Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic gene regulation in plants and its potential applications in crop improvement

Abstract

DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR–dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of RNA-directed DNA methylation.
Fig. 2: Mechanism of active DNA demethylation.
Fig. 3: DNA methylation in transcription regulation.
Fig. 4: DNA methylation dynamics during plant reproduction.
Fig. 5: Spontaneous epimutations and epigenome editing tools.

Similar content being viewed by others

References

  1. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. Alleman, M. et al. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295–298 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. He, L. et al. DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nat. Commun. 13, 1335 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Schmitz, R. J., Lewis, Z. A. & Goll, M. G. DNA methylation: shared and divergent features across eukaryotes. Trends Genet. 35, 818–827 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wyatt, G. R. Occurrence of 5-methylcytosine in nucleic acids. Nature 166, 237–238 (1950).

    Article  PubMed  CAS  Google Scholar 

  7. Vidalis, A. et al. Methylome evolution in plants. Genome Biol. 17, 264 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Stroud, H., Greenberg, M. V., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64–72 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Matzke, M. A. & Mosher, R. A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15, 394–408 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, H., Gong, Z. & Zhu, J. K. Active DNA demethylation in plants: 20 years of discovery and beyond. J. Integr. Plant Biol. 64, 2217–2239 (2022).

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, H. et al. Sulfamethazine suppresses epigenetic silencing in Arabidopsis by impairing folate synthesis. Plant Cell 24, 1230–1241 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhou, H. R. et al. Folate polyglutamylation is involved in chromatin silencing by maintaining global DNA methylation and histone H3K9 dimethylation in Arabidopsis. Plant Cell 25, 2545–2559 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Groth, M. et al. MTHFD1 controls DNA methylation in i. Nat. Commun. 7, 11640 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gong, Z. et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111, 803–814 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. Hollwey, E., Briffa, A., Howard, M. & Zilberman, D. Concepts, mechanisms and implications of long-term epigenetic inheritance. Curr. Opin. Genet. Dev. 81, 102087 (2023).

    Article  PubMed  CAS  Google Scholar 

  18. Skvortsova, K., Iovino, N. & Bogdanovic, O. Functions and mechanisms of epigenetic inheritance in animals. Nat. Rev. Mol. Cell Biol. 19, 774–790 (2018).

    Article  PubMed  CAS  Google Scholar 

  19. Erdmann, R. M. & Picard, C. L. RNA-directed DNA methylation. PLoS Genet. 16, e1009034 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Matzke, M., Kanno, T., Daxinger, L., Huettel, B. & Matzke, A. J. RNA-mediated chromatin-based silencing in plants. Curr. Opin. Cell Biol. 21, 367–376 (2009).

    Article  PubMed  CAS  Google Scholar 

  21. Vaucheret, H. & Voinnet, O. The plant siRNA landscape. Plant Cell 36, 246–275 (2023).

    Article  PubMed Central  Google Scholar 

  22. Mari-Ordonez, A. et al. Reconstructing de novo silencing of an active plant retrotransposon. Nat. Genet. 45, 1029–1039 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Creasey, K. M. et al. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508, 411–415 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cuerda-Gil, D. & Slotkin, R. K. Non-canonical RNA-directed DNA methylation. Nat. Plants 2, 16163 (2016).

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, H. et al. DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV. Proc. Natl Acad. Sci. USA 110, 8290–8295 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Law, J. A. et al. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498, 385–389 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang, Y. et al. ZMP recruits and excludes Pol IV-mediated DNA methylation in a site-specific manner. Sci. Adv. 8, eadc9454 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhou, M., Palanca, A. M. S. & Law, J. A. Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family. Nat. Genet. 50, 865–873 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhou, M. et al. The CLASSY family controls tissue-specific DNA methylation patterns in Arabidopsis. Nat. Commun. 13, 244 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Huang, K. et al. Pol IV and RDR2: a two-RNA-polymerase machine that produces double-stranded RNA. Science 374, 1579–1586 (2021).

    Article  PubMed  CAS  Google Scholar 

  31. Mishra, V. et al. Assembly of a dsRNA synthesizing complex: RNA-DEPENDENT RNA POLYMERASE 2 contacts the largest subunit of NUCLEAR RNA POLYMERASE IV. Proc. Natl Acad. Sci. USA 118, e2019276118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Singh, J., Mishra, V., Wang, F., Huang, H. Y. & Pikaard, C. S. Reaction mechanisms of Pol IV, RDR2, and DCL3 Drive RNA channeling in the siRNA-directed DNA methylation pathway. Mol. Cell 75, 576–589 e575 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Fukudome, A. et al. Structure and RNA template requirements of Arabidopsis RNA-DEPENDENT RNA POLYMERASE 2. Proc. Natl Acad. Sci. USA 118, e2115899118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nudler, E. RNA polymerase backtracking in gene regulation and genome instability. Cell 149, 1438–1445 (2012).

    Article  PubMed  CAS  Google Scholar 

  35. Yang, D. L. et al. DNA-dependent RNA polymerases in plants. Plant Cell 35, 3641–3661 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li, S. et al. Detection of Pol IV/RDR2-dependent transcripts at the genomic scale in Arabidopsis reveals features and regulation of siRNA biogenesis. Genome Res. 25, 235–245 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Blevins, T. et al. Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. eLife 4, e09591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhai, J. et al. A one precursor one siRNA model for pol IV-dependent siRNA biogenesis. Cell 163, 445–455 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yang, D. L. et al. Dicer-independent RNA-directed DNA methylation in Arabidopsis. Cell Res. 26, 66–82 (2016).

    Article  PubMed  CAS  Google Scholar 

  40. Ye, R. et al. A dicer-independent route for biogenesis of siRNAs that direct DNA methylation in Arabidopsis. Mol. Cell 61, 222–235 (2016).

    Article  PubMed  CAS  Google Scholar 

  41. Haag, J. R. et al. In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol. Cell 48, 811–818 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Nagano, H., Fukudome, A., Hiraguri, A., Moriyama, H. & Fukuhara, T. Distinct substrate specificities of Arabidopsis DCL3 and DCL4. Nucleic Acids Res. 42, 1845–1856 (2014).

    Article  PubMed  CAS  Google Scholar 

  43. Loffer, A. et al. A DCL3 dicing code within Pol IV-RDR2 transcripts diversifies the siRNA pool guiding RNA-directed DNA methylation. eLife 11, e73260 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang, Q. et al. Mechanism of siRNA production by a plant Dicer-RNA complex in dicing-competent conformation. Science 374, 1152–1157 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wierzbicki, A. T., Haag, J. R. & Pikaard, C. S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135, 635–648 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wierzbicki, A. T., Blevins, T. & Swiezewski, S. Long noncoding RNAs in plants. Annu. Rev. Plant Biol. 72, 245–271 (2021).

    Article  PubMed  CAS  Google Scholar 

  47. Liu, Z. W. et al. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. PLoS Genet. 10, e1003948 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Johnson, L. M. et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507, 124–128 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhou, J. X. et al. FVE promotes RNA-directed DNA methylation by facilitating the association of RNA polymerase V with chromatin. Plant J. 107, 467–479 (2021).

    Article  PubMed  CAS  Google Scholar 

  50. Huang, P. et al. MSI4/FVE is required for accumulation of 24-nt siRNAs and DNA methylation at a subset of target regions of RNA-directed DNA methylation. Plant J. 108, 347–357 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yang, R. et al. The developmental regulator PKL is required to maintain correct DNA methylation patterns at RNA-directed DNA methylation loci. Genome Biol. 18, 103 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Niu, Q. et al. A histone H3K4me1-specific binding protein is required for siRNA accumulation and DNA methylation at a subset of loci targeted by RNA-directed DNA methylation. Nat. Commun. 12, 3367 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sigman, M. J. et al. An siRNA-guided ARGONAUTE protein directs RNA polymerase V to initiate DNA methylation. Nat. Plants 7, 1461–1474 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tsuzuki, M. et al. Broad noncoding transcription suggests genome surveillance by RNA polymerase V. Proc. Natl Acad. Sci. USA 117, 30799–30804 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Xie, G. et al. Structure and mechanism of the plant RNA polymerase V. Science 379, 1209–1213 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Marasco, M., Li, W., Lynch, M. & Pikaard, C. S. Catalytic properties of RNA polymerases IV and V: accuracy, nucleotide incorporation and rNTP/dNTP discrimination. Nucleic Acids Res. 45, 11315–11326 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wierzbicki, A. T., Ream, T. S., Haag, J. R. & Pikaard, C. S. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet. 41, 630–634 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 21, 2539–2544 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. He, X. J. et al. An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 137, 498–508 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lahmy, S. et al. Evidence for ARGONAUTE4-DNA interactions in RNA-directed DNA methylation in plants. Genes Dev. 30, 2565–2570 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhang, H. W. et al. A cryo-EM structure of KTF1-bound polymerase V transcription elongation complex. Nat. Commun. 14, 3118 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Liu, W. et al. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. Nat. Plants 4, 181–188 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wang, F., Huang, H. Y., Huang, J., Singh, J. & Pikaard, C. S. Enzymatic reactions of AGO4 in RNA-directed DNA methylation: siRNA duplex loading, passenger strand elimination, target RNA slicing, and sliced target retention. Genes Dev. 37, 103–118 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang, F. & Axtell, M. J. AGO4 is specifically required for heterochromatic siRNA accumulation at Pol V-dependent loci in Arabidopsis thaliana. Plant J. 90, 37–47 (2017).

    Article  PubMed  CAS  Google Scholar 

  65. Zhong, X. et al. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157, 1050–1060 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhang, H., Lang, Z. & Zhu, J. K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506 (2018).

    Article  PubMed  CAS  Google Scholar 

  68. Riggs, A. D. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14, 9–25 (1975).

    Article  PubMed  CAS  Google Scholar 

  69. Holliday, R. & Pugh, J. E. DNA modification mechanisms and gene activity during development. Science 187, 226–232 (1975).

    Article  PubMed  CAS  Google Scholar 

  70. Bashtrykov, P. et al. Specificity of Dnmt1 for methylation of hemimethylated CpG sites resides in its catalytic domain. Chem. Biol. 19, 572–578 (2012).

    Article  PubMed  CAS  Google Scholar 

  71. Song, J., Teplova, M., Ishibe-Murakami, S. & Patel, D. J. Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 335, 709–712 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Adam, S., Klingel, V., Radde, N. E., Bashtrykov, P. & Jeltsch, A. On the accuracy of the epigenetic copy machine: comprehensive specificity analysis of the DNMT1 DNA methyltransferase. Nucleic Acids Res. 51, 6622–6633 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007).

    Article  PubMed  CAS  Google Scholar 

  74. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007).

    Article  PubMed  CAS  Google Scholar 

  75. Woo, H. R., Pontes, O., Pikaard, C. S. & Richards, E. J. VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev. 21, 267–277 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Woo, H. R., Dittmer, T. A. & Richards, E. J. Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. PLoS Genet. 4, e1000156 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Petryk, N., Bultmann, S., Bartke, T. & Defossez, P. A. Staying true to yourself: mechanisms of DNA methylation maintenance in mammals. Nucleic Acids Res. 49, 3020–3032 (2021).

    Article  PubMed  CAS  Google Scholar 

  78. Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).

    Article  PubMed  CAS  Google Scholar 

  79. Schmitz, R. J. et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334, 369–373 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245–249 (2011).

    Article  PubMed  CAS  Google Scholar 

  81. Shahryary, Y. et al. AlphaBeta: computational inference of epimutation rates and spectra from high-throughput DNA methylation data in plants. Genome Biol. 21, 260 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Denkena, J., Johannes, F. & Colome-Tatche, M. Region-level epimutation rates in Arabidopsis thaliana. Heredity 127, 190–202 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Tang, K., Zhu, X., Xie, S., Lang, Z. & Zhu, J. K. Transgenerational increases in DNA methylation in Arabidopsis plants defective in active DNA demethylation. Proc. Natl Acad. Sci. USA 121, e2320468121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Leichter, S. M., Du, J. & Zhong, X. Structure and mechanism of plant DNA methyltransferases. Adv. Exp. Med. Biol. 1389, 137–157 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Vilkaitis, G., Suetake, I., Klimasauskas, S. & Tajima, S. Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase. J. Biol. Chem. 280, 64–72 (2005).

    Article  PubMed  CAS  Google Scholar 

  86. Goyal, R., Reinhardt, R. & Jeltsch, A. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res. 34, 1182–1188 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Jeltsch, A. & Jurkowska, R. Z. Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm. Nucleic Acids Res. 44, 8556–8575 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Briffa, A. et al. Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations. Cell Syst. 14, 953–967 e917 (2023).

    Article  PubMed  CAS  Google Scholar 

  89. Wang, Q. et al. Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. Nat. Genet. 52, 828–839 (2020).

    Article  PubMed  CAS  Google Scholar 

  90. Zhu, J. K. Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 43, 143–166 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Morales-Ruiz, T. et al. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc. Natl Acad. Sci. USA 103, 6853–6858 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ortega-Galisteo, A. P., Morales-Ruiz, T., Ariza, R. R. & Roldan-Arjona, T. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol. Biol. 67, 671–681 (2008).

    Article  PubMed  CAS  Google Scholar 

  93. Gehring, M. et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124, 495–506 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Du, X. et al. Molecular basis of the plant ROS1-mediated active DNA demethylation. Nat. Plants 9, 271–279 (2023).

    Article  PubMed  CAS  Google Scholar 

  95. Ponferrada-Marin, M. I., Roldan-Arjona, T. & Ariza, R. R. ROS1 5-methylcytosine DNA glycosylase is a slow-turnover catalyst that initiates DNA demethylation in a distributive fashion. Nucleic Acids Res. 37, 4264–4274 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Scharer, O. D. & Jiricny, J. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays 23, 270–281 (2001).

    Article  PubMed  CAS  Google Scholar 

  97. Tang, K., Lang, Z., Zhang, H. & Zhu, J. K. The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications. Nat. Plants 2, 16169 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Qian, W. et al. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 336, 1445–1448 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Nie, W. F. et al. Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in Arabidopsis. Proc. Natl Acad. Sci. USA 116, 16641–16650 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Liu, P. et al. A novel protein complex that regulates active DNA demethylation in Arabidopsis. J. Integr. Plant Biol. 63, 772–786 (2021).

    Article  PubMed  CAS  Google Scholar 

  101. Lei, M. et al. Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc. Natl Acad. Sci. USA 112, 3553–3557 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Williams, B. P., Pignatta, D., Henikoff, S. & Gehring, M. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet. 11, e1005142 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Williams, B. P. & Gehring, M. Stable transgenerational epigenetic inheritance requires a DNA methylation-sensing circuit. Nat. Commun. 8, 2124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Doerfler, W. DNA methylation and gene activity. Annu. Rev. Biochem. 52, 93–124 (1983).

    Article  PubMed  CAS  Google Scholar 

  105. Weber, H. & Graessmann, A. Biological-activity of hemimethylated and single-stranded-DNA after direct gene-transfer into tobacco protoplasts. FEBS Lett. 253, 163–166 (1989).

    Article  CAS  Google Scholar 

  106. Kass, S. U., Landsberger, N. & Wolffe, A. P. DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol. 7, 157–165 (1997).

    Article  PubMed  CAS  Google Scholar 

  107. Buschhausen, G., Wittig, B., Graessmann, M. & Graessmann, A. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl Acad. Sci. USA 84, 1177–1181 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Boyes, J. & Bird, A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64, 1123–1134 (1991).

    Article  PubMed  CAS  Google Scholar 

  109. Liu, K., Shimbo, T., Song, X., Wade, P. A. & Min, J. Proteins that read DNA methylation. Adv. Exp. Med. Biol. 1389, 269–293 (2022).

    Article  PubMed  CAS  Google Scholar 

  110. Feng, Z. et al. Genetic analysis implicates a molecular chaperone complex in regulating epigenetic silencing of methylated genomic regions. J. Integr. Plant Biol. 63, 1451–1461 (2021).

    Article  PubMed  CAS  Google Scholar 

  111. Lang, Z. et al. The methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing. Mol. Cell 57, 971–983 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Qian, W. et al. Regulation of active DNA demethylation by an alpha-crystallin domain protein in Arabidopsis. Mol. Cell 55, 361–371 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Boone, B. A. et al. ACD15, ACD21, and SLN regulate the accumulation and mobility of MBD6 to silence genes and transposable elements. Sci. Adv. 9, eadi9036 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Crisp, P. A. et al. Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in plant genomes. Proc. Natl Acad. Sci. USA 117, 23991–24000 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Zemach, A. & Grafi, G. Characterization of Arabidopsis thaliana methyl-CpG-binding domain (MBD) proteins. Plant J. 34, 565–572 (2003).

    Article  PubMed  CAS  Google Scholar 

  116. Ito, M., Koike, A., Koizumi, N. & Sano, H. Methylated DNA-binding proteins from Arabidopsis. Plant Physiol. 133, 1747–1754 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Wu, Z. et al. Family-wide characterization of methylated DNA binding ability of Arabidopsis MBDs. J. Mol. Biol. 434, 167404 (2022).

    Article  PubMed  CAS  Google Scholar 

  118. Wang, S. et al. MBD2 couples DNA methylation to transposable element silencing during male gametogenesis. Nat. Plants 10, 13–24 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ichino, L. et al. MBD5 and MBD6 couple DNA methylation to gene silencing through the J-domain protein SILENZIO. Science, https://doi.org/10.1126/science.abg6130 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Li, D. et al. The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status. eLife 6, e19893 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    Article  PubMed  CAS  Google Scholar 

  122. Ebbs, M. L., Bartee, L. & Bender, J. H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases. Mol. Cell Biol. 25, 10507–10515 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Ebbs, M. L. & Bender, J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell 18, 1166–1176 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Zhao, Q. Q., Lin, R. N., Li, L., Chen, S. & He, X. J. A methylated-DNA-binding complex required for plant development mediates transcriptional activation of promoter methylated genes. J. Integr. Plant Biol. 61, 120–139 (2019).

    Article  PubMed  CAS  Google Scholar 

  125. Xiao, X. et al. A group of SUVH methyl-DNA binding proteins regulate expression of the DNA demethylase ROS1 in Arabidopsis. J. Integr. Plant Biol. 61, 110–119 (2019).

    Article  PubMed  CAS  Google Scholar 

  126. Harris, C. J. et al. A DNA methylation reader complex that enhances gene transcription. Science 362, 1182–1186 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sequeira-Mendes, J. et al. The functional topography of the arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell 26, 2351–2366 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Jamge, B. et al. Histone variants shape chromatin states in Arabidopsis. eLife 12, e87714 (2023).

    Article  Google Scholar 

  130. Zhao, L. et al. DNA methylation underpins the epigenomic landscape regulating genome transcription in Arabidopsis. Genome Biol. 23, 197 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  PubMed  CAS  Google Scholar 

  132. Illingworth, R. S. & Bird, A. P. CpG islands – ‘a rough guide’. FEBS Lett. 583, 1713–1720 (2009).

    Article  PubMed  CAS  Google Scholar 

  133. Bewick, A. J. & Schmitz, R. J. Gene body DNA methylation in plants. Curr. Opin. Plant Biol. 36, 103–110 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Gent, J. I. et al. CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res. 23, 628–637 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Li, Q. et al. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. Proc. Natl Acad. Sci. USA 112, 14728–14733 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Duan, C. G. et al. A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Res. 27, 226–240 (2017).

    Article  PubMed  CAS  Google Scholar 

  137. Haslbeck, M., Weinkauf, S. & Buchner, J. Small heat shock proteins: simplicity meets complexity. J. Biol. Chem. 294, 2121–2132 (2019).

    Article  PubMed  CAS  Google Scholar 

  138. Lang, Z. et al. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc. Natl Acad. Sci. USA 114, E4511–E4519 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Smith, J., Sen, S., Weeks, R. J., Eccles, M. R. & Chatterjee, A. Promoter DNA hypermethylation and paradoxical gene activation. Trends Cancer 6, 392–406 (2020).

    Article  PubMed  CAS  Google Scholar 

  140. Makarevich, G., Villar, C. B., Erilova, A. & Kohler, C. Mechanism of PHERES1 imprinting in Arabidopsis. J. Cell Sci. 121, 906–912 (2008).

    Article  PubMed  CAS  Google Scholar 

  141. Kawakatsu, T. et al. Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat. Plants 2, 16058 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Zhan, X., Lu, Y., Zhu, J. K. & Botella, J. R. Genome editing for plant research and crop improvement. J. Integr. Plant Biol. 63, 3–33 (2021).

    Article  PubMed  CAS  Google Scholar 

  143. de Mendoza, A. et al. Large-scale manipulation of promoter DNA methylation reveals context-specific transcriptional responses and stability. Genome Biol. 23, 163 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zhu, H., Wang, G. & Qian, J. Transcription factors as readers and effectors of DNA methylation. Nat. Rev. Genet. 17, 551–565 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Kaluscha, S. et al. Evidence that direct inhibition of transcription factor binding is the prevailing mode of gene and repeat repression by DNA methylation. Nat. Genet. 54, 1895–1906 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Li, M. et al. Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors. Nat. Commun. 14, 2600 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Feng, S., Zhong, Z., Wang, M. & Jacobsen, S. E. Efficient and accurate determination of genome-wide DNA methylation patterns in Arabidopsis thaliana with enzymatic methyl sequencing. Epigenetics Chromatin 13, 42 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Dai, Q. et al. Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02034-w (2024).

    Article  PubMed  Google Scholar 

  150. Le, N. T. et al. Epigenetic regulation of spurious transcription initiation in Arabidopsis. Nat. Commun. 11, 3224 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Dantas Machado, A. C. et al. Evolving insights on how cytosine methylation affects protein-DNA binding. Brief. Funct. Genomics 14, 61–73 (2015).

    Article  PubMed  CAS  Google Scholar 

  152. Kribelbauer, J. F., Lu, X. J., Rohs, R., Mann, R. S. & Bussemaker, H. J. Toward a mechanistic understanding of DNA methylation readout by transcription factors. J. Mol. Biol. 432, 1801–1815 (2020).

    Article  PubMed  CAS  Google Scholar 

  153. Wang, B. et al. Structural insights into target DNA recognition by R2R3-MYB transcription factors. Nucleic Acids Res. 48, 460–471 (2020).

    PubMed  CAS  Google Scholar 

  154. Charvin, M. et al. Single-cytosine methylation at W-boxes repels binding of WRKY transcription factors through steric hindrance. Plant Physiol. 192, 77–84 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Mann, I. K. et al. CG methylated microarrays identify a novel methylated sequence bound by the CEBPB|ATF4 heterodimer that is active in vivo. Genome Res. 23, 988–997 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Le, T. N., Miyazaki, Y., Takuno, S. & Saze, H. Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana. Nucleic Acids Res. 43, 3911–3921 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Saze, H. Epigenetic regulation of intragenic transposable elements: a two-edged sword. J. Biochem. 164, 323–328 (2018).

    Article  PubMed  CAS  Google Scholar 

  158. Marand, A. P., Eveland, A. L., Kaufmann, K. & Springer, N. M. cis-regulatory elements in plant development, adaptation, and evolution. Annu. Rev. Plant Biol. 74, 111–137 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Duan, C. G. et al. A protein complex regulates RNA processing of intronic heterochromatin-containing genes in Arabidopsis. Proc. Natl Acad. Sci. USA 114, E7377–E7384 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Wang, X. et al. RNA-binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin-containing gene IBM1. Proc. Natl Acad. Sci. USA 110, 15467–15472 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Saze, H. et al. Mechanism for full-length RNA processing of Arabidopsis genes containing intragenic heterochromatin. Nat. Commun. 4, 2301 (2013).

    Article  PubMed  Google Scholar 

  162. Lei, M. et al. Arabidopsis EDM2 promotes IBM1 distal polyadenylation and regulates genome DNA methylation patterns. Proc. Natl Acad. Sci. USA 111, 527–532 (2014).

    Article  PubMed  CAS  Google Scholar 

  163. Miura, A. et al. An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites. EMBO J. 28, 1078–1086 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Zhang, Y. Z. et al. Genome-wide distribution and functions of the AAE complex in epigenetic regulation in Arabidopsis. J. Integr. Plant Biol. 63, 707–722 (2021).

    Article  PubMed  CAS  Google Scholar 

  165. West, P. T. et al. Genomic distribution of H3K9me2 and DNA methylation in a maize genome. PLoS ONE 9, e105267 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Espinas, N. A. et al. Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. PLoS Genet. 16, e1008637 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. You, L. Y. et al. Intragenic heterochromatin-mediated alternative polyadenylation modulates miRNA and pollen development in rice. New Phytol. 232, 835–852 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Walker, J. et al. Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis. Nat. Genet. 50, 130–137 (2018).

    Article  PubMed  CAS  Google Scholar 

  169. Ong-Abdullah, M. et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525, 533–537 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Wang, X. et al. DNA methylation affects gene alternative splicing in plants: an example from rice. Mol. Plant. 9, 305–307 (2016).

    Article  PubMed  CAS  Google Scholar 

  171. Regulski, M. et al. The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res. 23, 1651–1662 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Higo, A. et al. DNA methylation is reconfigured at the onset of reproduction in rice shoot apical meristem. Nat. Commun. 11, 4079 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Wang, L. et al. Reinforcement of CHH methylation through RNA-directed DNA methylation ensures sexual reproduction in rice. Plant Physiol. 188, 1189–1209 (2022).

    Article  PubMed  CAS  Google Scholar 

  174. She, W. et al. Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140, 4008–4019 (2013).

    Article  PubMed  CAS  Google Scholar 

  175. Ingouff, M. et al. Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sex-specific dynamics controlled by noncanonical RdDM. Genes Dev. 31, 72–83 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Borg, M. et al. Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis. eLife 10, e61894 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Hsieh, P. H. et al. Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues. Proc. Natl Acad. Sci. USA 113, 15132–15137 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Schmidt, A., Schmid, M. W. & Grossniklaus, U. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 142, 229–241 (2015).

    Article  PubMed  CAS  Google Scholar 

  179. Lanfear, R. Do plants have a segregated germline? PLoS Biol. 16, e2005439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. She, W. & Baroux, C. Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis. Front. Plant Sci. 6, 294 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Yang, W. C., Ye, D., Xu, J. & Sundaresan, V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev. 13, 2108–2117 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Schiefthaler, U. et al. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 96, 11664–11669 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Mendes, M. A. et al. The RNA-dependent DNA methylation pathway is required to restrict SPOROCYTELESS/NOZZLE expression to specify a single female germ cell precursor in Arabidopsis. Development 147, dev194274 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Olmedo-Monfil, V. et al. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464, 628–632 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Hernandez-Lagana, E., Rodriguez-Leal, D., Lua, J. & Vielle-Calzada, J. P. A multigenic network of ARGONAUTE4 clade members controls early megaspore formation in Arabidopsis. Genetics 204, 1045–1056 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Li, L., Wu, W., Zhao, Y. & Zheng, B. A reciprocal inhibition between ARID1 and MET1 in male and female gametes in Arabidopsis. J. Integr. Plant Biol. 59, 657–668 (2017).

    Article  PubMed  CAS  Google Scholar 

  187. Garcia-Aguilar, M., Michaud, C., Leblanc, O. & Grimanelli, D. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. Plant Cell 22, 3249–3267 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Singh, M. et al. Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein. Plant Cell 23, 443–458 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Su, Z. et al. The THO complex non-cell-autonomously represses female germline specification through the TAS3-ARF3 module. Curr. Biol. 27, 1597–1609 e1592 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Su, Z. et al. Regulation of female germline specification via small RNA mobility in Arabidopsis. Plant Cell 32, 2842–2854 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Long, J. et al. Nurse cell–derived small RNAs define paternal epigenetic inheritance in Arabidopsis. Science 373, eabh0556 (2021).

    Article  PubMed  CAS  Google Scholar 

  192. Jiang, H. et al. MULTIPOLAR SPINDLE 1 (MPS1), a novel coiled-coil protein of Arabidopsis thaliana, is required for meiotic spindle organization. Plant J. 59, 1001–1010 (2009).

    Article  PubMed  CAS  Google Scholar 

  193. Wang, Z. et al. Polymerase IV plays a crucial role in pollen development in capsella. Plant Cell 32, 950–966 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Zhai, J. et al. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc. Natl Acad. Sci. USA 112, 3146–3151 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Xia, R. et al. 24-nt reproductive phasiRNAs are broadly present in angiosperms. Nat. Commun. 10, 627 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Teng, C. et al. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat. Commun. 11, 2912 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Zhang, M. et al. CHH DNA methylation increases at 24-PHAS loci depend on 24-nt phased small interfering RNAs in maize meiotic anthers. New Phytol. 229, 2984–2997 (2021).

    Article  PubMed  CAS  Google Scholar 

  198. Zhou, X. et al. 24-nt phasiRNAs move from tapetal to meiotic cells in maize anthers. New Phytol. 235, 488–501 (2022).

    Article  PubMed  CAS  Google Scholar 

  199. Rodrigues, J. A. et al. Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. Proc. Natl Acad. Sci. USA 110, 7934–7939 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Burgess, D., Chow, H. T., Grover, J. W., Freeling, M. & Mosher, R. A. Ovule siRNAs methylate protein-coding genes in trans. Plant Cell 34, 3647–3664 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Grover, J. W. et al. Abundant expression of maternal siRNAs is a conserved feature of seed development. Proc. Natl Acad. Sci. USA 117, 15305–15315 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Slotkin, R. K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 461–472 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Calarco, J. P. et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151, 194–205 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Ibarra, C. A. et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337, 1360–1364 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. He, S., Vickers, M., Zhang, J. & Feng, X. Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. eLife 8, e42530 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Kim, M. Y. et al. DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm. Proc. Natl Acad. Sci. USA 116, 9652–9657 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Oliver, C. et al. The miRNome function transitions from regulating developmental genes to transposable elements during pollen maturation. Plant Cell 34, 784–801 (2022).

    Article  PubMed  Google Scholar 

  208. Martinez, G., Panda, K., Kohler, C. & Slotkin, R. K. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat. Plants 2, 16030 (2016).

    Article  PubMed  CAS  Google Scholar 

  209. Schroder, J. A., Bonnet, D. M. V. & Jullien, P. E. Non-cell-autonomous small RNA silencing in Arabidopsis female gametes. Curr. Biol. 33, 183–188 e183 (2023).

    Article  PubMed  CAS  Google Scholar 

  210. Erdmann, R. M. et al. Molecular movement in the Arabidopsis thaliana female gametophyte. Plant Reprod. 30, 141–146 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Borges, F. et al. Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. Nat. Genet. 50, 186–192 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Papareddy, R. K. et al. Chromatin regulates expression of small RNAs to help maintain transposon methylome homeostasis in Arabidopsis. Genome Biol. 21, 251 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Zhou, S. et al. DNA demethylases remodel DNA methylation in rice gametes and zygote and are required for reproduction. Mol. Plant 14, 1569–1583 (2021).

    Article  PubMed  CAS  Google Scholar 

  214. Liu, Q. et al. Paternal DNA methylation is remodeled to maternal levels in rice zygote. Nat. Commun. 14, 6571 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Li, C. et al. Genome-wide redistribution of 24-nt siRNAs in rice gametes. Genome Res. 30, 173–184 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Li, C. et al. Resetting of the 24-nt siRNA landscape in rice zygotes. Genome Res. 32, 309–323 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Anderson, S. N. et al. The zygotic transition is initiated in unicellular plant zygotes with asymmetric activation of parental genomes. Dev. Cell 43, 349–358 e344 (2017).

    Article  PubMed  CAS  Google Scholar 

  218. Kawakatsu, T., Nery, J. R., Castanon, R. & Ecker, J. R. Dynamic DNA methylation reconfiguration during seed development and germination. Genome Biol. 18, 171 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Bouyer, D. et al. DNA methylation dynamics during early plant life. Genome Biol. 18, 179 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Kohler, C., Dziasek, K. & Del Toro-De Leon, G. Postzygotic reproductive isolation established in the endosperm: mechanisms, drivers and relevance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20200118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Picard, C. L. & Gehring, M. Identification and comparison of imprinted genes across plant species. Methods Mol. Biol. 2093, 173–201 (2020).

    Article  PubMed  CAS  Google Scholar 

  222. Park, K. et al. DNA demethylation is initiated in the central cells of Arabidopsis and rice. Proc. Natl Acad. Sci. USA 113, 15138–15143 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Borg, M. et al. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat. Cell Biol. 22, 621–629 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Luo, M., Bilodeau, P., Dennis, E. S., Peacock, W. J. & Chaudhury, A. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc. Natl Acad. Sci. USA 97, 10637–10642 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Pignatta, D. et al. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife 3, e03198 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Pignatta, D., Novitzky, K., Satyaki, P. R. V. & Gehring, M. A variably imprinted epiallele impacts seed development. PLoS Genet. 14, e1007469 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Moreno-Romero, J., Del Toro-De Leon, G., Yadav, V. K., Santos-Gonzalez, J. & Kohler, C. Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm. Genome Biol. 20, 41 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Kradolfer, D., Wolff, P., Jiang, H., Siretskiy, A. & Kohler, C. An imprinted gene underlies postzygotic reproductive isolation in Arabidopsis thaliana. Dev. Cell 26, 525–535 (2013).

    Article  PubMed  CAS  Google Scholar 

  229. Wolff, P., Jiang, H., Wang, G., Santos-Gonzalez, J. & Kohler, C. Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana. eLife 4, e10074 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Huang, F. et al. Mutants in the imprinted PICKLE RELATED 2 gene suppress seed abortion of fertilization independent seed class mutants and paternal excess interploidy crosses in Arabidopsis. Plant J. 90, 383–395 (2017).

    Article  PubMed  CAS  Google Scholar 

  231. Schatlowski, N. et al. Hypomethylated pollen bypasses the interploidy hybridization barrier in Arabidopsis. Plant Cell 26, 3556–3568 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Erdmann, R. M., Satyaki, P. R. V., Klosinska, M. & Gehring, M. A small RNA pathway mediates allelic dosage in endosperm. Cell Rep. 21, 3364–3372 (2017).

    Article  PubMed  CAS  Google Scholar 

  233. Jiang, H. et al. Ectopic application of the repressive histone modification H3K9me2 establishes post-zygotic reproductive isolation in Arabidopsis thaliana. Genes Dev. 31, 1272–1287 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Wang, Z. et al. Transgenerational effect of mutants in the RNA-directed DNA methylation pathway on the triploid block in Arabidopsis. Genome Biol. 22, 141 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Huc, J. et al. Bypassing reproductive barriers in hybrid seeds using chemically induced epimutagenesis. Plant Cell 34, 989–1001 (2022).

    Article  PubMed  Google Scholar 

  236. Liu, P. et al. DNA cytosine methylation dynamics and functional roles in horticultural crops. Hortic. Res. 10, uhad170 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Zhong, S. et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat. Biotechnol. 31, 154–159 (2013).

    Article  PubMed  CAS  Google Scholar 

  238. Liu, R. et al. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc. Natl Acad. Sci. USA 112, 10804–10809 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Cheng, J. et al. Downregulation of RdDM during strawberry fruit ripening. Genome Biol. 19, 212 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Huang, H. et al. Global increase in DNA methylation during orange fruit development and ripening. Proc. Natl Acad. Sci. USA 116, 1430–1436 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Lu, P. et al. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat. Plants 4, 784–791 (2018).

    Article  PubMed  CAS  Google Scholar 

  242. Hollick, J. B. Paramutation and related phenomena in diverse species. Nat. Rev. Genet. 18, 5–23 (2017).

    Article  PubMed  CAS  Google Scholar 

  243. Cao, S. & Chen, Z. J. Transgenerational epigenetic inheritance during plant evolution and breeding. Trends Plant Sci., https://doi.org/10.1016/j.tplants.2024.04.007 (2024).

    Article  PubMed  Google Scholar 

  244. Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    Article  PubMed  CAS  Google Scholar 

  245. Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549 (2010).

    Article  PubMed  CAS  Google Scholar 

  246. Manning, K. et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38, 948–952 (2006).

    Article  PubMed  CAS  Google Scholar 

  247. Song, Q., Zhang, T., Stelly, D. M. & Chen, Z. J. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol. 18, 99 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Pilu, R. et al. A paramutation phenomenon is involved in the genetics of maize low phytic acid1-241 (lpa1-241) trait. Heredity 102, 236–245 (2009).

    Article  PubMed  CAS  Google Scholar 

  249. Kawanabe, T. et al. Role of DNA methylation in hybrid vigor in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 113, E6704–E6711 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Zhang, Q. et al. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism. Cell Discov. 2, 16027 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Brachi, B., Morris, G. P. & Borevitz, J. O. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol. 12, 232 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Kawakatsu, T. et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166, 492–505 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Shirai, K. et al. Positive selective sweeps of epigenetic mutations regulating specialized metabolites in plants. Genome Res. 31, 1060–1068 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Eichten, S. R. et al. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell 25, 2783–2797 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Xu, G. et al. Evolutionary and functional genomics of DNA methylation in maize domestication and improvement. Nat. Commun. 11, 5539 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Shen, Y. et al. DNA methylation footprints during soybean domestication and improvement. Genome Biol. 19, 128 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Zhao, L. et al. Integrative analysis of reference epigenomes in 20 rice varieties. Nat. Commun. 11, 2658 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Gardiner, L. J. et al. Hidden variation in polyploid wheat drives local adaptation. Genome Res. 28, 1319–1332 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Xu, J. et al. Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biol. 20, 243 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Schmitz, R. J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4, e05255 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Gouil, Q. & Baulcombe, D. C. Paramutation-like features of multiple natural epialleles in tomato. BMC Genomics 19, 203 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Cao, S. et al. Small RNAs mediate transgenerational inheritance of genome-wide trans-acting epialleles in maize. Genome Biol. 23, 53 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Cortijo, S. et al. Mapping the epigenetic basis of complex traits. Science 343, 1145–1148 (2014).

    Article  PubMed  CAS  Google Scholar 

  265. Zhang, Y. Y., Latzel, V., Fischer, M. & Bossdorf, O. Understanding the evolutionary potential of epigenetic variation: a comparison of heritable phenotypic variation in epiRILs, RILs, and natural ecotypes of Arabidopsis thaliana. Heredity 121, 257–265 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Schmidt, M. et al. Methylome and epialleles in rice epilines selected for energy use efficiency. Agronomy 8, 163 (2018).

    Article  CAS  Google Scholar 

  267. Hauben, M. et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc. Natl Acad. Sci. USA 106, 20109–20114 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Huang, Y. et al. Genome of a citrus rootstock and global DNA demethylation caused by heterografting. Hortic. Res. 8, 69 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Wu, R. et al. Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants. PLoS ONE 8, e61995 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Johannes, F. & Schmitz, R. J. Spontaneous epimutations in plants. New Phytol. 221, 1253–1259 (2019).

    Article  PubMed  Google Scholar 

  271. Hazarika, R. R. et al. Molecular properties of epimutation hotspots. Nat. Plants 8, 146–156 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Blevins, T. et al. A two-step process for epigenetic inheritance in Arabidopsis. Mol. Cell 54, 30–42 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Li, J. et al. Epigenetic memory marks determine epiallele stability at loci targeted by de novo DNA methylation. Nat. Plants 6, 661–674 (2020).

    Article  PubMed  CAS  Google Scholar 

  274. Yang, X. et al. MutS HOMOLOG1-derived epigenetic breeding potential in tomato. Plant Physiol. 168, 222–232 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  275. Raju, S. K. K. et al. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol. J. 16, 1836–1847 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. Pan, C. et al. Boosting plant genome editing with a versatile CRISPR-Combo system. Nat. Plants 8, 513–525 (2022).

    Article  PubMed  CAS  Google Scholar 

  277. Gallego-Bartolome, J. et al. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc. Natl Acad. Sci. USA 115, E2125–E2134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Ji, L. et al. TET-mediated epimutagenesis of the Arabidopsis thaliana methylome. Nat. Commun. 9, 895 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Papikian, A., Liu, W., Gallego-Bartolome, J. & Jacobsen, S. E. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat. Commun. 10, 729 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Ghoshal, B., Picard, C. L., Vong, B., Feng, S. & Jacobsen, S. E. CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase. Proc. Natl Acad. Sci. USA 118, e2125016118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Galonska, C. et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat. Commun. 9, 597 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Pflueger, C. et al. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res. 28, 1193–1206 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Chan, W. F. et al. Activation of stably silenced genes by recruitment of a synthetic de-methylating module. Nat. Commun. 13, 5582 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  284. Swain, T. et al. A modular dCas9-based recruitment platform for combinatorial epigenome editing. Nucleic Acids Res. 52, 474–491 (2024).

    Article  PubMed  Google Scholar 

  285. Li, Y. et al. An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis [corrected]. PLoS Genet. 11, e1004905 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Li, J., Liang, W., Li, Y. & Qian, W. APURINIC/APYRIMIDINIC ENDONUCLEASE2 and ZINC FINGER DNA 3′-PHOSPHOESTERASE play overlapping roles in the maintenance of epigenome and genome stability. Plant. Cell 30, 1954–1970 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Li, Y., Duan, C. G., Zhu, X., Qian, W. & Zhu, J. K. A DNA ligase required for active DNA demethylation and genomic imprinting in Arabidopsis. Cell Res. 25, 757–760 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Martinez, G. et al. Paternal easiRNAs regulate parental genome dosage in Arabidopsis. Nat. Genet. 50, 193–198 (2018).

    Article  PubMed  CAS  Google Scholar 

  289. Sato, H., Santos-Gonzalez, J. & Kohler, C. Combinations of maternal-specific repressive epigenetic marks in the endosperm control seed dormancy. eLife 10, e64593 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  290. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    Article  PubMed  CAS  Google Scholar 

  291. Peabody, D. S. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 12, 595–600 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  293. Tucker, S. L., Reece, J., Ream, T. S. & Pikaard, C. S. Evolutionary history of plant multisubunit RNA polymerases IV and V: subunit origins via genome-wide and segmental gene duplications, retrotransposition, and lineage-specific subfunctionalization. Cold Spring Harb. Symp. Quant. Biol. 75, 285–297 (2010).

    Article  PubMed  CAS  Google Scholar 

  294. Ream, T. S. et al. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol. Cell 33, 192–203 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to all colleagues whose work could not be cited because of space limitations. They thank Y. Zhang from the CAS Center for Excellence in Molecular Plant Sciences for the careful reading and helpful discussion of the manuscript. This work was partly supported by the National Key Research and Development Program of China (2021YFA1300401 to H.Z. and 2021YFA1300400 to J.-K.Z.).

Author information

Authors and Affiliations

Authors

Contributions

J.-K.Z. made a substantial contribution to discussion of content, wrote and reviewed/edited the manuscript before submission. H.Z. researched data for the article, made a substantial contribution to discussion of content, wrote and reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Heng Zhang or Jian-Kang Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Ildoo Hwang, who co-reviewed with Jaemyung Choi, and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

De novo DNA methylation

A process of adding a methyl group to the cytosine base of unmethylated DNA. Among CG, CHG and CHH methylation, only CHH methylation is asymmetrical, that is, its complementary strand is not methylated. Thus, maintaining CHH methylation during DNA replication requires de novo methyltransferase activity.

EasiRNAs

Secondary small interfering RNAs produced from AGO1-microRNA-cleaved transposable element transcripts. Production of easiRNAs in the pollen relies on DCL2, DCL4 and RNA polymerase IV.

Epigenetic modification

Covalent modification of the DNA or histones that confers mitotically or meiotically heritable alterations of gene expression status but does not involve DNA sequence changes.

Epigenetic recombination inbred lines

Epigenetic recombinant inbred lines are created by crosses between wild-type and hypomethylated (such as met1 or ddm1 mutant) plants followed by multiple generations of inbreeding.

Gene body methylation

DNA methylation pattern associated with a subset of genes. It is characterized by medium to high levels of CG methylation and depletion of non-CG methylation in the gene body and low methylation around transcription start and termination sites.

Interploidy hybridization barriers

Intraspecific hybridization barriers between individual plants with different ploidy levels, also known as the triploid block.

Intragenic heterochromatin

A heterochromatin region located within an expressed protein-coding gene.

Mutation accumulation lines

Plant lines that are propagated from a single founder through inbreeding and single-seed descent for several generations in the laboratory with the aim of minimizing the effect of natural selection and allowing the accumulation of spontaneous mutations (and epimutations).

Paramutation

An epigenetic phenomenon whereby one allele induces heritable changes in the expression status of the other allele of the same locus. Paramutation has been discovered in both plants and animals.

PhasiRNA

Secondary small interfering RNAs generated from the AGO-microRNA-cleaved mRNAs or long non-coding RNAs. The production of phasiRNAs involves RDR6, SGS3 and DCLs.

Polymerase backtracking

Reversible sliding of a polymerase along the DNA or RNA template.

Selective sweeps

Genomic regions with reduced genetic variation because a linked beneficial mutation increases in frequency and becomes fixed in the population.

Siren siRNAs

A small number of highly expressed RNA polymerase IV-dependent small interfering RNAs (siRNAs) that were first reported in the rice endosperm. Siren siRNAs are also identified in female gametophytes and the surrounding sporophytic tissue.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhu, JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00769-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00769-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing