Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of ‘matritherapies’, that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hynes, R. O. & Naba, A. Overview of the matrisome — an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4, a004903 (2012).
Karamanos, N. K. et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 288, 6850–6912 (2021).
Brunet, T. & King, N. The origin of animal multicellularity and cell differentiation. Dev. Cell 43, 124–140 (2017).
Draper, G. W., Shoemark, D. K. & Adams, J. C. Modelling the early evolution of extracellular matrix from modern ctenophores and sponges. Essays Biochem. 63, 389–405 (2019).
Engel, J. Domain organizations of modular extracellular matrix proteins and their evolution. Matrix Biol. 15, 295–299 (1996).
Huxley-Jones, J., Pinney, J. W., Archer, J., Robertson, D. L. & Boot-Handford, R. P. Back to basics - how the evolution of the extracellular matrix underpinned vertebrate evolution. Int. J. Exp. Pathol. 90, 95–100 (2009).
Hynes, R. O. & Zhao, Q. The evolution of cell adhesion. J. Cell Biol. 150, F89–F96 (2000).
Hynes, R. O. The evolution of metazoan extracellular matrix. J. Cell Biol. 196, 671–679 (2012). Review discussing the mechanisms of ECM gene expansion and complexification that have accompanied the evolution of multicellular organisms.
King, N. et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783–788 (2008).
Özbek, S., Balasubramanian, P. G., Chiquet-Ehrismann, R., Tucker, R. P. & Adams, J. C. The evolution of extracellular matrix. Mol. Biol. Cell 21, 4300–4305 (2010).
Rokas, A. The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu. Rev. Genet. 42, 235–251 (2008).
Shoemark, D. K. et al. Emergence of a thrombospondin superfamily at the origin of metazoans. Mol. Biol. Evol. 36, 1220–1238 (2019).
Williams, F., Tew, H. A., Paul, C. E. & Adams, J. C. The predicted secretomes of Monosiga brevicollis and Capsaspora owczarzaki, close unicellular relatives of metazoans, reveal new insights into the evolution of the metazoan extracellular matrix. Matrix Biol. 37, 60–68 (2014).
Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 3, a004978 (2011).
Revell, C. K. et al. Collagen fibril assembly: new approaches to unanswered questions. Matrix Biol. 12, 100079 (2021).
Heino, J. The collagen family members as cell adhesion proteins. BioEssays 29, 1001–1010 (2007).
Schwarzbauer, J. E. & DeSimone, D. W. Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb. Perspect. Biol. 3, a005041 (2011).
Kozel, B. A. & Mecham, R. P. Elastic fiber ultrastructure and assembly. Matrix Biol. 84, 31–40 (2019).
Ozsvar, J. et al. Tropoelastin and elastin assembly. Front. Bioeng. Biotechnol. 9, 643110 (2021).
Godwin, A. R. F. et al. The role of fibrillin and microfibril binding proteins in elastin and elastic fibre assembly. Matrix Biol. 84, 17–30 (2019).
Thomson, J. et al. Fibrillin microfibrils and elastic fibre proteins: functional interactions and extracellular regulation of growth factors. Semin. Cell Dev. Biol. 89, 109–117 (2019).
Eckersley, A. et al. Structural and compositional diversity of fibrillin microfibrils in human tissues. J. Biol. Chem. 293, 5117–5133 (2018).
Vindin, H., Mithieux, S. M. & Weiss, A. S. Elastin architecture. Matrix Biol. 84, 4–16 (2019).
Saraswathibhatla, A., Indana, D. & Chaudhuri, O. Cell–extracellular matrix mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 24, 495–516 (2023). In-depth review discussing the mechanisms of mechanotransduction.
Jansen, K. A., Atherton, P. & Ballestrem, C. Mechanotransduction at the cell–matrix interface. Semin. Cell Dev. Biol. 71, 75–83 (2017).
Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).
Schwartz, M. A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol. 2, a005066 (2010).
Kanchanawong, P. & Calderwood, D. A. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat. Rev. Mol. Cell Biol. 24, 142–161 (2023).
Chastney, M. R., Conway, J. R. W. & Ivaska, J. Integrin adhesion complexes. Curr. Biol. 31, R536–R542 (2021).
Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).
Campbell, I. D. & Humphries, M. J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3, a004994 (2011).
Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).
Itoh, Y. Discoidin domain receptors: microenvironment sensors that promote cellular migration and invasion. Cell Adh. Migr. 12, 378–385 (2018).
Humphries, J. D., Paul, N. R., Humphries, M. J. & Morgan, M. R. Emerging properties of adhesion complexes: what are they and what do they do? Trends Cell Biol. 25, 388–397 (2015).
Geiger, B. & Yamada, K. M. Molecular architecture and function of matrix adhesions. Cold Spring Harb. Perspect. Biol. 3, a005033 (2011).
Pally, D. & Naba, A. Extracellular matrix dynamics: a key regulator of cell migration across length-scales and systems. Curr. Opin. Cell Biol. 86, 102309 (2024).
Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019).
Yamada, K. M. et al. Extracellular matrix dynamics in cell migration, invasion and tissue morphogenesis. Int. J. Exp. Pathol. 100, 144–152 (2019).
Jones, M. J. & Jones, M. C. Cell cycle control by cell–matrix interactions. Curr. Opin. Cell Biol. 86, 102288 (2023).
Frisch, S. M. & Screaton, R. A. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562 (2001).
Frisch, S. M. & Francis, H. Disruption of epithelial cell–matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).
Karamanos, N. K., Theocharis, A. D., Neill, T. & Iozzo, R. V. Matrix modeling and remodeling: a biological interplay regulating tissue homeostasis and diseases. Matrix Biol. 75–76, 1–11 (2019).
Walma, D. A. C. & Yamada, K. M. The extracellular matrix in development. Development 147, dev175596 (2020). Comprehensive review describing the multifaceted roles of the ECM in developmental processes.
Dzamba, B. J. & DeSimone, D. W. Extracellular matrix (ECM) and the sculpting of embryonic tissues. Curr. Top. Dev. Biol. 130, 245–274 (2018).
Rozario, T. & DeSimone, D. W. The extracellular matrix In development and morphogenesis: a dynamic view. Dev. Biol. 341, 126–140 (2010).
Theocharis, A. D., Manou, D. & Karamanos, N. K. The extracellular matrix as a multitasking player in disease. FEBS J. 286, 2830–2869 (2019).
Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014).
Cox, T. R. The matrix in cancer. Nat. Rev. Cancer 21, 217–238 (2021). Comprehensive review describing the changes in ECM composition and mechanical and signalling properties that accompany the steps of cancer progression.
Herrera, J., Henke, C. A. & Bitterman, P. B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Invest. 128, 45–53 (2018).
Younesi, F. S., Miller, A. E., Barker, T. H., Rossi, F. M. V. & Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 25, 617–638 (2024).
Canty, E. G. & Kadler, K. E. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353 (2005).
Singh, P., Carraher, C. & Schwarzbauer, J. E. Assembly of fibronectin extracellular matrix. Annu. Rev. Cell Dev. Biol. 26, 397–419 (2010).
Handford, P. A., Downing, A. K., Reinhardt, D. P. & Sakai, L. Y. Fibrillin: from domain structure to supramolecular assembly. Matrix Biol. 19, 457–470 (2000).
Hubmacher, D., Tiedemann, K. & Reinhardt, D. P. Fibrillins: from biogenesis of microfibrils to signaling functions. Curr. Top. Dev. Biol. 75, 93–123 (2006).
Heinz, A. Elastic fibers during aging and disease. Ageing Res. Rev. 66, 101255 (2021).
Lamandé, S. R. & Bateman, J. F. Genetic disorders of the extracellular matrix. Anat. Rec. 303, 1527–1542 (2020). Reference publication compiling known genetic alterations of ECM genes leading to human disorders.
Robinson, P. N. et al. The molecular genetics of Marfan syndrome and related disorders. J. Med. Genet. 43, 769–787 (2006).
Rifkin, D. B., Rifkin, W. J. & Zilberberg, L. LTBPs in biology and medicine: LTBP diseases. Matrix Biol. 71–72, 90–99 (2018).
Bateman, J. F., Shoulders, M. D. & Lamandé, S. R. Collagen misfolding mutations: the contribution of the unfolded protein response to the molecular pathology. Connect. Tissue Res. 63, 210–227 (2022).
Vanakker, O., Callewaert, B., Malfait, F. & Coucke, P. The genetics of soft connective tissue disorders. Annu. Rev. Genomics Hum. Genet. 16, 229–255 (2015).
Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell Proteom. 11, M111.014647 (2012). Seminal publication defining the ECM parts list and coining the term matrisome.
Naba, A. Ten years of extracellular matrix proteomics: accomplishments, challenges, and future perspectives. Mol. Cell Prot. 22, 100528 (2023). Review discussing the application of mass-spectrometry-based proteomic approaches to study the ECM.
Shao, X. et al. MatrisomeDB 2.0: 2023 updates to the ECM-protein knowledge database. Nucleic Acids Res. 51, D1519–D1530 (2023).
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).
Fredriksson, R., Lagerström, M. C., Lundin, L.-G. & Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).
Whittaker, C. A. et al. The echinoderm adhesome. Dev. Biol. 300, 252–266 (2006).
Hohenester, E. & Engel, J. Domain structure and organisation in extracellular matrix proteins. Matrix Biol. 21, 115–128 (2002). Review discussing the fundamental domain-based organization of ECM proteins.
Gebauer, J. M. & Naba, A. in Extracellular Matrix Omics (ed. Ricard-Blum, S.) 17–42 (Springer, 2020).
Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009).
Khoshnoodi, J., Pedchenko, V. & Hudson, B. G. Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370 (2008).
The UniProt Consortium. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).
Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).
C, C., B, G.-F. & Cm, M. Soluble defense collagens: sweeping up immune threats. Mol. Immunol. 112, 291–304 (2019).
Gay, S. & Miller, E. J. What is collagen, what is not. Ultrastruct. Pathol. 4, 365–377 (1983).
Garantziotis, S. & Savani, R. C. Hyaluronan biology: a complex balancing act of structure, function, location and context. Matrix Biol. 78–79, 1–10 (2019).
Merry, C. L. R. et al. in Essentials of Glycobiology 4th edn (eds Varki, A. et al.) Ch. 17 (Cold Spring Harbor Laboratory Press, 2022).
Ricard-Blum, S. et al. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J. https://doi.org/10.1111/febs.17107 (2024).
Iozzo, R. V. & Schaefer, L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 277, 3864–3875 (2010).
Iozzo, R. V. & Schaefer, L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42, 11–55 (2015).
Aumailley, M. The laminin family. Cell Adh. Migr. 7, 48–55 (2013).
Hohenester, E. Structural biology of laminins. Essays Biochem. 63, 285–295 (2019).
Bornstein, P. & Sage, E. H. Matricellular proteins: extracellular modulators of cell function. Curr. Opin. Cell Biol. 14, 608–616 (2002).
Murphy-Ullrich, J. E. & Sage, E. H. Revisiting the matricellular concept. Matrix Biol. 37, 1–14 (2014).
Adams, J. C. Matricellular proteins: functional insights from non-mammalian animal models. Curr. Top. Dev. Biol. 130, 39–105 (2018).
Holbourn, K. P., Acharya, K. R. & Perbal, B. The CCN family of proteins: structure–function relationships. Trends Biochem. Sci. 33, 461–473 (2008).
Chiquet-Ehrismann, R. & Tucker, R. P. Tenascins and the importance of adhesion modulation. Cold Spring Harb. Perspect. Biol. 3, a004960 (2011).
Adams, J. C. & Lawler, J. The thrombospondins. Cold Spring Harb. Perspect. Biol. 3, a009712 (2011).
de Vega, S., Iwamoto, T. & Yamada, Y. Fibulins: multiple roles in matrix structures and tissue functions. Cell. Mol. Life Sci. 66, 1890–1902 (2009).
Liu, A. Y., Zheng, H. & Ouyang, G. Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments. Matrix Biol. 37, 150–156 (2014).
Bradshaw, A. D. Diverse biological functions of the SPARC family of proteins. Int. J. Biochem. Cell Biol. 44, 480–488 (2012).
Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009). Review highlighting that, beyond their structural roles, ECM proteins convey biochemical signals directly via interaction with receptors and indirectly by modulating ECM-bound growth factor signaling.
Rifkin, D. et al. The role of LTBPs in TGF beta signaling. Dev. Dyn. 251, 95–104 (2022).
Ferrara, N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol. Biol. Cell 21, 687–690 (2010).
Apte, S. S. & Parks, W. C. Metalloproteinases: a parade of functions in matrix biology and an outlook for the future. Matrix Biol. 44–46, 1–6 (2015).
Fonović, M. & Turk, B. Cysteine cathepsins and extracellular matrix degradation. Biochim. Biophys. Acta Gen. Subj. 1840, 2560–2570 (2014).
Heinz, A. Elastases and elastokines: elastin degradation and its significance in health and disease. Crit. Rev. Biochem. Mol. Biol. 55, 252–273 (2020).
Coates-Park, S., Rich, J., Stetler-Stevenson, W. G. & Peeney, D. The TIMP protein family: diverse roles in pathophysiology. Am. J. Physiol. Cell Physiol. 326, C917–C934 (2024).
Arpino, V., Brock, M. & Gill, S. E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 44–46, 247–254 (2015).
Rawlings, N. D. et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632 (2018).
Vallet, S. D. & Ricard-Blum, S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 63, 349–364 (2019).
Naba, A. et al. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 49, 10–24 (2016).
Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).
Smith, L. M. & Kelleher, N. L. Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013).
Rekad, Z., Izzi, V., Lamba, R., Ciais, D. & Van Obberghen-Schilling, E. The alternative matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol. 111, 26–52 (2022).
Viloria, K. & Hill, N. J. Embracing the complexity of matricellular proteins: the functional and clinical significance of splice variation. Biomol. Concepts 7, 117–132 (2016).
White, E. S. & Muro, A. F. Fibronectin splice variants: understanding their multiple roles in health and disease using engineered mouse models. IUBMB Life 63, 538–546 (2011).
Astrof, S. et al. Direct test of potential roles of EIIIA and EIIIB alternatively spliced segments of fibronectin in physiological and tumor angiogenesis. Mol. Cell. Biol. 24, 8662–8670 (2004).
Murphy, P. A. & Hynes, R. O. Alternative splicing of endothelial fibronectin is induced by disturbed hemodynamics and protects against hemorrhage of the vessel wall. Arterioscler. Thromb. Vasc. Biol. 34, 2042–2050 (2014).
Murphy, P. A. et al. Alternative splicing of FN (fibronectin) regulates the composition of the arterial wall under low flow. Arterioscler. Thromb. Vasc. Biol. 41, e18–e32 (2021). Original study demonstrating for the first time that the presence of splice variants of fibronectin in the ECM impacts the overall ECM composition and has functional consequences on vascular health.
Tarli, L. et al. A high-affinity human antibody that targets tumoral blood vessels. Blood 94, 192–198 (1999).
Borsi, L. et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int. J. Cancer 102, 75–85 (2002).
Pasche, N. & Neri, D. Immunocytokines: a novel class of potent armed antibodies. Drug Discov. Today 17, 583–590 (2012).
Jailkhani, N. et al. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc. Natl Acad. Sci. USA 116, 14181–14190 (2019).
Lutz, E. A. et al. Intratumoral nanobody-IL-2 fusions that bind the tumor extracellular matrix suppress solid tumor growth in mice. PNAS Nexus 1, pgac244 (2022).
Frey, K. et al. Different patterns of fibronectin and tenascin-C splice variants expression in primary and metastatic melanoma lesions. Exp. Dermatol. 20, 685–688 (2011).
Jailkhani, N. et al. Proteomic profiling of extracellular matrix components from patient metastases identifies consistently elevated proteins for developing nanobodies that target primary tumors and metastases. Cancer Res. 83, 2052–2065 (2023).
Montecchi-Palazzi, L. et al. The PSI-MOD community standard for representation of protein modification data. Nat. Biotechnol. 26, 864–866 (2008).
Ramazi, S. & Zahiri, J. Post-translational modifications in proteins: resources, tools and prediction methods. Database 2021, baab012 (2021).
Adams, J. C. Passing the post: roles of posttranslational modifications in the form and function of extracellular matrix. Am. J. Physiol. Cell Physiol. 324, C1179–C1197 (2023).
Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019).
Myllyharju, J. & Kivirikko, K. I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20, 33–43 (2004).
Rappu, P., Salo, A. M., Myllyharju, J. & Heino, J. Role of prolyl hydroxylation in the molecular interactions of collagens. Essays Biochem. 63, 325–335 (2019).
Gjaltema, R. A. F. & Bank, R. A. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit. Rev. Biochem. Mol. Biol. 52, 74–95 (2017).
Yamauchi, M., Terajima, M. & Shiiba, M. in Post-Translational Modification of Proteins: Tools for Functional Proteomics (ed. Kannicht, C.) 309–324 (Springer, 2019).
Bathish, B., Paumann-Page, M., Paton, L. N., Kettle, A. J. & Winterbourn, C. C. Peroxidasin mediates bromination of tyrosine residues in the extracellular matrix. J. Biol. Chem. 295, 12697–12705 (2020).
Bhave, G. et al. Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis. Nat. Chem. Biol. 8, 784–790 (2012).
Peebles, K. E. et al. Peroxidasin is required for full viability in development and for maintenance of tissue mechanics in adults. Matrix Biol. 125, 1–11 (2024).
Bhave, G., Colon, S. & Ferrell, N. The sulfilimine cross-link of collagen IV contributes to kidney tubular basement membrane stiffness. Am. J. Physiol. Ren. Physiol. 313, F596–F602 (2017).
McCall, A. S. et al. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 157, 1380–1392 (2014).
Yalak, G. & Vogel, V. Extracellular phosphorylation and phosphorylated proteins: not just curiosities but physiologically important. Sci. Signal. 5, re7 (2012).
Tagliabracci, V. S. et al. A single kinase generates the majority of the secreted phosphoproteome. Cell 161, 1619–1632 (2015).
Cui, J. et al. A secretory kinase complex regulates extracellular protein phosphorylation. eLife 4, e06120 (2015).
Tagliabracci, V. S. et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 336, 1150–1153 (2012).
Bordoli, M. R. et al. A secreted tyrosine kinase acts in the extracellular environment. Cell 158, 1033–1044 (2014).
Brütsch, S. M. et al. Mesenchyme-derived vertebrate lonesome kinase controls lung organogenesis by altering the matrisome. Cell Mol. Life Sci. 80, 89 (2023).
Pantasis, S. et al. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J. Cell Sci. 135, jcs259243 (2022).
Maddala, R., Skiba, N. P. & Rao, P. V. Vertebrate lonesome kinase regulated extracellular matrix protein phosphorylation, cell shape, and adhesion in trabecular meshwork cells. J. Cell. Physiol. 232, 2447–2460 (2017).
Fitzgerald, J., Lamandé, S. R. & Bateman, J. F. Proteasomal degradation of unassembled mutant type i collagen Pro-α1(I) chains. J. Biol. Chem. 274, 27392–27398 (1999).
Vega, M. E., Kastberger, B., Wehrle-Haller, B. & Schwarzbauer, J. E. Stimulation of fibronectin matrix assembly by lysine acetylation. Cells 9, 655 (2020).
Boon, L. et al. Citrullination as a novel posttranslational modification of matrix metalloproteinases. Matrix Biol. 95, 68–83 (2021).
Sipilä, K. H. et al. Extracellular citrullination inhibits the function of matrix associated TGF-β. Matrix Biol. 55, 77–89 (2016).
Stefanelli, V. L. et al. Citrullination of fibronectin alters integrin clustering and focal adhesion stability promoting stromal cell invasion. Matrix Biol. 82, 86–104 (2019).
Schwenzer, A. et al. Identification of an immunodominant peptide from citrullinated tenascin-C as a major target for autoantibodies in rheumatoid arthritis. Ann. Rheum. Dis. 75, 1876–1883 (2016).
Uysal, H. et al. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. J. Exp. Med. 206, 449–462 (2009).
Haag, S. et al. Identification of new citrulline-specific autoantibodies, which bind to human arthritic cartilage, by mass spectrometric analysis of citrullinated type II collagen. Arthritis Rheumatol. 66, 1440–1449 (2014).
Ge, C. et al. Anti-citrullinated protein antibodies cause arthritis by cross-reactivity to joint cartilage. JCI Insight 2, e93688 (2017).
Ricard-Blum, S. & Vallet, S. D. Fragments generated upon extracellular matrix remodeling: biological regulators and potential drugs. Matrix Biol. 75–76, 170–189 (2019). Review discussing the generation of ECM cleavage products by proteolysis — called matricryptins or matrikines — and their functional implication in health and disease.
Tellman, T. V. et al. Systematic analysis of actively transcribed core matrisome genes across tissues and cell phenotypes. Matrix Biol. 111, 95–107 (2022).
Nieuwenhuis, T. O., Rosenberg, A. Z., McCall, M. N. & Halushka, M. K. Tissue, age, sex, and disease patterns of matrisome expression in GTEx transcriptome data. Sci. Rep. 11, 21549 (2021).
Naba, A., Clauser, K. R. & Hynes, R. O. Enrichment of extracellular matrix proteins from tissues and digestion into peptides for mass spectrometry analysis. J. Vis. Exp. 101, e53057 (2015).
Arteel, G. E. & Naba, A. The liver matrisome – looking beyond collagens. JHEP Rep. 2, 100115 (2020).
Socovich, A. M. & Naba, A. The cancer matrisome: from comprehensive characterization to biomarker discovery. Semin. Cell Dev. Biol. 89, 157–166 (2019).
Randles, M. J. et al. Identification of an altered matrix signature in kidney aging and disease. J. Am. Soc. Nephrol. 32, 1713–1732 (2021).
Naba, A. et al. Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver. BMC Cancer 14, 518 (2014).
Pokhilko, A. et al. Global proteomic analysis of extracellular matrix in mouse and human brain highlights relevance to cerebrovascular disease. J. Cereb. Blood Flow. Metab. 41, 2423–2438 (2021).
Downs, M., Zaia, J. & Sethi, M. K. Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. Mass Spectrom. Rev. 42, 1848–1875 (2022).
Schaffer, L. V. et al. Identification and quantification of proteoforms by mass spectrometry. Proteomics 19, e1800361 (2019).
Geiszler, D. J. et al. PTM-shepherd: analysis and summarization of post-translational and chemical modifications from open search results. Mol. Cell Proteom. 20, 100018 (2020).
van Huizen, N. A., Ijzermans, J. N. M., Burgers, P. C. & Luider, T. M. Collagen analysis with mass spectrometry. Mass Spectrom. Rev. 39, 309–335 (2020).
Bagdonaite, I. et al. Glycoproteomics. Nat. Rev. Methods Prim. 2, 47 (2022).
Raghunathan, R., Sethi, M. K., Klein, J. A. & Zaia, J. Proteomics, glycomics, and glycoproteomics of matrisome molecules. Mol. Cell Proteom. 18, 2138–2148 (2019).
Sethi, M. K., Downs, M. & Zaia, J. Serial in-solution digestion protocol for mass spectrometry-based glycomics and proteomics analysis. Mol. Omics 16, 364–376 (2020).
Rudd, P. M. et al. in Essentials of Glycobiology 4th edn (eds Varki, A. et al.) Ch. 51 (Cold Spring Harbor Laboratory Press, 2022).
Kellman, B. P. & Lewis, N. E. Big-data glycomics: tools to connect glycan biosynthesis to extracellular communication. Trends Biochem. Sci. 46, 284–300 (2021).
Koch, C. D. & Apte, S. S. in Extracellular Matrix Omics (ed. Ricard-Blum, S.) 69–82 (Springer, 2020).
Noborn, F., Nilsson, J. & Larson, G. Site-specific glycosylation of proteoglycans: a revisited frontier in proteoglycan research. Matrix Biol. 111, 289–306 (2022).
Noborn, F. et al. A glycoproteomic approach to identify novel proteoglycans. Methods Mol. Biol. 2303, 71–85 (2022).
Noborn, F., Nikpour, M., Persson, A., Nilsson, J. & Larson, G. Expanding the chondroitin sulfate glycoproteome - but how far? Front. Cell Dev. Biol. 9, 695970 (2021).
Sarohi, V., Srivastava, S. & Basak, T. Comprehensive mapping and dynamics of site-specific prolyl-hydroxylation, lysyl-hydroxylation and lysyl O-glycosylation of collagens deposited in ECM during zebrafish heart regeneration. Front. Mol. Biosci. 9, 892763 (2022).
Salo, A. M. et al. Collagen prolyl 4-hydroxylase isoenzymes I and II have sequence specificity towards different X-Pro-Gly triplets. Matrix Biol. 125, 73–87 (2024).
Wilhelm, D. et al. Tissue-specific collagen hydroxylation at GEP/GDP triplets mediated by P4HA2. Matrix Biol. 119, 141–153 (2023).
Ivanov, S. V. et al. Identification of brominated proteins in renal extracellular matrix: potential interactions with peroxidasin. Biochem. Biophys. Res. Commun. 681, 152–156 (2023).
Cruz, L. C. et al. Identification of tyrosine brominated extracellular matrix proteins in normal and fibrotic lung tissues. Redox Biol. 71, 103102 (2024).
Haack, A. M., Overall, C. M. & auf dem Keller, U. Degradomics technologies in matrisome exploration. Matrix Biol. 114, 1–17 (2022).
Rogers, L. D. & Overall, C. M. Proteolytic post-translational modification of proteins: proteomic tools and methodology. Mol. Cell Proteom. 12, 3532–3542 (2013).
Izzi, V., Davis, M. N. & Naba, A. Pan-cancer analysis of the genomic alterations and mutations of the matrisome. Cancers 12, 2046 (2020).
Agosto, L. M. et al. Deep profiling and custom databases improve detection of proteoforms generated by alternative splicing. Genome Res. 29, 2046–2055 (2019).
Burnum-Johnson, K. E. et al. New views of old proteins: clarifying the enigmatic proteome. Mol. Cell Proteom. 21, 100254 (2022).
Yurchenco, P. D. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. 3, a004911(2011).
Jayadev, R. & Sherwood, D. R. Basement membranes. Curr. Biol. 27, R207–R211 (2017).
Jayadev, R. et al. A basement membrane discovery pipeline uncovers network complexity, regulators, and human disease associations. Sci. Adv. 8, eabn2265 (2022). Study that uses a combination of computational and imaging approaches to define the basement membrane matrisome.
Loreti, M. & Sacco, A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. npj Regen. Med. 7, 16 (2022).
Mashinchian, O., Pisconti, A., Le Moal, E. & Bentzinger, C. F. The muscle stem cell niche in health and disease. Curr. Top. Dev. Biol. 126, 23–65 (2018).
Watt, F. M. & Fujiwara, H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb. Perspect. Biol. 3, a005124 (2011).
Rousselle, P., Laigle, C. & Rousselet, G. The basement membrane in epidermal polarity, stemness, and regeneration. Am. J. Physiol. Cell Physiol. 323, C1807–C1822 (2022).
Morrissey, M. A. & Sherwood, D. R. An active role for basement membrane assembly and modification in tissue sculpting. J. Cell Sci. 128, 1661–1668 (2015).
Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and how? Trends Cell Biol. 18, 560–574 (2008).
Garde, A. & Sherwood, D. R. Fueling cell invasion through extracellular matrix. Trends Cell Biol. 31, 445–456 (2021).
Hamanaka, R. B. & Mutlu, G. M. The role of metabolic reprogramming and de novo amino acid synthesis in collagen protein production by myofibroblasts: implications for organ fibrosis and cancer. Amino Acids 53, 1851–1862 (2021).
Kay, E. J., Koulouras, G. & Zanivan, S. Regulation of extracellular matrix production in activated fibroblasts: roles of amino acid metabolism in collagen synthesis. Front. Oncol. 11, 719922 (2021).
Phang, J. M. Perspectives, past, present and future: the proline cycle/proline-collagen regulatory axis. Amino Acids 53, 1967–1975 (2021).
Shen, L. et al. SLC38A2 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation. eLife 11, e76963 (2022).
Kay, E. J. et al. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix. Nat. Metab. 4, 693–710 (2022). Study identifying proline synthesis by cancer-associated fibroblasts as a key step to build the collagen ECM of the tumour microenvironment that supports cancer growth and metastasis.
Reversade, B. et al. Mutations in PYCR1 cause cutis laxa with progeroid features. Nat. Genet. 41, 1016–1021 (2009).
Schwörer, S. et al. Fibroblast pyruvate carboxylase is required for collagen production in the tumour microenvironment. Nat. Metab. 3, 1484–1499 (2021).
He, J., Fang, B., Shan, S. & Li, Q. Mechanical stiffness promotes skin fibrosis through Piezo1-mediated arginine and proline metabolism. Cell Death Discov. 9, 354 (2023).
Torrino, S. & Bertero, T. Metabo-reciprocity in cell mechanics: feeling the demands/feeding the demand. Trends Cell Biol. 32, 624–636 (2022).
Raote, I. et al. A physical mechanism of TANGO1-mediated bulky cargo export. eLife 9, e59426 (2020).
Lekszas, C. et al. Biallelic TANGO1 mutations cause a novel syndromal disease due to hampered cellular collagen secretion. eLife 9, e51319 (2020). Recent study reporting the identification of a mutation in the gene encoding TANGO1, a protein key to the trafficking of collagens through the secretory pathway and resulting clinical presentation affecting broadly connective tissues.
Ito, S. & Nagata, K. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J. Biol. Chem. 294, 2133–2141 (2019).
Ishikawa, Y., Rubin, K., Bächinger, H. P. & Kalamajski, S. The endoplasmic reticulum-resident collagen chaperone Hsp47 interacts with and promotes the secretion of decorin, fibromodulin, and lumican. J. Biol. Chem. 293, 13707–13716 (2018).
Raote, I., Saxena, S. & Malhotra, V. Sorting and export of proteins at the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 15, a041258 (2023).
Gomez-Navarro, N. & Miller, E. Protein sorting at the ER–Golgi interface. J. Cell Biol. 215, 769–778 (2016).
Lu, C.-L. et al. Collagen has a unique SEC24 preference for efficient export from the endoplasmic reticulum. Traffic 23, 81–93 (2022).
Ishikawa, Y. et al. Lysyl hydroxylase 3-mediated post-translational modifications are required for proper biosynthesis of collagen α1α1α2(IV). J. Biol. Chem. 298, 102713 (2022).
Holmes, D. F., Lu, Y., Starborg, T. & Kadler, K. E. Collagen fibril assembly and function. Curr. Top. Dev. Biol. 130, 107–142 (2018).
Lamandé, S. R. & Bateman, J. F. Collagen VI disorders: insights on form and function in the extracellular matrix and beyond. Matrix Biol. 71–72, 348–367 (2018).
McKee, K. K., Hohenester, E., Aleksandrova, M. & Yurchenco, P. D. Organization of the laminin polymer node. Matrix Biol. 98, 49–63 (2021).
Kulczyk, A. W. et al. Cryo-EM reveals the molecular basis of laminin polymerization and LN-lamininopathies. Nat. Commun. 14, 317 (2023).
Shaw, L., Sugden, C. J. & Hamill, K. J. Laminin polymerization and inherited disease: lessons from genetics. Front. Genet. 12, 707087 (2021).
Leiss, M., Beckmann, K., Girós, A., Costell, M. & Fässler, R. The role of integrin binding sites in fibronectin matrix assembly in vivo. Curr. Opin. Cell Biol. 20, 502–507 (2008).
Mao, Y. & Schwarzbauer, J. E. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 24, 389–399 (2005).
Lovett, B. M., Hill, K. E., Randolph, E. M., Wang, L. & Schwarzbauer, J. E. Nucleation of fibronectin fibril assembly requires binding between heparin and the 13th type III module of fibronectin. J. Biol. Chem. 299, 104622 (2023).
Hill, K. E., Lovett, B. M. & Schwarzbauer, J. E. Heparan sulfate is necessary for the early formation of nascent fibronectin and collagen I fibrils at matrix assembly sites. J. Biol. Chem. 298, 101479 (2022).
Benn, M. C., Weber, W., Klotzsch, E., Vogel, V. & Pot, S. A. Tissue transglutaminase in fibrosis — more than an extracellular matrix cross-linker. Curr. Opin. Biomed. Eng. 10, 156–164 (2019).
Kadler, K. E., Hill, A. & Canty-Laird, E. G. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 20, 495–501 (2008).
Graham, J., Raghunath, M. & Vogel, V. Fibrillar fibronectin plays a key role as nucleator of collagen I polymerization during macromolecular crowding-enhanced matrix assembly. Biomater. Sci. 7, 4519–4535 (2019).
Saunders, J. T. & Schwarzbauer, J. E. Fibronectin matrix as a scaffold for procollagen proteinase binding and collagen processing. MBoC 30, 2218–2226 (2019).
Sabatier, L. et al. Complex contributions of fibronectin to initiation and maturation of microfibrils. Biochem. J. 456, 283–295 (2013).
Kinsey, R. et al. Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J. Cell Sci. 121, 2696–2704 (2008).
Robinson, K. A. et al. Decorin and biglycan are necessary for maintaining collagen fibril structure, fiber realignment, and mechanical properties of mature tendons. Matrix Biol. 64, 81–93 (2017).
Przyklenk, M. et al. LTBP1 promotes fibrillin incorporation into the extracellular matrix. Matrix Biol. 110, 60–75 (2022). Recent example showing the crucial role of protein interactions and the differential role of ECM protein isoforms in the assembly of the ECM meshwork.
Godwin, A. R. F. et al. Fibrillin microfibril structure identifies long-range effects of inherited pathogenic mutations affecting a key regulatory latent TGFβ-binding site. Nat. Struct. Mol. Biol. 30, 608–618 (2023).
Clerc, O. et al. MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucleic Acids Res. 47, D376–D381 (2019). Publication reporting the development of MatrixDB, the database compiling curated interactions between ECM proteins, glycosaminoglycans, lipids and cations.
Chang, J. et al. Circadian control of the secretory pathway maintains collagen homeostasis. Nat. Cell Biol. 22, 74–86 (2020). Seminal publication demonstrating the rhythmic secretion of collagens into a sacrificial ECM with a role to protect the homeostatic tendon ECM from daily damage.
Chen, G. et al. Developmental growth plate cartilage formation suppressed by artificial light at night via inhibiting BMAL1-driven collagen hydroxylation. Cell Death Differ. 30, 1503–1516 (2023).
Sherratt, M. J. et al. Circadian rhythms in skin and other elastic tissues. Matrix Biol. 84, 97–110 (2019).
Dudek, M. et al. Circadian time series proteomics reveals daily dynamics in cartilage physiology. Osteoarthr. Cartil. 29, 739–749 (2021).
Dudek, M. et al. The clock transcription factor BMAL1 is a key regulator of extracellular matrix homeostasis and cell fate in the intervertebral disc. Matrix Biol. 122, 1–9 (2023).
Preston, R., Meng, Q.-J. & Lennon, R. The dynamic kidney matrisome - is the circadian clock in control? Matrix Biol. 114, 138–155 (2022).
Bansode, S. B. & Gacche, R. N. Glycation-induced modification of tissue-specific ECM proteins: a pathophysiological mechanism in degenerative diseases. Biochim. Biophys. Acta Gen. Subj. 1863, 129411 (2019).
Nerger, B. A. et al. Local accumulation of extracellular matrix regulates global morphogenetic patterning in the developing mammary gland. Curr. Biol. 31, 1903–1917.e6 (2021).
Barriga, E. H., Franze, K., Charras, G. & Mayor, R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554, 523–527 (2018).
Chen, D.-Y., Crest, J., Streichan, S. J. & Bilder, D. Extracellular matrix stiffness cues junctional remodeling for 3D tissue elongation. Nat. Commun. 10, 3339 (2019).
Crest, J., Diz-Muñoz, A., Chen, D.-Y., Fletcher, D. A. & Bilder, D. Organ sculpting by patterned extracellular matrix stiffness. eLife 6, e24958 (2017).
Moretti, L., Stalfort, J., Barker, T. H. & Abebayehu, D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J. Biol. Chem. 298, 101530 (2022).
Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).
Chaudhuri, O. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).
Salvador, F. et al. Lysyl oxidase–like protein LOXL2 promotes lung metastasis of breast cancer. Cancer Res. 77, 5846–5859 (2017).
Kai, F., Laklai, H. & Weaver, V. M. Force matters: biomechanical regulation of cell invasion and migration in disease. Trends Cell Biol. 26, 486–497 (2016).
Deng, B. et al. Biological role of matrix stiffness in tumor growth and treatment. J. Transl Med. 20, 540 (2022).
Caprio, N. D. & Bellas, E. Collagen stiffness and architecture regulate fibrotic gene expression in engineered adipose tissue. Adv. Biosyst. 4, 1900286 (2020).
Pastino, A. K., Greco, T. M., Mathias, R. A., Cristea, I. M. & Schwarzbauer, J. E. Stimulatory effects of advanced glycation endproducts (AGEs) on fibronectin matrix assembly. Matrix Biol. 59, 39–53 (2017).
Bansode, S. et al. Glycation changes molecular organization and charge distribution in type I collagen fibrils. Sci. Rep. 10, 3397 (2020).
Nicolas, C. et al. Carbamylation and glycation compete for collagen molecular aging in vivo. Sci. Rep. 9, 18291 (2019).
Gautieri, A., Redaelli, A., Buehler, M. J. & Vesentini, S. Age- and diabetes-related nonenzymatic crosslinks in collagen fibrils: candidate amino acids involved in advanced glycation end-products. Matrix Biol. 34, 89–95 (2014).
Lyu, C. et al. Advanced glycation end-products as mediators of the aberrant crosslinking of extracellular matrix in scarred liver tissue. Nat. Biomed. Eng. 7, 1437–1454 (2023).
Koorman, T. et al. Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment. Oncogene 41, 2458–2469 (2022).
Rojas, A., Añazco, C., González, I. & Araya, P. Extracellular matrix glycation and receptor for advanced glycation end-products activation: a missing piece in the puzzle of the association between diabetes and cancer. Carcinogenesis 39, 515–521 (2018).
Resnikoff, H. A., Miller, C. G. & Schwarzbauer, J. E. Implications of fibrotic extracellular matrix in diabetic retinopathy. Exp. Biol. Med. 247, 1093–1102 (2022).
Mead, T. J., Bhutada, S., Martin, D. R. & Apte, S. S. Proteolysis: a key post-translational modification regulating proteoglycans. Am. J. Physiol. Cell Physiol. 323, C651–C665 (2022).
Parks, W. C. & Mecham, R. Extracellular Matrix Degradation (Springer, 2011).
Ricard-Blum, S. & Salza, R. Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp. Dermatol. 23, 457–463 (2014).
de Castro Brás, L. E. & Frangogiannis, N. G. Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biol. 91–92, 176–187 (2020).
Madsen, D. H. et al. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation. J. Biol. Chem. 282, 27037–27045 (2007).
Jürgensen, H. J. et al. Complex determinants in specific members of the mannose receptor family govern collagen endocytosis. J. Biol. Chem. 289, 7935–7947 (2014).
Yeung, C.-Y. C. et al. Mmp14 is required for matrisome homeostasis and circadian rhythm in fibroblasts. Matrix Biol. 124, 8–22 (2023).
Nørregaard, K. S. et al. The endocytic receptor uPARAP is a regulator of extracellular thrombospondin-1. Matrix Biol. 111, 307–328 (2022).
Dankovich, T. M. et al. Extracellular matrix remodeling through endocytosis and resurfacing of tenascin-R. Nat. Commun. 12, 7129 (2021).
Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).
Grillet, B. et al. Matrix metalloproteinases in arthritis: towards precision medicine. Nat. Rev. Rheumatol. 19, 363–377 (2023).
Åhrman, E. et al. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. J. Proteom. 189, 23–33 (2018).
Burgstaller, G. et al. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur. Respir. J. 50, 1601805 (2017).
Hsueh, M.-F., Önnerfjord, P. & Kraus, V. B. Biomarkers and proteomic analysis of osteoarthritis. Matrix Biol. 39, 56–66 (2014).
Jensen, C. et al. Non-invasive biomarkers derived from the extracellular matrix associate with response to immune checkpoint blockade (anti-CTLA-4) in metastatic melanoma patients. J. Immunother. Cancer 6, 152 (2018).
Genovese, F. & Karsdal, M. A. Protein degradation fragments as diagnostic and prognostic biomarkers of connective tissue diseases: understanding the extracellular matrix message and implication for current and future serological biomarkers. Expert Rev. Proteom. 13, 213–225 (2016).
Nielsen, S. H. et al. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biol. 75-76, 43–57 (2017).
Luo, B.-H. & Springer, T. A. Integrin structures and conformational signaling. Curr. Opin. Cell Biol. 18, 579–586 (2006).
Harburger, D. S. & Calderwood, D. A. Integrin signalling at a glance. J. Cell Sci. 122, 159–163 (2009).
Lu, J. et al. Basement membrane regulates fibronectin organization using sliding focal adhesions driven by a contractile Winch. Dev. Cell 52, 631–646.e4 (2020).
Hastings, J. F., Skhinas, J. N., Fey, D., Croucher, D. R. & Cox, T. R. The extracellular matrix as a key regulator of intracellular signalling networks. Br. J. Pharmacol. 176, 82–92 (2019).
Moreno-Layseca, P., Icha, J., Hamidi, H. & Ivaska, J. Integrin trafficking in cells and tissues. Nat. Cell Biol. 21, 122–132 (2019).
Alanko, J. & Ivaska, J. Endosomes: emerging platforms for integrin-mediated FAK signalling. Trends Cell Biol. 26, 391–398 (2016). Review discussing recently discovered mechanisms of signal transduction downstream of integrins from the endocytic compartment.
Ariosa-Morejon, Y. et al. Age-dependent changes in protein incorporation into collagen-rich tissues of mice by in vivo pulsed SILAC labelling. eLife 10, e66635 (2021).
Statzer, C., Park, J. Y. C. & Ewald, C. Y. Extracellular matrix dynamics as an emerging yet understudied hallmark of aging and longevity. Aging Dis. 14, 670–693 (2023).
Angelidis, I. et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10, 963 (2019).
Santinha, D. et al. Remodeling of the cardiac extracellular matrix proteome during chronological and pathological aging. Mol. Cell Proteom. 23, 100706 (2024).
Tam, V. et al. DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics. eLife 9, e64940 (2020).
Eckersley, A. et al. Peptide location fingerprinting identifies species- and tissue-conserved structural remodelling of proteins as a consequence of ageing and disease. Matrix Biol. 114, 108–137 (2022).
Chaqour, B. & Karrasch, C. Eyeing the extracellular matrix in vascular development and microvascular diseases and bridging the divide between vascular mechanics and function. Int. J. Mol. Sci. 21, 3487 (2020).
Bianchi-Frias, D. et al. The aged microenvironment influences the tumorigenic potential of malignant prostate epithelial cells. Mol. Cancer Res. 17, 321–331 (2019).
Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).
Habashi, J. P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).
Hofmann Bowman, M. A., Eagle, K. A. & Milewicz, D. M. Update on clinical trials of losartan with and without β-blockers to block aneurysm growth in patients with Marfan syndrome: a review. JAMA Cardiol. 4, 702–707 (2019).
Sampaio, L. P. et al. Topical losartan inhibits corneal scarring fibrosis and collagen type IV deposition after Descemet’s membrane-endothelial excision in rabbits. Exp. Eye Res. 216, 108940 (2022).
Vos, M. B. et al. Randomized placebo‐controlled trial of losartan for pediatric NAFLD. Hepatology 76, 429 (2022).
Nyström, A., Bernasconi, R. & Bornert, O. Therapies for genetic extracellular matrix diseases of the skin. Matrix Biol. 71–72, 330–347 (2018).
Bornert, O. et al. QR-313, an antisense oligonucleotide, shows therapeutic eficacy for treatment of dominant and recessive dystrophic epidermolysis bullosa: a preclinical study. J. Invest. Dermatol. 141, 883–893.e6 (2021).
Crockett, D. K. et al. The Alport syndrome COL4A5 variant database. Hum. Mutat. 31, E1652–E1657 (2010).
Omachi, K., Kai, H., Roberge, M. & Miner, J. H. NanoLuc reporters identify COL4A5 nonsense mutations susceptible to drug-induced stop codon readthrough. iScience 25, 103891 (2022).
Dabrowski, M., Bukowy-Bieryllo, Z. & Zietkiewicz, E. Advances in therapeutic use of a drug-stimulated translational readthrough of premature termination codons. Mol. Med. 24, 25 (2018).
Raab-Westphal, S., Marshall, J. F. & Goodman, S. L. Integrins as therapeutic targets: successes and cancers. Cancers 9, 110 (2017).
Slack, R. J., Macdonald, S. J. F., Roper, J. A., Jenkins, R. G. & Hatley, R. J. D. Emerging therapeutic opportunities for integrin inhibitors. Nat. Rev. Drug Discov. 21, 60–78 (2022). Review revisiting the potential of targeting integrins to achieve clinical benefits.
Hamidi, H. & Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548 (2018).
Fields, G. B. The rebirth of matrix metalloproteinase inhibitors: moving beyond the dogma. Cells 8, 984 (2019).
Zhao, M. et al. Targeting fibrosis: mechanisms and clinical trials. Signal Transduct. Target. Ther. 7, 206 (2022).
Nicolas-Boluda, A. et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. eLife 10, e58688 (2021).
Chitty, J. L. et al. A first-in-class pan-lysyl oxidase inhibitor impairs stromal remodeling and enhances gemcitabine response and survival in pancreatic cancer. Nat. Cancer 4, 1326–1344 (2023).
Jain, S. et al. Advances and prospects for the human biomolecular atlas program (HuBMAP). Nat. Cell Biol. 25, 1089–1100 (2023).
Acknowledgements
Research in the Naba laboratory is supported in part by grants from the NIH (HG012680, CA261642, GM148423). The author thanks her mentor R. O. Hynes for an introduction to the wonders of the extracellular matrix. The author thanks S. Ricard-Blum for her critical reading of the manuscript and excellent suggestions. The author also acknowledges D. Pally, postdoctoral fellow in the Naba laboratory, for proposing the term ‘matritherapy’. The author apologizes to colleagues whose work could not be cited owing to space limitation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The Naba laboratory holds a sponsored research agreement with Boehringer-Ingelheim for work not related to the content of this manuscript. A.N. holds a consulting agreement with XM Therapeutics, AbbVie, and RA Capital.
Peer review
Peer review information
Nature Reviews Molecular Cell Biology thanks Thomas Cox, Nikos Karamanos and Kenneth M. Yamada for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
basement membraneBASE: https://bmbase.manchester.ac.uk/
MatrisomeDB: https://matrisomedb.org
MatrixDB: http://matrixdb.univ-lyon1.fr/
MEROPS peptidase database: https://www.ebi.ac.uk/merops/
Proteomics Standards Initiative: https://hupo.org/Proteomics-Standards-Initiative-(PSI)
SMART: http://smart.embl-heidelberg.de
The Matrixome Project (archived website): https://dbarchive.biosciencedbc.jp/archive/matrixome/bm/AboutProject/DesProject/description.html
The Matrisome Project website: https://matrisome.org
Glossary
- Epidermolysis bullosa
-
Group of rare genetic skin disorders characterized clinically by skin and mucosal blistering and skin fragility.
- Immune checkpoint inhibitors
-
Drugs that block proteins involved in immune checkpoints, the pathways that regulate activation of the immune system. In cancer imunotherapy, these drugs (for example, anti-CTLA4, anti-PD1) are used to activate antitumour immunity.
- Intimal rupture
-
Rupture of the innermost — intimal — layer of a blood vessel wall. The tunica intima is composed of the endothelium and a subendothelial extracellular matrix including a basement membrane and elastic layer in arteries.
- Liquid chromatography coupled to tandem mass spectrometry
-
(LC–MS/MS). Analytical proteomic method that combines peptide separation by LC and the subsequent analysis of these peptides by tandem MS.
- Premature termination codon readthrough drugs
-
Drugs that allow the translation machinery to read through a premature stop codon and promote the synthesis of a full-length protein.
- Proteoforms
-
Different molecular forms of a protein produced from a single gene. Can arise from single amino acid variant, alternative splicing or post-translational modification.
- Schwann cells
-
Glial cells that form the myelin sheath of axons of the peripheral nervous system.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Naba, A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00767-3
Accepted:
Published:
DOI: https://doi.org/10.1038/s41580-024-00767-3