Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of mechanotransduction and physiological roles of PIEZO channels

Abstract

Mechanical force is an essential physical element that contributes to the formation and function of life. The discovery of the evolutionarily conserved PIEZO family, including PIEZO1 and PIEZO2 in mammals, as bona fide mechanically activated cation channels has transformed our understanding of how mechanical forces are sensed and transduced into biological activities. In this Review, I discuss recent structure–function studies that have illustrated how PIEZO1 and PIEZO2 adopt their unique structural design and curvature-based gating dynamics, enabling their function as dedicated mechanotransduction channels with high mechanosensitivity and selective cation conductivity. I also discuss our current understanding of the physiological and pathophysiological roles mediated by PIEZO channels, including PIEZO1-dependent regulation of development and functional homeostasis and PIEZO2-dominated mechanosensation of touch, tactile pain, proprioception and interoception of mechanical states of internal organs. Despite the remarkable progress in PIEZO research, this Review also highlights outstanding questions in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the structure–function relationship and physiological roles of mechanically activated PIEZO1 and PIEZO2 ion channels.
Fig. 2: Structural features of PIEZO1/2.
Fig. 3: Distinct structural and functional states and dynamic gating model of PIEZO1.
Fig. 4: Curvature-based gating model of PIEZO1/2.
Fig. 5: PIEZO1/2-mediated physiology and human genetic diseases.

Similar content being viewed by others

References

  1. Chalfie, M. Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10, 44–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Corey, D. P. & Hudspeth, A. J. Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281, 675–677 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Guharay, F. & Sachs, F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. 352, 685–701 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R. & Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368, 265–268 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Anishkin, A., Loukin, S. H., Teng, J. & Kung, C. Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc. Natl Acad. Sci. USA 111, 7898–7905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kung, C., Martinac, B. & Sukharev, S. Mechanosensitive channels in microbes. Annu. Rev. Microbiol. 64, 313–329 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Martinac, B., Adler, J. & Kung, C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348, 261–263 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Martinac, B. & Kung, C. The force-from-lipid principle and its origin, a ‘what is true for E. coli is true for the elephant’ refrain. J. Neurogenet. 36, 44–54 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, M. & Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367, 467–470 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honore, E. Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 274, 26691–26696 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Yan, Z. et al. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493, 221–225 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Brohawn, S. G., Su, Z. & MacKinnon, R. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc. Natl Acad. Sci. USA 111, 3614–3619 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, W. et al. Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 162, 1391–1403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Knoepp, F. et al. Shear force sensing of epithelial Na+ channel (ENaC) relies on N-glycosylated asparagines in the palm and knuckle domains of ɑENaC. Proc. Natl Acad. Sci. USA 117, 717–726 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Jin, P., Jan, L. Y. & Jan, Y. N. Mechanosensitive ion channels: structural features relevant to mechanotransduction mechanisms. Annu. Rev. Neurosci. 43, 207–229 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010). This work reports the original discovery of the mechanically activated Piezo1 and Piezo2 channels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coste, B. et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483, 176–181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ge, J. et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527, 64–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, Q. et al. Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. Neuron 89, 1248–1263 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Coste, B. et al. Piezo1 ion channel pore properties are dictated by C-terminal region. Nat. Commun. 6, 7223 (2015).

    Article  PubMed  Google Scholar 

  22. Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Douguet, D. & Honore, E. Mammalian mechanoelectrical transduction: structure and function of force-gated ion channels. Cell 179, 340–354 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Delmas, P., Parpaite, T. & Coste, B. PIEZO channels and newcomers in the mammalian mechanosensitive ion channel family. Neuron 110, 2713–2727 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Xiao, B. Levering mechanically activated piezo channels for potential pharmacological intervention. Annu. Rev. Pharmacol. Toxicol. 60, 195–218 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, Y., Yang, X., Jiang, J. & Xiao, B. Structural designs and mechanogating mechanisms of the mechanosensitive piezo channels. Trends Biochem. Sci. 46, 472–488 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Szczot, M., Nickolls, A. R., Lam, R. M. & Chesler, A. T. The form and function of PIEZO2. Annu. Rev. Biochem. 90, 507–534 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Syeda, R. Physiology and pathophysiology of mechanically activated PIEZO channels. Annu. Rev. Neurosci. 44, 383–402 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Murthy, S. E., Dubin, A. E. & Patapoutian, A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18, 771–783 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Young, M., Lewis, A. H. & Grandl, J. Physics of mechanotransduction by Piezo ion channels. J. Gen. Physiol. 154, https://doi.org/10.1085/jgp.202113044 (2022).

  32. Poole, K. The diverse physiological functions of mechanically activated ion channels in mammals. Annu. Rev. Physiol. 84, 307–329 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 573, 225–229 (2019). This article reports the first full 38-transmembrane topological structure of the touch receptor PIEZO2.

    Article  CAS  PubMed  Google Scholar 

  34. Li, J. et al. Piezo1 integration of vascular architecture with physiological force. Nature 515, 279–282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ellefsen, K. L. et al. Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca2+ flickers. Commun. Biol. 2, 298 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lewis, A. H. & Grandl, J. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. eLife 4, e12088 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cox, C. D. et al. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat. Commun. 7, 10366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Syeda, R. et al. Piezo1 channels are inherently mechanosensitive. Cell Rep. 17, 1739–1746 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taberner, F. J. et al. Structure-guided examination of the mechanogating mechanism of PIEZO2. Proc. Natl Acad. Sci. USA 116, e1905985116 (2019).

    Article  Google Scholar 

  40. Murthy, S. E. Deciphering mechanically activated ion channels at the single-channel level in dorsal root ganglion neurons. J. Gen. Physiol. 155, e202213099 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Woo, S. H. et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature 509, 622–626 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Szczot, M. et al. Cell-type-specific splicing of Piezo2 regulates mechanotransduction. Cell Rep. 21, 2760–2771 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Geng, J. et al. A plug-and-latch mechanism for gating the mechanosensitive Piezo channel. Neuron 106, 438–451.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Schneider, E. R. et al. Molecular basis of tactile specialization in the duck bill. Proc. Natl Acad. Sci. USA 114, 13036–13041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schneider, E. R. et al. Neuronal mechanism for acute mechanosensitivity in tactile-foraging waterfowl. Proc. Natl Acad. Sci. USA 111, 14941–14946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Faucherre, A., Nargeot, J., Mangoni, M. E. & Jopling, C. Piezo2b regulates vertebrate light touch response. J. Neurosci. 33, 17089–17094 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mousavi, S. A. R. et al. PIEZO ion channel is required for root mechanotransduction in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 118, e2102188118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Radin, I. et al. Plant PIEZO homologs modulate vacuole morphology during tip growth. Science 373, 586–590 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, S. E., Coste, B., Chadha, A., Cook, B. & Patapoutian, A. The role of Drosophila Piezo in mechanical nociception. Nature 483, 209–212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bai, X. et al. Caenorhabditis elegans PIEZO channel coordinates multiple reproductive tissues to govern ovulation. eLife 9, e53603 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Millet, J. R. M., Romero, L. O., Lee, J., Bell, B. & Vasquez, V. C. elegans PEZO-1 is a mechanosensitive ion channel involved in food sensation. J. Gen. Physiol. 154, e202112960 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, P., Jia, Y., Liu, T., Jan, Y. N. & Zhang, W. Visceral mechano-sensing neurons control Drosophila feeding by using Piezo as a sensor. Neuron 108, 640–650.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Syeda, R. et al. Chemical activation of the mechanotransduction channel Piezo1. eLife 4, e07369 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang, Y. et al. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel. Nat. Commun. 9, 1300 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Parsonage, G. et al. Improved PIEZO1 agonism through 4-benzoic acid modification of Yoda1. Br. J. Pharmacol. 180, 2039–2063 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Lacroix, J. J., Botello-Smith, W. M. & Luo, Y. Probing the gating mechanism of the mechanosensitive channel Piezo1 with the small molecule Yoda1. Nat. Commun. 9, 2029 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Botello-Smith, W. M. et al. A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nat. Commun. 10, 4503 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jiang, W. et al. Structural and thermodynamic framework for PIEZO1 modulation by small molecules. Proc. Natl Acad. Sci. USA 120, e2310933120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Villarino, N. W. et al. Labeling PIEZO2 activity in the peripheral nervous system. Neuron 111, 2488–2501 e2488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bae, C., Sachs, F. & Gottlieb, P. A. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry 50, 6295–6300 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Evans, E. L. et al. Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked activation of Piezo1 and aortic relaxation. Br. J. Pharmacol. 175, 1744–1759 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liang, P. et al. Deciphering and disrupting PIEZO1–TMEM16F interplay in hereditary xerocytosis. Blood 143, 357–369 (2024).

    Article  CAS  PubMed  Google Scholar 

  63. Lewis, A. H. & Grandl, J. Inactivation kinetics and mechanical gating of Piezo1 ion channels depend on subdomains within the cap. Cell Rep. 30, 870–880.e2 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, J. et al. Inactivation of mechanically activated Piezo1 ion channels is determined by the C-terminal extracellular domain and the inner pore helix. Cell Rep. 21, 2357–2366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moroni, M., Servin-Vences, M. R., Fleischer, R., Sanchez-Carranza, O. & Lewin, G. R. Voltage gating of mechanosensitive PIEZO channels. Nat. Commun. 9, 1096 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zheng, W., Gracheva, E. O. & Bagriantsev, S. N. A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels. eLife 8, e44003 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Peyronnet, R. et al. Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep. 14, 1143–1148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Del Marmol, J. I., Touhara, K. K., Croft, G. & MacKinnon, R. Piezo1 forms a slowly-inactivating mechanosensory channel in mouse embryonic stem cells. eLife 7, e33149 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sun, W. et al. The mechanosensitive Piezo1 channel is required for bone formation. eLife 8, e47454 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chi, S. et al. Astrocytic Piezo1-mediated mechanotransduction determines adult neurogenesis and cognitive functions. Neuron 110, 2984–2999.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Shi, J. et al. Sphingomyelinase disables inactivation in endogenous PIEZO1 channels. Cell Rep. 33, 108225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dubin, A. E. et al. Inflammatory signals enhance Piezo2-mediated mechanosensitive currents. Cell Rep. 2, 511–517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, J. et al. Tethering Piezo channels to the actin cytoskeleton for mechanogating via the cadherin–β-catenin mechanotransduction complex. Cell Rep. 38, 110342 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Zhou, Z. et al. MyoD-family inhibitor proteins act as auxiliary subunits of Piezo channels. Science 381, 799–804 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Coste, B. et al. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of distal arthrogryposis. Proc. Natl Acad. Sci. USA 110, 4667–4672 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Albuisson, J. et al. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat. Commun. 4, 1884 (2013).

    Article  PubMed  Google Scholar 

  77. Zhao, Q. et al. Structure and mechanogating mechanism of the Piezo1 channel. Nature 554, 487–492 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Saotome, K. et al. Structure of the mechanically activated ion channel Piezo1. Nature 554, 481–486 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Guo, Y. R. & MacKinnon, R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. eLife 6, e33660 (2017). This article originally proposes the dome model to explain the mechanosensing mechanism of PIEZO channels.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yang, X. et al. Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature 604, 377–383 (2022). This work reports the curved and flattened structures of PIEZO1 in lipid membranes, revealing conformational changes and demonstrating the curvature-based mechanosensing mechanism.

    Article  CAS  PubMed  Google Scholar 

  81. Sijia Liu, X. Y. et al. Central pore-opening structure and gating of the mechanosensitive PIEZO1 channel. Preprint at bioRxiv https://doi.org/10.1101/2023.09.28.559900 (2023).

  82. Lin, Y. C. et al. Force-induced conformational changes in PIEZO1. Nature 573, 230–234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mulhall, E. M. et al. Direct observation of the conformational states of PIEZO1. Nature 620, 1117–1125 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Haselwandter, C. A., Guo, Y. R., Fu, Z. & MacKinnon, R. Elastic properties and shape of the Piezo dome underlying its mechanosensory function. Proc. Natl Acad. Sci. USA 119, e2208034119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Haselwandter, C. A., Guo, Y. R., Fu, Z. & MacKinnon, R. Quantitative prediction and measurement of Piezo’s membrane footprint. Proc. Natl Acad. Sci. USA 119, e2208027119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Haselwandter, C. A. & MacKinnon, R. Piezo’s membrane footprint and its contribution to mechanosensitivity. eLife 7, e41968 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Borbiro, I., Badheka, D. & Rohacs, T. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides. Sci. Signal. 8, ra15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Narayanan, P. et al. Myotubularin related protein-2 and its phospholipid substrate PIP2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons. eLife 7, e32346 (2018).

  90. Ridone, P. et al. Disruption of membrane cholesterol organization impairs the activity of PIEZO1 channel clusters. J. Gen. Physiol. 152, e201912515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chong, J. et al. Modeling of full-length Piezo1 suggests importance of the proximal N-terminus for dome structure. Biophys. J. 120, 1343–1356 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tsuchiya, M. et al. Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nat. Commun. 9, 2049 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Romero, L. O. et al. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat. Commun. 10, 1200 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mylvaganam, S. et al. The spectrin cytoskeleton integrates endothelial mechanoresponses. Nat. Cell Biol. 24, 1226–1238 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Vaisey, G., Banerjee, P., North, A. J., Haselwandter, C. A. & MacKinnon, R. Piezo1 as a force-through-membrane sensor in red blood cells. eLife 11, e82621 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang, S. et al. Membrane curvature governs the distribution of Piezo1 in live cells. Nat. Commun. 13, 7467 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pathak, M. M. et al. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc. Natl Acad. Sci. USA 111, 16148–16153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shi, Z., Graber, Z. T., Baumgart, T., Stone, H. A. & Cohen, A. E. Cell membranes resist flow. Cell 175, 1769–1779.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee, W. et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc. Natl Acad. Sci. USA 111, E5114–E5122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Retailleau, K. et al. Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep. 13, 1161–1171 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Chang, W. & Gu, J. G. Role of microtubules in Piezo2 mechanotransduction of mouse Merkel cells. J. Neurophysiol. 124, 1824–1831 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, T., Chi, S., Jiang, F., Zhao, Q. & Xiao, B. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels. Nat. Commun. 8, 1797 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bavi, N., Richardson, J., Heu, C., Martinac, B. & Poole, K. PIEZO1-mediated currents are modulated by substrate mechanics. ACS Nano 13, 13545–13559 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Verkest, C. et al. Intrinsically disordered intracellular domains control key features of the mechanically-gated ion channel PIEZO2. Nat. Commun. 13, 1365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ranade, S. S. et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc. Natl Acad. Sci. USA 111, 10347–10352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gudipaty, S. A. et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543, 118–121 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Eisenhoffer, G. T. et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546–549 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jiang, F. et al. The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction. Nat. Commun. 12, 869 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hirata, Y. et al. A Piezo1/KLF15/IL-6 axis mediates immobilization-induced muscle atrophy. J. Clin. Invest. 132, 1–13 (2022).

    Article  PubMed  Google Scholar 

  110. Ma, N. et al. Piezo1 regulates the regenerative capacity of skeletal muscles via orchestration of stem cell morphological states. Sci. Adv. 8, eabn0485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lewis, A. H. & Grandl, J. Piezo1 ion channels inherently function as independent mechanotransducers. eLife 10, e70988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Faucherre, A., Kissa, K., Nargeot, J., Mangoni, M. E. & Jopling, C. Piezo1 plays a role in erythrocyte volume homeostasis. Haematologica 99, 70–75 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cahalan, S. M. et al. Piezo1 links mechanical forces to red blood cell volume. eLife 4, e07370 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Li, Y. et al. Dynamics of endothelial cell generation and turnover in arteries during homeostasis and diseases. Circulation 149, 135–154 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. David, L. et al. Piezo mechanosensory channels regulate centrosome integrity and mitotic entry. Proc. Natl Acad. Sci. USA 120, e2213846120 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Zi, H. et al. Piezo1-dependent regulation of pericyte proliferation by blood flow during brain vascular development. Cell Rep. 43, 113652 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Wan, Y. et al. Mechanosensitive channel Piezo1 is an essential regulator in cell cycle progression of optic nerve head astrocytes. Glia 71, 1233–1246 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Chen, J. et al. Mechanosensitive channel Piezo1 is required for pulmonary artery smooth muscle cell proliferation. Am. J. Physiol. Lung Cell Mol. Physiol. 322, L737–L760 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Carrillo-Garcia, J. et al. The mechanosensitive Piezo1 channel controls endosome trafficking for an efficient cytokinetic abscission. Sci. Adv. 7, eabi7785 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nourse, J. L. et al. Piezo1 regulates cholesterol biosynthesis to influence neural stem cell fate during brain development. J. Gen. Physiol. 154, e202213084 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. McHugh, B. J., Murdoch, A., Haslett, C. & Sethi, T. Loss of the integrin-activating transmembrane protein Fam38A (Piezo1) promotes a switch to a reduced integrin-dependent mode of cell migration. PLoS ONE 7, e40346 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Holt, J. R. et al. Spatiotemporal dynamics of PIEZO1 localization controls keratinocyte migration during wound healing. eLife 10, e65415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yao, M. et al. Force- and cell state-dependent recruitment of Piezo1 drives focal adhesion dynamics and calcium entry. Sci. Adv. 8, eabo1461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cinar, E. et al. Piezo1 regulates mechanotransductive release of ATP from human RBCs. Proc. Natl Acad. Sci. USA 112, 11783–11788 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ma, S. et al. A role of PIEZO1 in iron metabolism in mice and humans. Cell 184, 969–982.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xie, Y. et al. Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1–calcium–TNF-ɑ axis. Cell Stem Cell 29, 70–85.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Tijore, A. et al. Selective killing of transformed cells by mechanical stretch. Biomaterials 275, 120866 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Koser, D. E. et al. Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 19, 1592–1598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Song, Y. et al. The mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron 102, 373–389.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen, X. et al. A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression. Neuron 100, 799–815.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Li, J. V. et al. Modified N-linked glycosylation status predicts trafficking defective human Piezo1 channel mutations. Commun. Biol. 4, 1038 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jiang, W. et al. Crowding-induced opening of the mechanosensitive Piezo1 channel in silico. Commun. Biol. 4, 84 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Glogowska, E. et al. Piezo1 and Piezo2 foster mechanical gating of K2P channels. Cell Rep. 37, 110070 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Geng, J. et al. TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection. Nat. Commun. 12, 3519 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, S. et al. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J. Clin. Invest. 126, 4527–4536 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang, Y. et al. Dendritic cell Piezo1 directs the differentiation of TH1 and Treg cells in cancer. eLife 11, e79957 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhou, T. et al. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT–YAP1–β-catenin. eLife 9, e52779 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Swain, S. M. & Liddle, R. A. Piezo1 acts upstream of TRPV4 to induce pathological changes in endothelial cells due to shear stress. J. Biol. Chem. 296, 100171 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Guo, Y. et al. Functional coupling between Piezo1 and TRPM4 influences the electrical activity of HL-1 atrial myocytes. J. Physiol. https://doi.org/10.1113/JP284474 (2023).

  140. Albarran-Juarez, J. et al. Piezo1 and Gq/G11 promote endothelial inflammation depending on flow pattern and integrin activation. J. Exp. Med. 215, 2655–2672 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, T. T. et al. Piezo1-mediated Ca2+ activities regulate brain vascular pathfinding during development. Neuron 108, 180–192.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Zarychanski, R. et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120, 1908–1915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Andolfo, I. et al. Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood 121, 3925–3935, S1–S12 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Ilkan, Z. et al. Evidence for shear-mediated Ca2+ entry through mechanosensitive cation channels in human platelets and a megakaryocytic cell line. J. Biol. Chem. 292, 9204–9217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang, S. et al. Mechanosensation by endothelial PIEZO1 is required for leukocyte diapedesis. Blood 140, 171–183 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lukacs, V. et al. Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat. Commun. 6, 8329 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Fotiou, E. et al. Novel mutations in PIEZO1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis. Nat. Commun. 6, 8085 (2015).

    Article  PubMed  Google Scholar 

  148. Nonomura, K. et al. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation. Proc. Natl Acad. Sci. USA 115, 12817–12822 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Choi, D. et al. Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance. JCI insight 4, e125068 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Aykut, B. et al. Targeting Piezo1 unleashes innate immunity against cancer and infectious disease. Sci. Immunol. 5, eaab5168 (2020).

    Article  Google Scholar 

  151. Solis, A. G. et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69–74 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu, C. S. C. et al. Cutting edge: Piezo1 mechanosensors optimize human T cell activation. J. Immunol. 200, 1255–1260 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Mukhopadhyay, A. et al. trans-Endothelial neutrophil migration activates bactericidal function via Piezo1 mechanosensing. Immunity 57, 52–67.e10 (2024).

    Article  CAS  PubMed  Google Scholar 

  154. Wang, L. et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast–osteoclast crosstalk. Nat. Commun. 11, 282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Passini, F. S. et al. Shear-stress sensing by PIEZO1 regulates tendon stiffness in rodents and influences jumping performance in humans. Nat. Biomed. Eng. 5, 1457–1471 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nakamichi, R. et al. The mechanosensitive ion channel PIEZO1 is expressed in tendons and regulates physical performance. Sci. Transl. Med. 14, eabj5557 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Dalghi, M. G. et al. Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception. JCI insight 6, e152984 (2021).

  158. Miyamoto, T. et al. Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures. J. Biol. Chem. 289, 16565–16575 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Martins, J. R. et al. Piezo1-dependent regulation of urinary osmolarity. Pflug. Arch. 468, 1197–1206 (2016).

    Article  CAS  Google Scholar 

  160. Sugisawa, E. et al. RNA sensing by gut Piezo1 is essential for systemic serotonin synthesis. Cell 182, 609–624.e21 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Wang, S. et al. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat. Commun. 11, 2303 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Harraz, O. F., Klug, N. R., Senatore, A. J., Hill-Eubanks, D. C. & Nelson, M. T. Piezo1 is a mechanosensor channel in central nervous system capillaries. Circ. Res. 130, 1531–1546 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hu, J. et al. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer’s disease. Neuron 111, 15–29.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Jantti, H. et al. Microglial amyloid β clearance is driven by PIEZO1 channels. J. Neuroinflamm. 19, 147 (2022).

    Article  CAS  Google Scholar 

  165. Zhu, T. et al. The mechanosensitive ion channel Piezo1 modulates the migration and immune response of microglia. iScience 26, 105993 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Malko, P., Jia, X., Wood, I. & Jiang, L. H. Piezo1 channel-mediated Ca2+ signaling inhibits lipopolysaccharide-induced activation of the NF-κB inflammatory signaling pathway and generation of TNF-ɑ and IL-6 in microglial cells. Glia 71, 848–865 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. Segel, M. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573, 130–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Amado, N. G. et al. PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder prune belly syndrome. Nat. Commun. 15, 339 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bae, C., Gnanasambandam, R., Nicolai, C., Sachs, F. & Gottlieb, P. A. Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1. Proc. Natl Acad. Sci. USA 110, E1162–E1168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Alper, S. L. Genetic diseases of PIEZO1 and PIEZO2 dysfunction. Curr. Top. Membr. 79, 97–134 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Ma, S. et al. Common PIEZO1 allele in African populations causes RBC dehydration and attenuates plasmodium infection. Cell 173, 443–455.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Atcha, H. et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat. Commun. 12, 3256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. He, Y. et al. Myeloid Piezo1 deletion protects renal fibrosis by restraining macrophage infiltration and activation. Hypertension 79, 918–931 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Luo, S. et al. Piezo1 specific deletion in macrophage protects the progression of liver fibrosis in mice. Theranostics 13, 5418–5434 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rode, B. et al. Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nat. Commun. 8, 350 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Bartoli, F. et al. Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity. J. Clin. Invest. 132, e141775 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Beech, D. J. Endothelial Piezo1 channels as sensors of exercise. J. Physiol. 596, 979–984 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ranade, S. S. et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516, 121–125 (2014). This work reports genetic evidence showing that PIEZO2 functions as a touch receptor in mammals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Woo, S.-H. et al. Piezo2 is the principal mechanotransduction channel for proprioception. Nat. Neurosci. 18, 1756–1762 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhang, M., Wang, Y., Geng, J., Zhou, S. & Xiao, B. Mechanically activated Piezo channels mediate touch and suppress acute mechanical pain response in mice. Cell Rep. 26, 1419–1431.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Maksimovic, S. et al. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509, 617–621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ikeda, R. et al. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 157, 664–675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Marshall, K. L. et al. PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature 588, 290–295 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang, F. et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J. Physiol. 595, 79–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Alcaino, C. et al. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc. Natl Acad. Sci. USA 115, E7632–E7641 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Handler, A. et al. Three-dimensional reconstructions of mechanosensory end organs suggest a unifying mechanism underlying dynamic, light touch. Neuron 111, 3211–3229.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Chesler, A. T. et al. The role of PIEZO2 in human mechanosensation. N. Engl. J. Med. 375, 1355–1364 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lam, R. M. et al. PIEZO2 and perineal mechanosensation are essential for sexual function. Science 381, 906–910 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Szczot, M. et al. PIEZO2 mediates injury-induced tactile pain in mice and humans. Sci. Transl. Med. 10, eaat9892 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Servin-Vences, M. R. et al. PIEZO2 in somatosensory neurons controls gastrointestinal transit. Cell 186, 3386–3399.e15 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Nonomura, K. et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 541, 176–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Wolfson, R. L. et al. DRG afferents that mediate physiologic and pathologic mechanosensation from the distal colon. Cell 186, 3368–3385.e18 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zeng, W. Z. et al. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362, 464–467 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Eijkelkamp, N. et al. A role for Piezo2 in EPAC1-dependent mechanical allodynia. Nat. Commun. 4, 1682 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Singhmar, P. et al. Critical role for Epac1 in inflammatory pain controlled by GRK2-mediated phosphorylation of Epac1. Proc. Natl Acad. Sci. USA 113, 3036–3041 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Murthy, S. E. et al. The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice. Sci. Transl. Med. 10, eaat9897 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Obeidat, A. M. et al. Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis. Nat. Commun. 14, 2479 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Xie, Z. et al. Piezo2 channels expressed by colon-innervating TRPV1-lineage neurons mediate visceral mechanical hypersensitivity. Neuron 111, 526–538.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  199. McMillin, M. J. et al. Mutations in PIEZO2 cause gordon syndrome, Marden–Walker syndrome, and distal arthrogryposis type 5. Am. J. Hum. Genet. 94, 734–744 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ma, S. et al. Excessive mechanotransduction in sensory neurons causes joint contractures. Science 379, 201–206 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Assaraf, E. et al. Piezo2 expressed in proprioceptive neurons is essential for skeletal integrity. Nat. Commun. 11, 3168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Case, L. K. et al. Innocuous pressure sensation requires A-type afferents but not functional PIEZO2 channels in humans. Nat. Commun. 12, 657 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hill, R. Z., Loud, M. C., Dubin, A. E., Peet, B. & Patapoutian, A. PIEZO1 transduces mechanical itch in mice. Nature 607, 104–110 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lu, P. et al. MrgprA3-expressing pruriceptors drive pruritogen-induced alloknesis through mechanosensitive Piezo2 channel. Cell Rep. 42, 112283 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Feng, J. et al. Piezo2 channel–Merkel cell signaling modulates the conversion of touch to itch. Science 360, 530–533 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wu, Z. et al. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. Nat. Neurosci. 20, 24–33 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Li, J. et al. PIEZO2 mediates ultrasonic hearing via cochlear outer hair cells in mice. Proc. Natl Acad. Sci. USA 118, e2101207118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lee, J. H. et al. The Piezo channel is a mechano-sensitive complex component in the mammalian inner ear hair cell. Nat. Commun. 15, 526 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Murthy, S. E. et al. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. eLife 7, e41844 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Zhang, M. et al. Structure of the mechanosensitive OSCA channels. Nat. Struct. Mol. Biol. 25, 850–858 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Zheng, W. et al. TMEM63 proteins function as monomeric high-threshold mechanosensitive ion channels. Neuron 111, 3195–3210.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  212. Corey, D. P., Akyuz, N. & Holt, J. R. Function and dysfunction of TMC channels in inner ear hair cells. Cold Spring Harb. Perspect. Med. 9, a033506 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Li, K. et al. Drosophila TMEM63 and mouse TMEM63A are lysosomal mechanosensory ion channels. Nat. Cell Biol. 26, 393–403 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Li, S., Li, B., Gao, L., Wang, J. & Yan, Z. Humidity response in Drosophila olfactory sensory neurons requires the mechanosensitive channel TMEM63. Nat. Commun. 13, 3814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chen, G. L. et al. Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. J. Clin. Invest. 134, e174508 (2023).

    Article  PubMed Central  Google Scholar 

  216. Han, Y. et al. Mechanical activation opens a lipid-lined pore in OSCA ion channels. Nature 628, 910–918 (2024).

    Article  CAS  PubMed  Google Scholar 

  217. Chakrabarti, S. et al. Touch sensation requires the mechanically gated ion channel ELKIN1. Science 383, 992–998 (2024).

    Article  CAS  PubMed  Google Scholar 

  218. Patkunarajah, A. et al. TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration. eLife 9, e53308 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Hoel, C. M., Zhang, L. & Brohawn, S. G. Structure of the GOLD-domain seven-transmembrane helix protein family member TMEM87A. eLife 11, e81704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Owing to finding more than 1,000 papers from the PubMed search for PIEZO channels and the space limitation of this article, the author apologizes for not being able to include all of the reported literature. The author thanks W. Liu and T. Ye for help with figure preparation. This work was supported by grant numbers 2021ZD0203301, 32425003, 32130049, 32021002 and 31825014 to B.X. from the National Natural Science Foundation of China or the National Key R&D Program of China, the New Cornerstone Investigator Program, the Research Fund of Vanke School of Public Health and the Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bailong Xiao.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Eric Honoré and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Baroreceptor neurons

A specialized type of mechanoreceptor cells that detect changes in blood pressure.

Force-from-filament (FFF) model

(Also known as the tether model). A model proposing that an ion channel is physically tethered to the extracellular matrix or intracellular accessory structures such as the cytoskeleton, affecting its mechanogating properties.

Force-from-lipids (FFL) model

A model proposing that mechanical stimuli can be transmitted directly to the channel via lipid bilayer deformation — in other words, the channel directly responds to changes in membrane tension.

Golgi tendon organs

Sensory receptors located at the junction of muscles and tendons that detect muscle tension to generate the sense of proprioception.

High-speed atomic force microscopy

An advanced type of atomic force microscopy that is utilized to probe biological molecules and dynamic processes at high temporal resolution.

Mechanical allodynia

A condition where non-painful stimuli, such as light touch or gentle pressure, cause pain.

Merkel cells

A specialized type of mechanoreceptor cells in the skin that are involved in touch detection.

Molecular dynamics simulations

Computational techniques that allow the simulation of the interactions of atoms and molecules of a system over a specific period of time through solving classical equations of motion.

Muscle spindles

Sensory receptors within muscles that detect changes in muscle length and the rate of change in length to generate the sense of proprioception.

Tau value

For the inactivating current, the time it takes for the mechanically activated current to decay to about 63.2% of its peak.

Tenocyte

A specialized type of fibroblastic cell found within tendons that has a crucial role in maintaining the extracellular matrix of tendons.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, B. Mechanisms of mechanotransduction and physiological roles of PIEZO channels. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00773-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00773-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing