cells Dev. 18, 521–530 (2009).

    Article  PubMed  CAS  Google Scholar 

  99. Eirin, A. et al. Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. Stem Cells 30, 1030–1041 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ebrahimi, B. et al. Mesenchymal stem cells improve medullary inflammation and fibrosis after revascularization of swine atherosclerotic renal artery stenosis. PLoS ONE 8, e67474 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Reinders, M. E. J. et al. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl. Med. 2, 107–111 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Reinders, M. E. J. et al. Safety of allogeneic bone marrow derived mesenchymal stromal cell therapy in renal transplant recipients: the neptune study. J. Transl. Med. 13, 344 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kramann, R. et al. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell 19, 628–642 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Morigi, M. et al. Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells 28, 513–522 (2010).

    PubMed  CAS  Google Scholar 

  105. Leuning, D. G. et al. Clinical-grade isolated human kidney perivascular stromal cells as an organotypic cell source for kidney regenerative medicine. Stem Cells Transl. Med. 6, 405–418 (2017).

    Article  PubMed  CAS  Google Scholar 

  106. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02166489 (2016).

  107. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02966717 (2016).

  108. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02585622 (2018).

  109. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01840540 (2017).

  110. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03325322 (2018).

  111. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02266394 (2017).

  112. Emamian, S. A., Nielsen, M. B., Pedersen, J. F. & Ytte, L. Kidney dimensions at sonography: correlation with age, sex, and habitus in 665 adult volunteers. AJR Am. J. Roentgenol. 160, 83–86 (1993).

    Article  PubMed  CAS  Google Scholar 

  113. Oyuela-Carrasco, J., Rodríguez-Castellanos, F., Kimura, E., Delgado-Hernández, R. & Herrera-Félix, J. P. Renal length measured by ultrasound in adult mexican population. Nefrologia 29, 30–34 (2009).

    PubMed  CAS  Google Scholar 

  114. Denic, A. et al. The substantial loss of nephrons in healthy human kidneys with aging. J. Am. Soc. Nephrol. 28, 313–320 (2017).

    Article  PubMed  Google Scholar 

  115. Nyengaard, J. R. & Bendtsen, T. F. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat. Rec. 232, 194–201 (1992).

    Article  PubMed  CAS  Google Scholar 

  116. Wetzels, J. F. M., Kiemeney, L. A. L. M., Swinkels, D. W., Willems, H. L. & den Heijer, M. Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. Kidney Int. 72, 632–637 (2007).

    Article  PubMed  CAS  Google Scholar 

  117. Choudhury, D., Raj, D. S. C. & Levi, M. Effect of Aging on Renal Function and Disease. The Kidney (Elsevier, 2004).

  118. Macedo, E., Zanetta, D. M. T. & Abdulkader, R. C. R. M. Long-term follow-up of patients after acute kidney injury: patterns of renal functional recovery. PLoS ONE 7, e36388 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Forni, L. G. et al. Renal recovery after acute kidney injury. Intensive Care Med. 43, 855–866 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Schmitt, R. et al. Recovery of kidney function after acute kidney injury in the elderly: a systematic review and meta-analysis. Am. J. Kidney Dis. 5203, 262–271 (2008).

    Article  Google Scholar 

  121. Ferenbach, Da. et al. The induction of macrophage hemeoxygenase-1 is protective during acute kidney injury in aging mice. Kidney Int. 79, 966–976 (2011).

    Article  PubMed  CAS  Google Scholar 

  122. O’Sullivan, E. D., Hughes, J. & Ferenbach, D. A. Renal aging: causes and consequences. J. Am. Soc. Nephrol. 28, 407–420 (2017).

    Article  PubMed  Google Scholar 

  123. Lin, C. H. S. et al. Endostatin and kidney fibrosis in aging: a case for antagonistic pleiotropy? Am. J. Physiol. Heart Circ. Physiol. 306, H1692–H1699 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Kang, D. H. et al. Role of the microvascular endothelium in progressive renal disease. J. Am. Soc. Nephrol. 13, 806–816 (2002).

    Article  PubMed  Google Scholar 

  125. Kang, D.-H. et al. Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and Thrombospondin-1 in renal disease. Am. J. Kidney Dis. 37, 601–611 (2001).

    Article  PubMed  CAS  Google Scholar 

  126. Stefanska, A. et al. Interstitial pericytes decrease in aged mouse kidneys. Aging 7, 370–382 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Rodríguez-Iturbe, B., Johnson, R. J. & Herrera-Acosta, J. Tubulointerstitial damage & progression of renal failure. Kidney Int. 68, S82–S86 Elsevier, (2005).

    Article  Google Scholar 

  128. Berger, K. & Moeller, M. J. Mechanisms of epithelial repair and regeneration after acute kidney injury. Semin. Nephrol. 34, 394–403 (2014).

    Article  PubMed  CAS  Google Scholar 

  129. Bidani, A. K. & Griffin, K. A. Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension 44, 595–601 (2004).

    Article  PubMed  CAS  Google Scholar 

  130. Robertson, C., Deen, W., Troy, J. & Brenner, B. Dynamics of glomerular ultrafiltration in the rat. 3. Hemodynamics and autoregulation. Am. J. Physiol. 223, 1191–1200 (1972).

    PubMed  CAS  Google Scholar 

  131. Berger, K. et al. Origin of regenerating tubular cells after acute kidney injury. Proc. Natl Acad. Sci. USA 111, 1533–1538 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  132. Nath, K. A. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am. J. Kidney Dis. 20, 1–17 (1992).

    Article  PubMed  CAS  Google Scholar 

  133. Menn-Josephy, H. et al. Renal interstitial fibrosis: an imperfect predictor of kidney disease progression in some patient cohorts HHS public access. Am. J. Nephrol. 44, 289–299 (2016).

    Article  PubMed  Google Scholar 

  134. Nugent, M. M., Lee, K. & He, J. C. HIPK2 is a new drug target for anti-fibrosis therapy in kidney disease. Front. Physiol. 6, 132 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Declèves, A.-E. & Sharma, K. Novel targets of antifibrotic and anti-inflammatory treatment in CKD. Nat. Rev. Nephrol. 10, 257–267 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  136. Breyer, M. D. & Susztak, K. The next generation of therapeutics for chronic kidney disease. Nat. Rev. Drug Discov. 15, 568–588 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Zeisberg, M. & Neilson, E. G. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 21, 1819–1834 (2010).

    Article  PubMed  CAS  Google Scholar 

  138. Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol. 19, 2282–2287 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  139. LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047–1053 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Faulkner, J. L., Szcykalski, L. M., Springer, F. & Barnes, J. L. Origin of interstitial fibroblasts in an accelerated model of angiotensin ii-induced renal fibrosis. Am. J. Pathol. 167, 1193–1205 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Kramann, R., Wongboonsin, J., Chang-Panesso, M., Machado, F. G. & Humphreys, B. D. Gli1 + pericyte loss induces capillary rarefaction and proximal tubular injury. J. Am. Soc. Nephrol. 28, 776–784 (2017).

    Article  PubMed  Google Scholar 

  142. Wiggins, R., Goyal, M., Merritt, S. & Killen, P. D. Vascular adventitial cell expression of collagen I messenger ribonucleic acid in anti-glomerular basement membrane antibody-induced crescentic nephritis in the rabbit. A cellular source for interstitial collagen synthesis in inflammatory renal disease. Lab. Invest. 68, 557–565 (1993).

    PubMed  CAS  Google Scholar 

  143. Habibi, J., Hayden, M. R., Ferrario, C. M., Sowers, J. R. & Whaley-Connell, A. T. Salt loading promotes kidney injury via fibrosis in young female Ren2 rats. Cardiorenal Med. 4, 43–52 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Hardy, W. R. et al. Transcriptional networks in single perivascular cells sorted from human adipose tissue reveal a hierarchy of mesenchymal stem cells. Stem Cells 35, 1273–1289 (2017).

    Article  PubMed  CAS  Google Scholar 

  145. Fabian, S. L. et al. Hedgehog-Gli pathway activation during kidney fibrosis. Am. J. Pathol. 180, 1441–1453 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Xiao, L. et al. Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression. J. Am. Soc. Nephrol. 27, 1727–1740 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Maarouf, O. H. et al. Paracrine Wnt1 drives interstitial fibrosis without inflammation by tubulointerstitial cross-talk. J. Am. Soc. Nephrol. 27, 781–790 (2016).

    Article  PubMed  CAS  Google Scholar 

  148. Grgic, I. et al. Translational profiles of medullary myofibroblasts during kidney fibrosis. J. Am. Soc. Nephrol. 25, 1979–1990 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Schrimpf, C., Teebken, O. E., Wilhelmi, M. & Duffield, J. S. The role of pericyte detachment in vascular rarefaction. J. Vasc. Res. 51, 247–258 (2014).

    Article  PubMed  Google Scholar 

  150. Lin, S. L. et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am. J. Pathol. 178, 911–923 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Chen, Y.-T. et al. Platelet-derived growth factor receptor signaling activates pericyte–myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 80, 1170–1181 (2011).

    Article  PubMed  CAS  Google Scholar 

  152. Bijkerk, R. et al. Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation. Kidney Int. 89, 1268–1280 (2016).

    Article  PubMed  CAS  Google Scholar 

  153. Leaf, I. A. et al. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J. Clin. Invest. 127, 321–334 (2017).

    Article  PubMed  Google Scholar 

  154. Xavier, S. et al. Pericytes and immune cells contribute to complement activation in tubulointerstitial fibrosis. Am. J. Physiol. Renal Physiol. 312, F516–F532 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Lu, Y., Ye, Y., Yang, Q. & Shi, S. Single-cell RNA-sequence analysis of mouse glomerular mesangial cells uncovers mesangial cell essential genes. Kidney Int. 92, 504–513 (2017).

    Article  PubMed  CAS  Google Scholar 

  156. Hugo, C., Shankland, S. J., Bowen-Pope, D. F., Couser, W. G. & Johnson, R. J. Extraglomerular origin of the mesangial cell after injury. A new role of the juxtaglomerular apparatus. J. Clin. Invest. 100, 786–794 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Starke, C. et al. Renin lineage cells repopulate the glomerular mesangium after injury. J. Am. Soc. Nephrol. 26, 48–54 (2015).

    Article  PubMed  CAS  Google Scholar 

  158. Baker, A. J. et al. Mesangial cell apoptosis: the major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. J. Clin. Invest. 94, 2105–2116 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Villa, L. et al. Late angiotensin II receptor blockade in progressive rat mesangioproliferative glomerulonephritis: new insights into mechanisms. J. Pathol. 229, 672–684 (2013).

    Article  PubMed  CAS  Google Scholar 

  160. Al Hussain, T., Hussein, M. H., Al Mana, H. & Akhtar, M. Pathophysiology of IgA nephropathy. Adv. Anat. Pathol. 24, 56–62 (2017).

    Article  PubMed  CAS  Google Scholar 

  161. Roberts, I. S. D. et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 76, 546–556 (2009).

    Article  PubMed  Google Scholar 

  162. Kroeger, P. T. & Wingert, R. A. Using zebrafish to study podocyte genesis during kidney development and regeneration. Genesis 52, 771–792 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Wingert, R. A. & Davidson, A. J. The zebrafish pronephros: a model to study nephron segmentation. Kidney Int. 73, 1120–1127 (2008).

    Article  PubMed  CAS  Google Scholar 

  164. Diep, C. Q. et al. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 470, 95–100 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Huang, J. et al. A zebrafish model of conditional targeted podocyte ablation and regeneration. Kidney Int. 83, 1193–1200 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Zhou, W., Boucher, R. C., Bollig, F., Englert, C. & Hildebrandt, F. Characterization of mesonephric development and regeneration using transgenic zebrafish. Am. J. Physiol. Renal Physiol. 299, F1040–F1047 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Rider, S. A., Mullins, L. J., Verdon, R. F., MacRae, C. A. & Mullins, J. J. Renin expression in developing zebrafish is associated with angiogenesis and requires the Notch pathway and endothelium. Am. J. Physiol. Renal Physiol. 309, F531–F539 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Santoro, M. M., Pesce, G. & Stainier, D. Y. Characterization of vascular mural cells during zebrafish development. Mech. Dev. 126, 638–649 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Ando, K. et al. Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish. Development 143, 1328–1339 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Whitesell, T. R. et al. An α-smooth muscle actin (acta2/αsma) zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells. PLoS ONE 9, e90590 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Liang, P. Genomic characterization and expression analysis of the first nonmammalian renin genes from zebrafish and pufferfish. Physiol. Genomics. 16, 314–322 (2004).

    Article  PubMed  CAS  Google Scholar 

  172. Drummond, I. Making a zebrafish kidney: a tale of two tubes. Trends Cell Biol. 13, 357–365 (2003).

    Article  PubMed  Google Scholar 

  173. Drummond, I. A. et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125, 4655–4667 (1998).

    PubMed  CAS  Google Scholar 

  174. Isogai, S., Horiguchi, M. & Weinstein, B. M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol. 230, 278–301 (2001).

    Article  PubMed  CAS  Google Scholar 

  175. Rider, S. A. et al. Zebrafish mesonephric renin cells are functionally conserved and comprise two distinct morphological populations. Am. J. Physiol. Renal Physiol. 312, F778–F790 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Curado, S. et al. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev. Dyn. 236, 1025–1035 (2007).

    Article  PubMed  CAS  Google Scholar 

  177. Zhou, W. & Hildebrandt, F. Inducible podocyte injury and proteinuria in transgenic zebrafish. J. Am. Soc. Nephrol. 23, 1039–1047 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Bulina, M. E. et al. A genetically encoded photosensitizer. Nat. Biotechnol. 24, 95–99 (2006).

    Article  PubMed  CAS  Google Scholar 

  179. Teh, C. et al. Optogenetic in vivo cell manipulation in KillerRed-expressing zebrafish transgenics. BMC Dev. Biol. 10, 110 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Buckley, C. et al. Precise spatio-temporal control of rapid optogenetic cell ablation with mem-KillerRed in Zebrafish. Sci. Rep. 7, 5096 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Kramer-Zucker, A. G., Wiessner, S., Jensen, A. M. & Drummond, I. A. Organization of the pronephric filtration apparatus in zebrafish requires nephrin, podocin and the FERM domain protein mosaic eyes. Dev. Biol. 285, 316–329 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Zhu, X. et al. Ultrastructural characterization of the pronephric glomerulus development in zebrafish. J. Morphol. 277, 1104–1112 (2016).

    Article  PubMed  Google Scholar 

  183. Dunn, K. W., Sutton, T. A. & Sandoval, R. M. Live-animal imaging of renal function by multiphoton microscopy. Curr. Protoc. Cytom. https://doi.org/10.1002/0471142956.cy1209s62 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Mosimann, C. et al. Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 138, 169–177 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Pan, Y. A. et al. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 140, 2835–2846 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Weissman, T. A. & Pan, Y. A. Brainbow: new resources and emerging biological applications for multicolor genetic labeling and analysis. Genetics 199, 293–306 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Rider, S. A., Bruton, F. A., Collins, R. G., Conway, B. R. & Mullins, J. J. The efficacy of puromycin and adriamycin for induction of glomerular failure in larval zebrafish validated by an assay of glomerular permeability dynamics. Zebrafish https://doi.org/10.1089/zeb.2017.1527 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010).

    Article  PubMed  CAS  Google Scholar 

  189. Chen, W. et al. Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells 33, 557–573 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Guimarães-Camboa, N. et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20, 345–359.e5 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Zhao, H. et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 14, 160–173 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Dellavalle, A. et al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat. Commun. 2, 499 (2011).

    Article  PubMed  CAS  Google Scholar 

  194. Dickinson, S. C. et al. The Wnt5a receptor, receptor tyrosine kinase-like orphan receptor 2, is a predictive cell surface marker of human mesenchymal stem cells with an enhanced capacity for chondrogenic differentiation. Stem Cells 35, 2280–2291 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Shen, J. et al. Pericyte antigens in perivascular soft tissue tumors. Int. J. Surg. Pathol. 23, 638–648 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Wong, L. et al. Reninoma: case report and literature review. J. Hypertens. 26, 368–373 (2008).

    Article  PubMed  CAS  Google Scholar 

  197. Cooke, V. G. et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21, 66–81 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Péault, B. Peril in perishing pericytes. J. Natl Cancer Inst. 107, djv254 (2015).

    Article  PubMed  Google Scholar 

  199. Bentolila, L. A. et al. Imaging of angiotropism/vascular co-option in a murine model of brain melanoma: implications for melanoma progression along extravascular pathways. Sci. Rep. 6, 23834 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. O’Farrel, F. M. et al. Capillary pericytes mediate coronary no-reflow after myocardial ischaemia. eLife 6, e29280 (2017).

    Article  Google Scholar 

Download references

Reviewer information

Nature Reviews Nephrology thanks R. Kramann and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the manuscript. B.P., I.S. and J.H. made substantial contributions to discussions of the content and reviewed or edited the manuscript before submission.

Corresponding authors

Correspondence to Isaac Shaw or Bruno Péault.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Angiogenesis

The formation and remodelling of new blood vessels and capillaries from the growth of existing blood vessels.

Mesangial cells

Specialized perivascular cells of the glomerulus that provide structural support to the capillary tuft.

Adventitial cells

Perivascular mesenchymal cells that are located in the tunica adventitia layer of large arteries and veins and can give rise to mesenchymal stem/stromal cells in culture. Molecularly defined as CD45CD31CD146CD34+.

Vasa recta

Bundles of parallel ascending and descending vessels that run from the cortex to the inner medulla of the kidney and form a countercurrent exchange system for water and solutes.

Ureteric bud

(UB). An outgrowth of the mesonephric (or Wolffian) duct that invades the metanephric mesenchyme and undergoes subsequent rounds of branching to give rise to the collecting ducts of the kidney and to the ureter.

Cap mesenchyme

Metanephric mesenchyme that condenses around the tip of the ureteric bud during kidney development and gives rise to cells of the nephron. The cap mesenchyme is characterized by expression of SIX2 and Cbp/p300-interacting transactivator 1 (CITED1).

Renin–angiotensin system

(RAS). A hormonal system of blood pressure regulation. In response to low blood pressure, juxtaglomerular pericytes secrete renin, which converts circulating angiotensinogen to angiotensin I, leading to a cascade that ultimately increases blood pressure.

Vasculogenesis

The de novo formation of new blood vessels via the differentiation of endothelial progenitor cells.

Mesenchymal stem/stromal cells

(MSCs). Plastic adherent cells that express CD105, CD73 and CD90, do not express endothelial and haematopoietic cell markers, and have the ability to differentiate into osteoblasts, adipocytes and chondroblasts in vitro. Pericytes and adventitial cells are in vivo precursors of culture-derived MSCs, which have potential therapeutic properties.

Acute kidney injury

(AKI). An abrupt loss of kidney function in response to a pathological stimulus. AKI is clinically defined as an increase in serum creatinine and/or blood urea nitrogen levels and is characterized by tubular death. Although typically short term and reversible, AKI may predispose to chronic kidney disease.

Chronic kidney disease

(CKD). Long-term, typically irreversible decline in renal function characterized by glomerular and tubulointerstitial fibrosis.

Myofibroblast

Scar-forming cell present in the glomeruli or interstitium of injured kidney that are characterized by the expression of α-smooth muscle actin.

Nitroreductase (NTR) system

A cell-ablation technique in which bacterial nitroreductase enzyme is transgenically expressed in cells of interest, thus sensitizing them to metronidazole.

mem-KillerRed

A membrane-bound protein that when excited by 520–590 nm light produces reactive oxygen species that are toxic to the cell. This protein can be genetically targeted to cells of interest for user-defined spatial and temporal cell ablation in light-accessible tissue.

Bessel beam

A specialized form of laser beam formed either by passing a beam through an axicon lens or by reflecting it off a spatial light modulator. Bessel beams are resistant to scattering and diffraction and therefore can penetrate further into tissue than other types of laser beams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, I., Rider, S., Mullins, J. et al. Pericytes in the renal vasculature: roles in health and disease. Nat Rev Nephrol 14, 521–534 (2018). https://doi.org/10.1038/s41581-018-0032-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-018-0032-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing