Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Haemodialysis membranes

Abstract

Haemodialysis is an extracorporeal process in which the blood is cleansed via removal of uraemic retention products by a semipermeable membrane. Traditionally, dialysis membranes have been broadly classified on the basis of their composition (cellulosic or noncellulosic) and water permeability (low flux or high flux). However, advances in materials technology and polymer chemistry have led to the development of membranes with specific characteristics and refined properties that mandate a reconsideration of traditional membrane classification systems. For adequate characterization of these newer types of membranes, additional parameters are now relevant, including new permeability indices, the hydrophilic or hydrophobic nature of membranes, adsorption capacity and electrical potential. In this Review, we provide clinicians with an updated analysis of dialysis membranes and dialysers. We discuss the basic mechanisms that underlie solute and water removal in dialysis (that is, diffusion, convection, adsorption and ultrafiltration) in the context of treatments that use highly permeable membranes. Specifically, we highlight online haemodiafiltration and new therapies (for example, expanded haemodialysis) that utilize membranes designed to produce a high degree of internal filtration. Finally, we discuss the considerations that govern the clinically acceptable balance between large-solute clearance and albumin loss for extracorporeal therapies.

Key points

  • Traditional schemes for the classification of dialysis membranes, based simply on composition and water permeability, are outdated and new approaches are needed.

  • Dialyser utilization in clinical practice has evolved over time and is now dominated by devices with synthetic high-flux membranes.

  • Rational treatment prescription by clinicians requires an understanding of the basic mechanisms underlying solute and water removal in dialysis — namely, diffusion, convection, adsorption and ultrafiltration.

  • New therapies (including expanded haemodialysis) that utilize membranes designed to produce a high degree of internal filtration are undergoing clinical evaluation as potential alternatives to convective therapies, such as on-line haemodiafilitration.

  • The clinically acceptable amount of albumin loss for extracorporeal therapies remains to be defined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characteristics of some commercially available synthetic dialysis membranes.
Fig. 2: The manufacturing process influences both the pore size distribution and the pore density of a dialysis membrane.
Fig. 3: The physical characteristics of membranes affect their functional properties.
Fig. 4: Factors that affect diffusive and convective mass transfer.
Fig. 5: Analysis of pressure profiles in hollow-fibre haemodialysers.
Fig. 6: Performance characteristics of haemodialysis membranes derived from a suggested new classification system.

Similar content being viewed by others

References

  1. Clark, W. R., Hamburger, R. J. & Lysaght, M. J. Effect of membrane structure and composition on performance and biocompatibility in hemodialysis. Kidney Int. 56, 2005–2015 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Ronco, C., Neri, M., Lorenzin, A., Garzotto, F. & Clark, W. R. Multidimensional classification of dialysis membranes. Contrib. Nephrol. 191, 115–126 (2017).

    Article  PubMed  Google Scholar 

  3. Bowry, S. K., Gatti, E. & Vienken, J. Contribution of polysulfone membranes to the success of convective dialysis therapies. Contrib. Nephrol. 173, 110–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Islam, M. S. et al. Vitamin E-coated and heparin-coated dialyzer membranes for heparin-free hemodialysis: a multicenter, randomized, crossover trial. Am. J. Kidney Dis. 68, 752–762 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Zweigart, C. et al. Medium cut-off membranes — closer to the natural kidney removal function. Int. J. Artif. Organs 40, 328–334 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boschetti-de-Fierro, A. et al. Membrane innovation in dialysis. Contrib. Nephrol. 191, 100–114 (2017).

    Article  PubMed  Google Scholar 

  7. Clark, W. R., Macias, W. L., Molitoris, B. A. & Wang, N. H. Membrane adsorption of ß2-microglobulin: equilibrium and kinetic characterization. Kidney Int. 46, 1140–1146 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Désormeaux, A., Moreau, M. E., Lepage, Y., Chanard, J. & Adam, A. The effect of electronegativity and angiotensin-converting enzyme inhibition on the kinin-forming capacity of polyacrylonitrile dialysis membranes. Biomaterials 29, 1139–1146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haas, G. Dialysis of flowing blood in the patient. Klin. Wochenschr. 70, 1888 (1923).

    Article  Google Scholar 

  10. Clark, W. R. Hemodialyzer membranes and configurations: a historical perspective. Semin. Dial. 13, 309–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Kolff, W. & Berk, H. The artificial kidney: a dialyzer with a great area. Acta Med. Scand. 117, 121–134 (1944).

    Article  Google Scholar 

  12. Alwall, N. On the artificial kidney. I. Apparatus or dialysis of blood in vivo. Acta Med. Scand. 128, 317–325 (1947).

    Article  CAS  PubMed  Google Scholar 

  13. Kolff, W., Watschinger, B. & Vertes, B. Results in patients treated with the coil kidney. JAMA 161, 1433–1437 (1956).

    Article  CAS  Google Scholar 

  14. Vertes, B., Aoyama, S. & Kolff, W. The twin-coil disposable artificial kidney. Trans. Am. Soc. Artif. Intern. Organs 3, 119–121 (1958).

    Google Scholar 

  15. Kiil, F. Development of a parallel-flow artificial kidney in plastics. Acta Chir. Scand. Suppl. 253, 142–150 (1960).

    PubMed  Google Scholar 

  16. Cole, J., Pollard, T. & Murray, J. Studies on the modified polypropylene Kiil dialyzer. Trans. Am. Soc. Artif. Intern. Organs 9, 67–70 (1963).

    CAS  PubMed  Google Scholar 

  17. Funck-Bretano, J. et al. A new disposable plate-kidney. Trans. Am. Soc. Artif. Intern. Organs 15, 127–130 (1969).

    Google Scholar 

  18. Lipps, B. et al. The hollow fiber artificial kidney. Trans. Am. Soc. Artif. Intern. Organs 13, 200–207 (1967).

    Google Scholar 

  19. Lysaght, M. J. Hemodialysis membranes in transition. Contrib. Nephrol. 61, 1–17 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Lysaght, M. J. Evolution of hemodialysis membranes. Contrib. Nephrol. 113, 1–10 (1995).

    CAS  PubMed  Google Scholar 

  21. Craddock, P., Fehr, J., Dalmasso, A., Brigham, K. & Jacob, H. Hemodialysis leukopenia: pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes. J. Clin. Invest. 59, 879–888 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hakim, R., Fearon, D. & Lazarus, J. M. Biocompatibility of dialysis membranes: effects of chronic complement activation. Kidney Int. 26, 194–200 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Hakim, R. M. Clinical implications of hemodialysis membrane bioincompatibility. Kidney Int. 44, 484–494 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Takeyama, T. & Sakai, Y. Polymethylmethacrylate: one biomaterial for a series of membranes. Contrib. Nephrol. 125, 9–24 (1998).

    Article  Google Scholar 

  25. Thomas, M., Moriyama, K. & Ledebo, I. AN69: evolution of the world’s first high permeability membrane. Contrib. Nephrol. 173, 119–129 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Clark, W. R. & Gao, D. Membranes for dialysis: composition, structure, and function. Contrib. Nephrol. 137, 70–77 (2002).

    Article  CAS  Google Scholar 

  27. Zweigart, C. et al. in Comprehensive Membrane Science and Engineering 2nd edn (eds Drioli, E., Giorno, L. & Fontana, E.) 215–247 (Elsevier, 2017).

  28. Chung, T. S. N. in Advanced Membrane Technology and Applications Ch. 31 (eds Li, N. N., Fane, A. G., Ho, W. S. W. & Matsuura, T.) (John Wiley and Sons, 2008).

  29. Clark, W. R. Quantitative characterization of hemodialyzer solute and water transport. Semin. Dial. 14, 32–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Michaels, A. S. Operating parameters and performance criteria for hemodialyzers and other membrane-separation devices. Trans. Am. Soc. Artif. Intern. Organs 12, 387–392 (1966).

    CAS  PubMed  Google Scholar 

  31. Kim, J. C. et al. Effects of arterial port design on blood flow distribution in hemodialyzers. Blood Purif. 28, 260–267 (2009).

    Article  PubMed  Google Scholar 

  32. Ronco, C. et al. Flow distribution analysis by helical scanning in polysulfone hemodialyzers: effects of fiber structure and design on flow patterns and solute clearances. Hemodial. Int. 10, 380–388 (2006).

    Article  PubMed  Google Scholar 

  33. Brendolan, A. et al. Dialytic performance evaluation of Rexeed: a new polysulfone-based dialyzer with improved flow distributions. Int. J. Artif. Organs. 28, 966–975 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Gastaldon, F. et al. Effects of novel manufacturing technology on blood and dialysate flow distribution in a new low flux “alpha Polysulfone” hemodialyzer. Int. J. Artif. Organs. 26, 105–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Ronco, C., Brendolan, A., Crepaldi, C., Gastaldon, F. & Levin, N. W. Flow distribution and cross filtration in hollow fiber hemodialyzers. Contrib. Nephrol. 137, 120–128 (2002).

    Article  Google Scholar 

  36. Ronco, C. et al. Dialysate flow distribution in hollow fiber hemodialyzers with different dialysate pathway configurations. Int. J. Artif. Organs 23, 601–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Ronco, C. et al. Performance of DIAPES filters in CRRT. Contrib. Nephrol. 138, 144–152 (2003).

    Article  Google Scholar 

  38. Brendolan, A. et al. Flow dynamic characteristics of DIAPES hemodialyzers. Contrib. Nephrol. 138, 27–36 (2003).

    Article  Google Scholar 

  39. Ronco, C. et al. Hemodialyzer: from macro-design to membrane nanostructure; the case of the FX-class of hemodialyzers. Kidney Int. Suppl. 80, 126–142 (2002).

    Article  Google Scholar 

  40. Ronco, C. et al. Effects of hematocrit and blood flow distribution on solute clearance in hollow-fiber hemodialyzers. Nephron 89, 243–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Ronco, C., Ballestri, M. & Brendolan, A. New developments in hemodialyzers. Blood Purif. 18, 267–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Ronco, C. et al. In vitro and in vivo evaluation of a new polysulfone membrane for hemodialysis. Reference methodology and clinical results. (Part. 2: in vivo study). Int. J. Artif. Organs 22, 616–624 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Ronco, C. et al. In vitro and in vivo evaluation of a new polysulfone membrane for hemodialysis. Reference methodology and clinical results. (Part 1: in vitro study). Int. J. Artif. Organs 22, 604–615 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Brendolan, A., Ronco, C., Ghezzi, P. M., Scabardi, M. & La Greca, G. Hydraulic and flow dynamic characteristics of PMMA dialyzers. Contrib. Nephrol. 125, 41–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Barzin, J. et al. Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy. J. Memb. Sci. 237, 77–85 (2004).

    Article  CAS  Google Scholar 

  46. Miyata, M., Konishi, S., Shimamoto, Y., Kamada, A. & Umimoto, K. Influence of sterilization and storage period on elution of polyvinylpyrollidone from wet-type polysulfone membrane dialyzers. ASAIO J. 61, 468–473 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Murakami, J., Kaneko, I., Kimata, N., Mineshima, M. & Akiba, T. Problems in the evaluation of polyvinylpyrollidone elution from polysulfone membranes sterilized by gamma-ray radiation. Ren. Replac. Ther. 2, 36 (2016).

    Article  Google Scholar 

  48. Marques, I., Pinheiro, K., Carmo, L., Costa, M. & Abensur, H. Anaphylactic reaction induced by polysulfone/polyvinylpyrrolidone membrane in the 10th session of hemodialysis with the same dialyzer. Hemodial. Int. 15, 399–403 (2011).

    Article  Google Scholar 

  49. Cheung, A. K. et al. Effects of hemodialyzer reuse on clearances of urea and β2-microglobulin. J. Am. Soc. Nephrol. 10, 117–127 (1999).

    CAS  PubMed  Google Scholar 

  50. Kuwahara, T., Markert, M. & Wauters, J. Proteins adsorbed on hemodialysis membranes modulate neutrophil activation. Artif. Organs 13, 427–431 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Eberhart, R. et al. Influence of endogenous albumin binding on blood-material interactions. Ann. NY Acad. Sci. 516, 78–95 (1987).

    Article  CAS  PubMed  Google Scholar 

  52. Lambrecht, L. et al. The influence of pre-adsorbed canine von Willenbrand factor, fibronectin, and fibrinogen on ex vivo artificial surface-induced thrombogenesis. Thromb. Res. 41, 99–117 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Casa, L., Deaton, D. H. & Ku, D. N. Role of high shear rate in thrombosis. J. Vasc. Surg. 61, 1068–1080 (2015).

    Article  PubMed  Google Scholar 

  54. Clark, W. R., Gao, D., Neri, M. & Ronco, C. Solute transport in hemodialysis: advances and limitations of current membrane technology. Contrib. Nephrol. 191, 84–99 (2017).

    Article  PubMed  Google Scholar 

  55. Ronco, C., Ghezzi, P. M., Brendolan, A., Crepaldi, C. & La Greca, G. The haemodialysis system: basic mechanisms of water and solute transport in extracorporeal renal replacement therapies. Nephrol. Dial. Transplant. 13 (Suppl. 6), 3–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Huang, Z., Clark, W. R. & Gao, D. Determinants of small solute clearance in hemodialysis. Semin. Dial. 18, 30–35 (2005).

    PubMed  Google Scholar 

  57. Colton, C. K. & Lowrie, E. G. in The Kidney 2nd edn (eds Brenner, B. M. & Rector, F. C.) 2425–2489 (WB Saunders, 1981).

  58. Bird, R. B., Stewart, W. E. & Lightfoot, E. N. in Transport Phenomena 1st edn (eds Bird, R. B., Stewart, W. E. & Lightfoot, E. N.) 34–70 (John Wiley and Sons, 1960).

  59. Merrill, E. W. Rheology of blood. Physiol. Rev. 49, 863–888 (1949).

    Article  Google Scholar 

  60. Chapdelaine, I. et al. Optimization of the convection volume in online post-dilution haemodiafiltration: practical and technical issues. Clin. Kidney J. 8, 191–198 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kim, J. C. et al. Effects of dialysate flow configurations in continuous renal replacement therapy on solute removal: computational modeling. Blood Purif. 35, 106–111 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Kim, J. C. et al. Computational modeling of effects of mechanical shaking on hemodynamics in hollow fibers. Int. J. Artif. Organs 35, 301–307 (2012).

    Article  PubMed  Google Scholar 

  63. Kim, J. C. et al. Enhancement of solute removal in a hollow-fiber hemodialyzer by mechanical vibration. Blood Purif. 31, 227–234 (2011).

    Article  PubMed  Google Scholar 

  64. Ronco, C. Fluid mechanics and crossfiltration in hollow-fiber hemodialyzers. Contrib. Nephrol. 158, 34–49 (2007).

    Article  PubMed  Google Scholar 

  65. Ronco, C. & Levin, N. W. Mechanisms of solute transport in extracorporeal therapies. Contrib. Nephrol. 149, 10–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Villarroel, F., Klein, E. & Holland, F. Solute flux in hemodialysis and hemofiltration membranes. Trans. Am. Soc. Artif. Organs 23, 225–232 (1977).

    Article  CAS  Google Scholar 

  67. Zydney, A. L. Bulk mass transport limitations during high-flux hemodialysis. Artif. Organs 17, 919–924 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Ofsthun, N. J. & Zydney, A. L. Importance of convection in artificial kidney treatment. Contrib. Nephrol. 108, 53–70 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Huang, Z., Gao, D., Letteri, J. J. & Clark, W. R. Blood-membrane interactions during dialysis. Semin. Dial. 22, 623–628 (2009).

    Article  PubMed  Google Scholar 

  70. Langsdorf, L. J. & Zydney, A. L. Effect of blood contact on the transport properties of hemodialysis membranes: a two-layer model. Blood Purif. 12, 292–307 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Morti, S. M. & Zydney, A. L. Protein-membrane interactions during hemodialysis: effects on solute transport. ASAIO J. 44, 319–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Rockel, A. et al. Permeability and secondary membrane formation of a high flux polysulfone hemofilter. Kidney Int. 30, 429–432 (1986).

    Article  CAS  PubMed  Google Scholar 

  73. Clark, W. R., Macias, W. L., Molitoris, B. A. & Wang, N. H. L. Plasma protein adsorption to highly permeable dialysis membranes. Kidney Int. 48, 481–487 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Gachon, A., Mallet, J., Trideon, A. & Deteix, P. Analysis of proteins eluted from hemodialysis membranes. J. Biomater. Sci. Polym. Ed. 2, 263–276 (1991).

    Article  CAS  Google Scholar 

  75. Colton, C. K., Henderson, L. W., Ford, C. A. & Lysaght, M. J. Kinetics of hemodiafiltration. I. In vitro transport characteristics of a hollow-fiber blood ultrafilter. J. Lab. Clin. Med. 85, 355–371 (1975).

    CAS  PubMed  Google Scholar 

  76. Fiore, G. B., Guadagni, G., Lupi, A., Ricci, Z. & Ronco, C. A new semiempirical mathematical model for prediction of internal filtration in hollow fiber hemodialyzers. Blood Purif. 24, 555–568 (2006).

    Article  PubMed  Google Scholar 

  77. Fiore, G. B. & Ronco, C. Principles and practice of internal hemodiafiltration. Contrib. Nephrol. 158, 177–184 (2007).

    Article  PubMed  Google Scholar 

  78. Rangel, A. V. et al. Backfiltration: past, present, and future. Contrib. Nephrol. 175, 35–45 (2011).

    Article  PubMed  Google Scholar 

  79. Lorenzin, A., Neri, M., Clark, W. R. & Ronco, C. Experimental measurement of internal filtration rate for a new medium cut-off dialyzer. Contrib. Nephrol. 191, 127–141 (2017).

    Article  PubMed  Google Scholar 

  80. Ronco, C., Brendolan, A., Lupi, A., Bettini, M. C. & La Greca, G. Enhancement of convective transport by internal filtration in a modified experimental dialyzer. Kidney Int. 54, 979–985 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Ronco, C., Brendolan, A., Lupi, A., Metry, G. & Levin, N. W. Effects of reduced inner diameter of hollow fibers in hemodialyzers. Kidney Int. 58, 809–817 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Ronco, C., Brendolan, A., Crepaldi, C., Rodighiero, M. & Scabardi, M. Blood and dialysate flow distributions in hollow-fiber hemodialyzers analysed by computerized helical scanning technique. J. Am. Soc. Nephrol. 13, S53–S61 (2002).

    CAS  PubMed  Google Scholar 

  83. Mineshima, M. New trends in HDF: validity of internal filtration-enhanced hemodialysis. Blood Purif. 22 (Suppl. 2), 60–66 (2004).

    Article  PubMed  Google Scholar 

  84. Ronco, C. & La Manna, G. Expanded hemodialysis: a new therapy for a new class of membranes. Contrib. Nephrol. 190, 124–133 (2017).

    Article  PubMed  Google Scholar 

  85. Ronco, C. The rise of expanded hemodialysis. Blood Purif. 44, I–VIII (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Ronco, C. & Bowry, S. Nanoscale modulation of the pore dimensions, size distribution and structure of a new polysulfone-based high-flux dialysis membrane. Int. J. Artif. Organs 24, 726–735 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Goldman, M. et al. Adsorption of beta2-microglobulin on dialysis membranes: comparison of dialyzers and effect of reuse. Int. J. Artif. Organs 12, 373–378 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Mares, J., Thongboonkerd, V., Tuma, Z., Moravec, J. & Matejovic, M. Specific adsorption of some complement activation proteins to polysulfone dialysis membranes during hemodialysis. Kidney Int. 76, 404–413 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Clark, W. R. & Gao, D. Low-molecular weight proteins in end-stage renal disease: potential toxicity and dialytic removal mechanisms. J. Am. Soc. Nephrol. 13, S41–S47 (2002).

    CAS  PubMed  Google Scholar 

  90. Massy, Z. & Liabeuf, S. Middle-molecule uremic toxins and outcomes in chronic kidney disease. Contrib. Nephrol. 191, 8–17 (2017).

    Article  PubMed  Google Scholar 

  91. Barreto, F. C., Barreto, D. V. & Canziani, M. E. F. Uremia retention molecules and clinical outcomes. Contrib. Nephrol. 191, 18–31 (2017).

    Article  PubMed  Google Scholar 

  92. Eloot, S. et al. Protein-bound uremic toxin profiling as a tool to optimize hemodialysis. PLoS ONE 11, e0147159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kneis, C. et al. Elimination of middle-sized uremic solutes with high-flux and high-cut-off membranes: a randomized in vivo study. Blood Purif. 36, 287–294 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Yu, X. The evolving patterns of uremia: unmet clinical needs in dialysis. Contrib. Nephrol. 191, 1–7 (2017).

    Article  PubMed  Google Scholar 

  95. Ward, R. A. Protein-leaking membranes for hemodialysis: a new class of membranes in search of an application? J. Am. Soc. Nephrol. 16, 2421–2430 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. US Food and Drug Administration. Guidance for the content of premarket notifications for conventional and high permeability hemodialyzers. FDA https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm080166.pdf (1998).

  97. Keshaviah, P., Luehmann, D., Ilstrup, K. & Collins, A. Technical requirements for rapid high-efficiency therapies. Artif. Organs 10, 189–194 (1986).

    Article  CAS  PubMed  Google Scholar 

  98. Eknoyan, G. et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N. Engl. J. Med. 347, 2010–2019 (2002).

    Article  PubMed  Google Scholar 

  99. Tattersall, J. E. & Ward, R. A., EUDIAL group. Online hemodiafiltration: definition, dose quantification, and safety revisited. Nephrol. Dial. Transplant. 28, 542–550 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Boschetti-de-Fierro, A., Voigt, M., Storr, M. & Krause, B. Extended characterization of a new class of membranes for blood purification: the high cut-off membranes. Int. J. Artif. Organs 36, 455–463 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Rousseau-Gagnon, M., Agharazii, M., De Serres, S. A. & Desmeules, S. Effectiveness of haemodiafiltration with heat sterilized high-flux polyphenylene HF dialyzer in reducing free light chains in patients with myeloma cast nephropathy. PLoS ONE 10, e0140463 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hutchison, C. A. et al. Immunoglobulin free light chain levels and recovery from myeloma kidney on treatment with chemotherapy and high cut-off haemodialysis. Nephrol. Dial. Transplant. 27, 3823–3828 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Hutchison, C. A. et al. Treatment of acute renal failure secondary to multiple myeloma with chemotherapy and extended high cut-off hemodialysis. Clin. J. Am. Soc. Nephrol. 4, 745–754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hutchison, C. A. et al. Serum free-light chain removal by high cutoff hemodialysis: optimizing removal and supportive care. Artif. Organs 32, 910–917 (2008).

    Article  PubMed  Google Scholar 

  105. Atan, R. et al. High cut-off hemofiltration versus standard hemofiltration: effect on plasma cytokines. Int. J. Artif. Organs 39, 479–486 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Chelazzi, C. et al. Hemodialysis with high cut-off hemodialyzers in patients with multi-drug resistant gram-negative sepsis and acute kidney injury: a retrospective, case-control study. Blood Purif. 42, 186–193 (2016).

    Article  PubMed  Google Scholar 

  107. Villa, G. et al. Organ dysfunction during continuous veno-venous high cut-off hemodialysis in patients with septic acute kidney injury: a prospective observational study. PLoS ONE 12, e0172039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Boschetti-de-Fierro, A., Voigt, M., Storr, M. & Krause, B. MCO membranes: enhanced selectivity in high-flux class. Sci. Rep. 5, 18448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Streicher, E. & Schneider, H. The development of a polysulfone membrane. A new perspective in dialysis? Contrib. Nephrol. 46, 1–13 (1985).

    Article  CAS  PubMed  Google Scholar 

  110. Schneider, H. & Streicher, E. Clinical observations of the polyamide hollow-fiber hemofilter in hemofiltration systems. J. Dial. 1, 737–744 (1977).

    Article  CAS  PubMed  Google Scholar 

  111. Ota, K. et al. Short-time hemodiafiltration using polymethylmethacrylate hemodiafilter. Trans. Am. Soc. Artif. Intern. Organs 24, 454–457 (1978).

    CAS  PubMed  Google Scholar 

  112. Kaiser, J., Hagemann, J., Von Herrath, D. & Schaefer, K. Different handling of beta2-microglobulin during hemodialysis and hemofiltration. Nephron 48, 132–135 (1988).

    Article  CAS  PubMed  Google Scholar 

  113. Jorstad, S., Smeby, L., Balstad, T. & Wideroe, T. E. Removal, generation, and adsorption of beta-2-microglobulin during hemofiltration with five different membranes. Blood Purif. 6, 96–105 (1988).

    Article  CAS  PubMed  Google Scholar 

  114. Jindal, K. K., McDougall, J., Woods, B., Nowakowski, L. & Goldstein, M. B. A study of the basic principles determining the performance of several high-flux dialyzers. Am. J. Kidney Dis. 14, 507–511 (1989).

    Article  CAS  PubMed  Google Scholar 

  115. Zingraff, J. et al. Influence of haemodialysis membranes on beta2-microglobulin kinetics: in vivo and in vitro studies. Nephrol. Dial. Transplant. 3, 284–290 (1988).

    CAS  PubMed  Google Scholar 

  116. Klinke, B., Rockel, A., Abdelhamid, S., Fiegel, P. & Walb, D. Transmembrane transport and adsorption of beta2-microglobulin during hemodialysis using polysulfone, polyacrylonitrile, polymethylmethacrylate, and cuprammonium rayon membranes. Int. J. Artif. Organs 12, 697–702 (1989).

    Article  CAS  PubMed  Google Scholar 

  117. Floege, J. et al. High flux synthetic versus cellulosic membranes for beta2-microglobulin removal during hemodialysis, hemodiafiltration, and hemofiltration. Nephrol. Dial. Transplant. 4, 653–657 (1989).

    CAS  PubMed  Google Scholar 

  118. Naitoh, A., Tatsuguchi, T., Okada, M., Ohmura, T. & Sakai, K. Removal of beta2-microglobulin by diffusion is feasible using highly permeable dialysis membranes. Trans. Am. Soc. Artif. Intern. Organs 34, 630–634 (1988).

    CAS  Google Scholar 

  119. Mineshima, M. et al. Difference in beta2-microglobulin removal between cellulosic and synthetic polymer membrane dialylzers. Trans. Am. Soc. Artif. Intern. Organs 36, M643–M646 (1990).

    CAS  Google Scholar 

  120. Ronco, C. et al. Beta2-microglobulin removal by synthetic dialysis membranes: mechanisms and kinetics of the molecule. Int. J. Artif. Organs 20, 136–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Floege, J. et al. Beta2-microglobulin kinetics during hemodialysis and hemofiltration. Nephrol. Dial. Transplant. 1, 223–228 (1987).

    Google Scholar 

  122. Maeda, N. et al. Performance and mechanism of beta-2-microglobulin elimination with a new PAN hollow fiber membrane. Jap. J. Artif. Organs 17, 3–9 (1988).

    CAS  Google Scholar 

  123. Kachel, H., Altmeyer, P., Baldamus, C. & Koch, K. Deposition of an amyloid-like substance as a possible complication of regular dialysis treatment. Contrib. Nephrol. 36, 127–132 (1983).

    Article  CAS  PubMed  Google Scholar 

  124. Gejyo, F. et al. A new form of amyloid protein associated with chronic hemodialysis was identified as β2-microglobulin. Biochem. Biophys. Res. Commun. 129, 701–706 (1985).

    Article  CAS  PubMed  Google Scholar 

  125. Ahrenholz, P., Winkler, R. E., Ramlow, W., Tiess, M. & Muller, W. On-line hemodiafiltration with pre- and post-dilution: a comparison of efficacy. Int. J. Artif. Organs 20, 81–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Ono, M., Taoka, M., Takagi, T., Ogawa, H. & Saito, A. Comparison of type of on-line hemodiafiltration from the standpoint of low-molecular weight protein removal. Contrib. Nephrol. 108, 38–45 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. Colton, C. K. Analysis of membrane processes for blood purification. Blood Purif. 5, 202–251 (1987).

    Article  CAS  PubMed  Google Scholar 

  128. Ward, R. A., Schmidt, B., Hullin, J., Hillebrand, G. F. & Samtleben, W. A comparison of on-line hemodiafiltration and high-flux hemodialylsis: a prospective clinical study. J. Am. Soc. Nephrol. 11, 2344–2350 (2000).

    CAS  PubMed  Google Scholar 

  129. Ahrenholz, P. G., Winkler, R. E., Michelsen, A., Lang, D. A. & Bowry, S. K. Dialysis membrane-dependent removal of middle molecules during hemodiafiltration: the beta2-microglobulin/albumin relationship. Clin. Nephrol. 62, 21–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Maduell, F. et al. Elimination of large uremic toxins by a dialyzer specifically designed for high-volume convective therapies. Blood Purif. 37, 125–130 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Maduell, F. et al. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J. Am. Soc. Nephrol. 24, 487–497 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Canaud, B. & Bowry, S. K. Emerging clinical evidence on online hemodialfiltration: does volume of ultrafiltration matter? Blood Purif. 35, 55–62 (2013).

    Article  PubMed  Google Scholar 

  133. Ok, E. et al. Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-flux dialysis: results from the Turkish OL-HDF Study. Nephrol. Dial. Transplant. 28, 192–202 (2013).

    Article  PubMed  Google Scholar 

  134. Grooteman, M. P. et al. Effect of online hemodiafiltration on all-cause mortality and cardiovascular outcomes. J. Am. Soc. Nephrol. 23, 1087–1096 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fournier, A., Birmele, B., Francois, M., Prat, L. & Halimi, J. M. Factors associated with albumin loss in post-dilution hemodiafiltration. Int. J. Artif. Organs 38, 76–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Ronco, C. Hemodiafiltration: technical and clinical issues. Blood Purif. 40 (Suppl. 1), 2–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Panichi, V. et al. Divert to ULTRA: differences in infused volumes and clearance in two on-line hemodiafiltration treatments. Int. J. Artif. Organs 35, 435–443 (2012).

    Article  PubMed  Google Scholar 

  138. Pedrini, L. A. et al. Transmembrane pressure modulation in high-volume mixed hemodiafiltration to optimize efficiency and minimize protein loss. Kidney Int. 69, 573–579 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Gayrard, N. et al. Consequences of increasing convection onto patient care and protein removal in hemodialysis. PLoS ONE 12, e0171179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ficheux, A., Ronco, C., Brunet, P. & Argiles, A. The ultrafiltration coefficient: this old ‘grand inconnu’ in dialyisis. Nephrol. Dial. Transplant. 30, 204–208 (2015).

    Article  PubMed  Google Scholar 

  141. Maduell, F. et al. Mid-dilution hemodiafiltration: a comparison with pre- and postdilution modes using the same polyphenylene membrane. Blood Purif. 28, 268–274 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Krieter, D. H. et al. Clinical cross-over comparison of mid-dilution hemodiafiltration using a novel dialyzer concept and post-dilution hemodiafiltration. Kidney Int. 67, 349–356 (2005).

    Article  PubMed  Google Scholar 

  143. Shinzato, T. & Maeda, K. Push/pull hemodiafiltration. Contrib. Nephrol. 158, 169–176 (2007).

    Article  PubMed  Google Scholar 

  144. Kirsch, A. H. et al. Performance of hemodialysis with novel medium cut-off dialyzers. Nephrol. Dial. Transplant. 32, 165–172 (2017).

    PubMed  Google Scholar 

  145. Kirsch, A. H., Rosenkranz, A. R., Lyko, R. & Krieter, D. H. Effects of hemodialysis therapy using medium cut-off membranes on middle molecules. Contrib. Nephrol. 191, 158–167 (2017).

    Article  PubMed  Google Scholar 

  146. Heyne, N. Expanded hemodialysis therapy: prescription and delivery. Contrib. Nephrol. 191, 153–157 (2017).

    Article  PubMed  Google Scholar 

  147. Florens, N. & Julliard, L. Large middle molecular and albumin removal: why should we not rest on our laurels? Contrib. Nephrol. 191, 178–187 (2017).

    Article  PubMed  Google Scholar 

  148. Nagai, K. et al. Implications of albumin leakage for survival in maintenance hemodialysis patients: a 7-year observational study. Ther. Apher. Dial. 21, 378–386 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Balafa, O., Halbesma, N., Struijk, D. G., Dekker, F. W. & Krediet, R. T. Peritoneal albumin and protein losses do not predict outcome in peritoneal dialysis patients. Clin. J. Am. Soc. Nephrol. 6, 561–566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lavaud, S. et al. Optimal anticoagulation strategy in haemodialysis with heparin-coated polyacrylonitrile membrane. Nephrol. Dial. Transplant. 18, 2097–2104 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Thomas, M., Valette, P., Mausset, A. L. & Déjardin, P. High molecular weight kininogen adsorption on hemodialysis membranes: influence of pH and relationship with contact phase activation of blood plasma. influence of pre-treatment with poly(ethyleneimine). Int. J. Artif. Organs 23, 20–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  152. Panagiotou, A. et al. Antioxidant dialytic approach with vitamin E-coated membranes. Contrib. Nephrol. 171, 101–106 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Cruz, D. N. et al. Effect of vitamin E-coated dialysis membranes on anemia in patients with chronic kidney disease: an Italian multicenter study. Int. J. Artif. Organs 31, 545–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Ghezzi, P. M. & Ronco, C. Excebrane: hemocompatibility studies by the intradialytic monitoring of oxygen saturation. Contrib. Nephrol. 127, 177–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Kim, S. et al. Diffusive silicon nanopore membranes for hemodialysis applications. PLoS ONE 11, e0159526 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Canaud, B., Bosc, J. Y., Leray, H. & Stec, F. Microbiological purity of dialysate for on-line substitution fluid preparation. Nephrol. Dial. Transplant. 15 (Suppl. 2), 21–30 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Storr (Baxter International), S. Bowry (Fresenius Medical Care), R. Baldini (B. Braun Medical), L. Fecondini (Medica), L. Frattini (Medtronic), W. Oshihara (Toray Medical), A. Simionato (Asahi Kasei Medical) and S. Takashi (Nipro Corporation) for their invaluable comments and the generous provision of membrane images. The authors recognize the seminal contributions to end-stage renal disease therapy made by L. Henderson, who passed away in 2017. He was a source of inspiration for many of us, and we owe him a debt of gratitude for his exemplary leadership in the field.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data for the article and writing, reviewing and editing the article before submission.

Corresponding author

Correspondence to William R. Clark.

Ethics declarations

Competing interests

C.R. has received consultant or honoraria fees from Astute Medical, Ortho Clinical Diagnostics, Baxter International, Asahi Kasei Medical, General Electric, Jafron Biomedical, Estor Medical and Toray Medical. W.R.C. was formerly employed by Baxter International, has received consulting fees from Baxter International and owns Baxter International stock; he is also a consultant with Medtronic, Nikkiso America and Astute Medical.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronco, C., Clark, W.R. Haemodialysis membranes. Nat Rev Nephrol 14, 394–410 (2018). https://doi.org/10.1038/s41581-018-0002-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-018-0002-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing