Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of assembly and remodelling of the extracellular matrix

Abstract

The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of ‘matritherapies’, that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diversity of the core matrisome components.
Fig. 2: Diversity of the matrisome-associated components.
Fig. 3: Structural diversity of extracellular matrices.
Fig. 4: Synthesis, secretion and supramolecular assembly of collagens.
Fig. 5: Mechanism of fibronectin fibrillogenesis.
Fig. 6: Dynamic reciprocity and mechanisms of ECM remodelling.
Fig. 7: Modes of action of matritherapies.

Similar content being viewed by others

References

  1. Hynes, R. O. & Naba, A. Overview of the matrisome — an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4, a004903 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Karamanos, N. K. et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 288, 6850–6912 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Brunet, T. & King, N. The origin of animal multicellularity and cell differentiation. Dev. Cell 43, 124–140 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Draper, G. W., Shoemark, D. K. & Adams, J. C. Modelling the early evolution of extracellular matrix from modern ctenophores and sponges. Essays Biochem. 63, 389–405 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Engel, J. Domain organizations of modular extracellular matrix proteins and their evolution. Matrix Biol. 15, 295–299 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Huxley-Jones, J., Pinney, J. W., Archer, J., Robertson, D. L. & Boot-Handford, R. P. Back to basics - how the evolution of the extracellular matrix underpinned vertebrate evolution. Int. J. Exp. Pathol. 90, 95–100 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hynes, R. O. & Zhao, Q. The evolution of cell adhesion. J. Cell Biol. 150, F89–F96 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Hynes, R. O. The evolution of metazoan extracellular matrix. J. Cell Biol. 196, 671–679 (2012). Review discussing the mechanisms of ECM gene expansion and complexification that have accompanied the evolution of multicellular organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. King, N. et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783–788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Özbek, S., Balasubramanian, P. G., Chiquet-Ehrismann, R., Tucker, R. P. & Adams, J. C. The evolution of extracellular matrix. Mol. Biol. Cell 21, 4300–4305 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rokas, A. The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu. Rev. Genet. 42, 235–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Shoemark, D. K. et al. Emergence of a thrombospondin superfamily at the origin of metazoans. Mol. Biol. Evol. 36, 1220–1238 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Williams, F., Tew, H. A., Paul, C. E. & Adams, J. C. The predicted secretomes of Monosiga brevicollis and Capsaspora owczarzaki, close unicellular relatives of metazoans, reveal new insights into the evolution of the metazoan extracellular matrix. Matrix Biol. 37, 60–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 3, a004978 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Revell, C. K. et al. Collagen fibril assembly: new approaches to unanswered questions. Matrix Biol. 12, 100079 (2021).

    Article  CAS  Google Scholar 

  16. Heino, J. The collagen family members as cell adhesion proteins. BioEssays 29, 1001–1010 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Schwarzbauer, J. E. & DeSimone, D. W. Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb. Perspect. Biol. 3, a005041 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kozel, B. A. & Mecham, R. P. Elastic fiber ultrastructure and assembly. Matrix Biol. 84, 31–40 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ozsvar, J. et al. Tropoelastin and elastin assembly. Front. Bioeng. Biotechnol. 9, 643110 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Godwin, A. R. F. et al. The role of fibrillin and microfibril binding proteins in elastin and elastic fibre assembly. Matrix Biol. 84, 17–30 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thomson, J. et al. Fibrillin microfibrils and elastic fibre proteins: functional interactions and extracellular regulation of growth factors. Semin. Cell Dev. Biol. 89, 109–117 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eckersley, A. et al. Structural and compositional diversity of fibrillin microfibrils in human tissues. J. Biol. Chem. 293, 5117–5133 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vindin, H., Mithieux, S. M. & Weiss, A. S. Elastin architecture. Matrix Biol. 84, 4–16 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Saraswathibhatla, A., Indana, D. & Chaudhuri, O. Cell–extracellular matrix mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 24, 495–516 (2023). In-depth review discussing the mechanisms of mechanotransduction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jansen, K. A., Atherton, P. & Ballestrem, C. Mechanotransduction at the cell–matrix interface. Semin. Cell Dev. Biol. 71, 75–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwartz, M. A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol. 2, a005066 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanchanawong, P. & Calderwood, D. A. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat. Rev. Mol. Cell Biol. 24, 142–161 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Chastney, M. R., Conway, J. R. W. & Ivaska, J. Integrin adhesion complexes. Curr. Biol. 31, R536–R542 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Campbell, I. D. & Humphries, M. J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3, a004994 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Itoh, Y. Discoidin domain receptors: microenvironment sensors that promote cellular migration and invasion. Cell Adh. Migr. 12, 378–385 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Humphries, J. D., Paul, N. R., Humphries, M. J. & Morgan, M. R. Emerging properties of adhesion complexes: what are they and what do they do? Trends Cell Biol. 25, 388–397 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Geiger, B. & Yamada, K. M. Molecular architecture and function of matrix adhesions. Cold Spring Harb. Perspect. Biol. 3, a005033 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pally, D. & Naba, A. Extracellular matrix dynamics: a key regulator of cell migration across length-scales and systems. Curr. Opin. Cell Biol. 86, 102309 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Yamada, K. M. et al. Extracellular matrix dynamics in cell migration, invasion and tissue morphogenesis. Int. J. Exp. Pathol. 100, 144–152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, M. J. & Jones, M. C. Cell cycle control by cell–matrix interactions. Curr. Opin. Cell Biol. 86, 102288 (2023).

    Article  PubMed  Google Scholar 

  40. Frisch, S. M. & Screaton, R. A. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Frisch, S. M. & Francis, H. Disruption of epithelial cell–matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Karamanos, N. K., Theocharis, A. D., Neill, T. & Iozzo, R. V. Matrix modeling and remodeling: a biological interplay regulating tissue homeostasis and diseases. Matrix Biol. 75–76, 1–11 (2019).

    Article  PubMed  Google Scholar 

  43. Walma, D. A. C. & Yamada, K. M. The extracellular matrix in development. Development 147, dev175596 (2020). Comprehensive review describing the multifaceted roles of the ECM in developmental processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dzamba, B. J. & DeSimone, D. W. Extracellular matrix (ECM) and the sculpting of embryonic tissues. Curr. Top. Dev. Biol. 130, 245–274 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Rozario, T. & DeSimone, D. W. The extracellular matrix In development and morphogenesis: a dynamic view. Dev. Biol. 341, 126–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Theocharis, A. D., Manou, D. & Karamanos, N. K. The extracellular matrix as a multitasking player in disease. FEBS J. 286, 2830–2869 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cox, T. R. The matrix in cancer. Nat. Rev. Cancer 21, 217–238 (2021). Comprehensive review describing the changes in ECM composition and mechanical and signalling properties that accompany the steps of cancer progression.

    Article  CAS  PubMed  Google Scholar 

  49. Herrera, J., Henke, C. A. & Bitterman, P. B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Invest. 128, 45–53 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Younesi, F. S., Miller, A. E., Barker, T. H., Rossi, F. M. V. & Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 25, 617–638 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Canty, E. G. & Kadler, K. E. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Singh, P., Carraher, C. & Schwarzbauer, J. E. Assembly of fibronectin extracellular matrix. Annu. Rev. Cell Dev. Biol. 26, 397–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Handford, P. A., Downing, A. K., Reinhardt, D. P. & Sakai, L. Y. Fibrillin: from domain structure to supramolecular assembly. Matrix Biol. 19, 457–470 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Hubmacher, D., Tiedemann, K. & Reinhardt, D. P. Fibrillins: from biogenesis of microfibrils to signaling functions. Curr. Top. Dev. Biol. 75, 93–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Heinz, A. Elastic fibers during aging and disease. Ageing Res. Rev. 66, 101255 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Lamandé, S. R. & Bateman, J. F. Genetic disorders of the extracellular matrix. Anat. Rec. 303, 1527–1542 (2020). Reference publication compiling known genetic alterations of ECM genes leading to human disorders.

    Article  Google Scholar 

  57. Robinson, P. N. et al. The molecular genetics of Marfan syndrome and related disorders. J. Med. Genet. 43, 769–787 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rifkin, D. B., Rifkin, W. J. & Zilberberg, L. LTBPs in biology and medicine: LTBP diseases. Matrix Biol. 71–72, 90–99 (2018).

    Article  PubMed  Google Scholar 

  59. Bateman, J. F., Shoulders, M. D. & Lamandé, S. R. Collagen misfolding mutations: the contribution of the unfolded protein response to the molecular pathology. Connect. Tissue Res. 63, 210–227 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vanakker, O., Callewaert, B., Malfait, F. & Coucke, P. The genetics of soft connective tissue disorders. Annu. Rev. Genomics Hum. Genet. 16, 229–255 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell Proteom. 11, M111.014647 (2012). Seminal publication defining the ECM parts list and coining the term matrisome.

    Article  Google Scholar 

  62. Naba, A. Ten years of extracellular matrix proteomics: accomplishments, challenges, and future perspectives. Mol. Cell Prot. 22, 100528 (2023). Review discussing the application of mass-spectrometry-based proteomic approaches to study the ECM.

    Article  CAS  Google Scholar 

  63. Shao, X. et al. MatrisomeDB 2.0: 2023 updates to the ECM-protein knowledge database. Nucleic Acids Res. 51, D1519–D1530 (2023).

    Article  PubMed  Google Scholar 

  64. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Fredriksson, R., Lagerström, M. C., Lundin, L.-G. & Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Whittaker, C. A. et al. The echinoderm adhesome. Dev. Biol. 300, 252–266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hohenester, E. & Engel, J. Domain structure and organisation in extracellular matrix proteins. Matrix Biol. 21, 115–128 (2002). Review discussing the fundamental domain-based organization of ECM proteins.

    Article  CAS  PubMed  Google Scholar 

  68. Gebauer, J. M. & Naba, A. in Extracellular Matrix Omics (ed. Ricard-Blum, S.) 17–42 (Springer, 2020).

  69. Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Khoshnoodi, J., Pedchenko, V. & Hudson, B. G. Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. The UniProt Consortium. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).

    Article  Google Scholar 

  72. Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. C, C., B, G.-F. & Cm, M. Soluble defense collagens: sweeping up immune threats. Mol. Immunol. 112, 291–304 (2019).

    Article  Google Scholar 

  74. Gay, S. & Miller, E. J. What is collagen, what is not. Ultrastruct. Pathol. 4, 365–377 (1983).

    Article  CAS  PubMed  Google Scholar 

  75. Garantziotis, S. & Savani, R. C. Hyaluronan biology: a complex balancing act of structure, function, location and context. Matrix Biol. 78–79, 1–10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Merry, C. L. R. et al. in Essentials of Glycobiology 4th edn (eds Varki, A. et al.) Ch. 17 (Cold Spring Harbor Laboratory Press, 2022).

  77. Ricard-Blum, S. et al. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J. https://doi.org/10.1111/febs.17107 (2024).

    Article  PubMed  Google Scholar 

  78. Iozzo, R. V. & Schaefer, L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 277, 3864–3875 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Iozzo, R. V. & Schaefer, L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42, 11–55 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aumailley, M. The laminin family. Cell Adh. Migr. 7, 48–55 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hohenester, E. Structural biology of laminins. Essays Biochem. 63, 285–295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bornstein, P. & Sage, E. H. Matricellular proteins: extracellular modulators of cell function. Curr. Opin. Cell Biol. 14, 608–616 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Murphy-Ullrich, J. E. & Sage, E. H. Revisiting the matricellular concept. Matrix Biol. 37, 1–14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Adams, J. C. Matricellular proteins: functional insights from non-mammalian animal models. Curr. Top. Dev. Biol. 130, 39–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Holbourn, K. P., Acharya, K. R. & Perbal, B. The CCN family of proteins: structure–function relationships. Trends Biochem. Sci. 33, 461–473 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chiquet-Ehrismann, R. & Tucker, R. P. Tenascins and the importance of adhesion modulation. Cold Spring Harb. Perspect. Biol. 3, a004960 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Adams, J. C. & Lawler, J. The thrombospondins. Cold Spring Harb. Perspect. Biol. 3, a009712 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. de Vega, S., Iwamoto, T. & Yamada, Y. Fibulins: multiple roles in matrix structures and tissue functions. Cell. Mol. Life Sci. 66, 1890–1902 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Liu, A. Y., Zheng, H. & Ouyang, G. Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments. Matrix Biol. 37, 150–156 (2014).

    Article  PubMed  Google Scholar 

  90. Bradshaw, A. D. Diverse biological functions of the SPARC family of proteins. Int. J. Biochem. Cell Biol. 44, 480–488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009). Review highlighting that, beyond their structural roles, ECM proteins convey biochemical signals directly via interaction with receptors and indirectly by modulating ECM-bound growth factor signaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rifkin, D. et al. The role of LTBPs in TGF beta signaling. Dev. Dyn. 251, 95–104 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Ferrara, N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol. Biol. Cell 21, 687–690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Apte, S. S. & Parks, W. C. Metalloproteinases: a parade of functions in matrix biology and an outlook for the future. Matrix Biol. 44–46, 1–6 (2015).

    Article  PubMed  Google Scholar 

  95. Fonović, M. & Turk, B. Cysteine cathepsins and extracellular matrix degradation. Biochim. Biophys. Acta Gen. Subj. 1840, 2560–2570 (2014).

    Article  Google Scholar 

  96. Heinz, A. Elastases and elastokines: elastin degradation and its significance in health and disease. Crit. Rev. Biochem. Mol. Biol. 55, 252–273 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Coates-Park, S., Rich, J., Stetler-Stevenson, W. G. & Peeney, D. The TIMP protein family: diverse roles in pathophysiology. Am. J. Physiol. Cell Physiol. 326, C917–C934 (2024).

    Article  PubMed  Google Scholar 

  98. Arpino, V., Brock, M. & Gill, S. E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 44–46, 247–254 (2015).

    Article  PubMed  Google Scholar 

  99. Rawlings, N. D. et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Vallet, S. D. & Ricard-Blum, S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 63, 349–364 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Naba, A. et al. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 49, 10–24 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Smith, L. M. & Kelleher, N. L. Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rekad, Z., Izzi, V., Lamba, R., Ciais, D. & Van Obberghen-Schilling, E. The alternative matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol. 111, 26–52 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Viloria, K. & Hill, N. J. Embracing the complexity of matricellular proteins: the functional and clinical significance of splice variation. Biomol. Concepts 7, 117–132 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. White, E. S. & Muro, A. F. Fibronectin splice variants: understanding their multiple roles in health and disease using engineered mouse models. IUBMB Life 63, 538–546 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Astrof, S. et al. Direct test of potential roles of EIIIA and EIIIB alternatively spliced segments of fibronectin in physiological and tumor angiogenesis. Mol. Cell. Biol. 24, 8662–8670 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Murphy, P. A. & Hynes, R. O. Alternative splicing of endothelial fibronectin is induced by disturbed hemodynamics and protects against hemorrhage of the vessel wall. Arterioscler. Thromb. Vasc. Biol. 34, 2042–2050 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Murphy, P. A. et al. Alternative splicing of FN (fibronectin) regulates the composition of the arterial wall under low flow. Arterioscler. Thromb. Vasc. Biol. 41, e18–e32 (2021). Original study demonstrating for the first time that the presence of splice variants of fibronectin in the ECM impacts the overall ECM composition and has functional consequences on vascular health.

    Article  CAS  PubMed  Google Scholar 

  110. Tarli, L. et al. A high-affinity human antibody that targets tumoral blood vessels. Blood 94, 192–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Borsi, L. et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int. J. Cancer 102, 75–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Pasche, N. & Neri, D. Immunocytokines: a novel class of potent armed antibodies. Drug Discov. Today 17, 583–590 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Jailkhani, N. et al. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc. Natl Acad. Sci. USA 116, 14181–14190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lutz, E. A. et al. Intratumoral nanobody-IL-2 fusions that bind the tumor extracellular matrix suppress solid tumor growth in mice. PNAS Nexus 1, pgac244 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Frey, K. et al. Different patterns of fibronectin and tenascin-C splice variants expression in primary and metastatic melanoma lesions. Exp. Dermatol. 20, 685–688 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Jailkhani, N. et al. Proteomic profiling of extracellular matrix components from patient metastases identifies consistently elevated proteins for developing nanobodies that target primary tumors and metastases. Cancer Res. 83, 2052–2065 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Montecchi-Palazzi, L. et al. The PSI-MOD community standard for representation of protein modification data. Nat. Biotechnol. 26, 864–866 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Ramazi, S. & Zahiri, J. Post-translational modifications in proteins: resources, tools and prediction methods. Database 2021, baab012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Adams, J. C. Passing the post: roles of posttranslational modifications in the form and function of extracellular matrix. Am. J. Physiol. Cell Physiol. 324, C1179–C1197 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Myllyharju, J. & Kivirikko, K. I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20, 33–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Rappu, P., Salo, A. M., Myllyharju, J. & Heino, J. Role of prolyl hydroxylation in the molecular interactions of collagens. Essays Biochem. 63, 325–335 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gjaltema, R. A. F. & Bank, R. A. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit. Rev. Biochem. Mol. Biol. 52, 74–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Yamauchi, M., Terajima, M. & Shiiba, M. in Post-Translational Modification of Proteins: Tools for Functional Proteomics (ed. Kannicht, C.) 309–324 (Springer, 2019).

  125. Bathish, B., Paumann-Page, M., Paton, L. N., Kettle, A. J. & Winterbourn, C. C. Peroxidasin mediates bromination of tyrosine residues in the extracellular matrix. J. Biol. Chem. 295, 12697–12705 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bhave, G. et al. Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis. Nat. Chem. Biol. 8, 784–790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Peebles, K. E. et al. Peroxidasin is required for full viability in development and for maintenance of tissue mechanics in adults. Matrix Biol. 125, 1–11 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. Bhave, G., Colon, S. & Ferrell, N. The sulfilimine cross-link of collagen IV contributes to kidney tubular basement membrane stiffness. Am. J. Physiol. Ren. Physiol. 313, F596–F602 (2017).

    Article  CAS  Google Scholar 

  129. McCall, A. S. et al. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 157, 1380–1392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yalak, G. & Vogel, V. Extracellular phosphorylation and phosphorylated proteins: not just curiosities but physiologically important. Sci. Signal. 5, re7 (2012).

    Article  PubMed  Google Scholar 

  131. Tagliabracci, V. S. et al. A single kinase generates the majority of the secreted phosphoproteome. Cell 161, 1619–1632 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cui, J. et al. A secretory kinase complex regulates extracellular protein phosphorylation. eLife 4, e06120 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Tagliabracci, V. S. et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 336, 1150–1153 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bordoli, M. R. et al. A secreted tyrosine kinase acts in the extracellular environment. Cell 158, 1033–1044 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Brütsch, S. M. et al. Mesenchyme-derived vertebrate lonesome kinase controls lung organogenesis by altering the matrisome. Cell Mol. Life Sci. 80, 89 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Pantasis, S. et al. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J. Cell Sci. 135, jcs259243 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Maddala, R., Skiba, N. P. & Rao, P. V. Vertebrate lonesome kinase regulated extracellular matrix protein phosphorylation, cell shape, and adhesion in trabecular meshwork cells. J. Cell. Physiol. 232, 2447–2460 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fitzgerald, J., Lamandé, S. R. & Bateman, J. F. Proteasomal degradation of unassembled mutant type i collagen Pro-α1(I) chains. J. Biol. Chem. 274, 27392–27398 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Vega, M. E., Kastberger, B., Wehrle-Haller, B. & Schwarzbauer, J. E. Stimulation of fibronectin matrix assembly by lysine acetylation. Cells 9, 655 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Boon, L. et al. Citrullination as a novel posttranslational modification of matrix metalloproteinases. Matrix Biol. 95, 68–83 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Sipilä, K. H. et al. Extracellular citrullination inhibits the function of matrix associated TGF-β. Matrix Biol. 55, 77–89 (2016).

    Article  PubMed  Google Scholar 

  142. Stefanelli, V. L. et al. Citrullination of fibronectin alters integrin clustering and focal adhesion stability promoting stromal cell invasion. Matrix Biol. 82, 86–104 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Schwenzer, A. et al. Identification of an immunodominant peptide from citrullinated tenascin-C as a major target for autoantibodies in rheumatoid arthritis. Ann. Rheum. Dis. 75, 1876–1883 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Uysal, H. et al. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. J. Exp. Med. 206, 449–462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Haag, S. et al. Identification of new citrulline-specific autoantibodies, which bind to human arthritic cartilage, by mass spectrometric analysis of citrullinated type II collagen. Arthritis Rheumatol. 66, 1440–1449 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Ge, C. et al. Anti-citrullinated protein antibodies cause arthritis by cross-reactivity to joint cartilage. JCI Insight 2, e93688 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ricard-Blum, S. & Vallet, S. D. Fragments generated upon extracellular matrix remodeling: biological regulators and potential drugs. Matrix Biol. 75–76, 170–189 (2019). Review discussing the generation of ECM cleavage products by proteolysis — called matricryptins or matrikines — and their functional implication in health and disease.

    Article  PubMed  Google Scholar 

  148. Tellman, T. V. et al. Systematic analysis of actively transcribed core matrisome genes across tissues and cell phenotypes. Matrix Biol. 111, 95–107 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Nieuwenhuis, T. O., Rosenberg, A. Z., McCall, M. N. & Halushka, M. K. Tissue, age, sex, and disease patterns of matrisome expression in GTEx transcriptome data. Sci. Rep. 11, 21549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Naba, A., Clauser, K. R. & Hynes, R. O. Enrichment of extracellular matrix proteins from tissues and digestion into peptides for mass spectrometry analysis. J. Vis. Exp. 101, e53057 (2015).

    Google Scholar 

  151. Arteel, G. E. & Naba, A. The liver matrisome – looking beyond collagens. JHEP Rep. 2, 100115 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Socovich, A. M. & Naba, A. The cancer matrisome: from comprehensive characterization to biomarker discovery. Semin. Cell Dev. Biol. 89, 157–166 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Randles, M. J. et al. Identification of an altered matrix signature in kidney aging and disease. J. Am. Soc. Nephrol. 32, 1713–1732 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Naba, A. et al. Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver. BMC Cancer 14, 518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Pokhilko, A. et al. Global proteomic analysis of extracellular matrix in mouse and human brain highlights relevance to cerebrovascular disease. J. Cereb. Blood Flow. Metab. 41, 2423–2438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Downs, M., Zaia, J. & Sethi, M. K. Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. Mass Spectrom. Rev. 42, 1848–1875 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Schaffer, L. V. et al. Identification and quantification of proteoforms by mass spectrometry. Proteomics 19, e1800361 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Geiszler, D. J. et al. PTM-shepherd: analysis and summarization of post-translational and chemical modifications from open search results. Mol. Cell Proteom. 20, 100018 (2020).

    Article  Google Scholar 

  159. van Huizen, N. A., Ijzermans, J. N. M., Burgers, P. C. & Luider, T. M. Collagen analysis with mass spectrometry. Mass Spectrom. Rev. 39, 309–335 (2020).

    Article  PubMed  Google Scholar 

  160. Bagdonaite, I. et al. Glycoproteomics. Nat. Rev. Methods Prim. 2, 47 (2022).

    Article  Google Scholar 

  161. Raghunathan, R., Sethi, M. K., Klein, J. A. & Zaia, J. Proteomics, glycomics, and glycoproteomics of matrisome molecules. Mol. Cell Proteom. 18, 2138–2148 (2019).

    Article  Google Scholar 

  162. Sethi, M. K., Downs, M. & Zaia, J. Serial in-solution digestion protocol for mass spectrometry-based glycomics and proteomics analysis. Mol. Omics 16, 364–376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rudd, P. M. et al. in Essentials of Glycobiology 4th edn (eds Varki, A. et al.) Ch. 51 (Cold Spring Harbor Laboratory Press, 2022).

  164. Kellman, B. P. & Lewis, N. E. Big-data glycomics: tools to connect glycan biosynthesis to extracellular communication. Trends Biochem. Sci. 46, 284–300 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Koch, C. D. & Apte, S. S. in Extracellular Matrix Omics (ed. Ricard-Blum, S.) 69–82 (Springer, 2020).

  166. Noborn, F., Nilsson, J. & Larson, G. Site-specific glycosylation of proteoglycans: a revisited frontier in proteoglycan research. Matrix Biol. 111, 289–306 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Noborn, F. et al. A glycoproteomic approach to identify novel proteoglycans. Methods Mol. Biol. 2303, 71–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Noborn, F., Nikpour, M., Persson, A., Nilsson, J. & Larson, G. Expanding the chondroitin sulfate glycoproteome - but how far? Front. Cell Dev. Biol. 9, 695970 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sarohi, V., Srivastava, S. & Basak, T. Comprehensive mapping and dynamics of site-specific prolyl-hydroxylation, lysyl-hydroxylation and lysyl O-glycosylation of collagens deposited in ECM during zebrafish heart regeneration. Front. Mol. Biosci. 9, 892763 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Salo, A. M. et al. Collagen prolyl 4-hydroxylase isoenzymes I and II have sequence specificity towards different X-Pro-Gly triplets. Matrix Biol. 125, 73–87 (2024).

    Article  CAS  PubMed  Google Scholar 

  171. Wilhelm, D. et al. Tissue-specific collagen hydroxylation at GEP/GDP triplets mediated by P4HA2. Matrix Biol. 119, 141–153 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Ivanov, S. V. et al. Identification of brominated proteins in renal extracellular matrix: potential interactions with peroxidasin. Biochem. Biophys. Res. Commun. 681, 152–156 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Cruz, L. C. et al. Identification of tyrosine brominated extracellular matrix proteins in normal and fibrotic lung tissues. Redox Biol. 71, 103102 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Haack, A. M., Overall, C. M. & auf dem Keller, U. Degradomics technologies in matrisome exploration. Matrix Biol. 114, 1–17 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Rogers, L. D. & Overall, C. M. Proteolytic post-translational modification of proteins: proteomic tools and methodology. Mol. Cell Proteom. 12, 3532–3542 (2013).

    Article  CAS  Google Scholar 

  176. Izzi, V., Davis, M. N. & Naba, A. Pan-cancer analysis of the genomic alterations and mutations of the matrisome. Cancers 12, 2046 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Agosto, L. M. et al. Deep profiling and custom databases improve detection of proteoforms generated by alternative splicing. Genome Res. 29, 2046–2055 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Burnum-Johnson, K. E. et al. New views of old proteins: clarifying the enigmatic proteome. Mol. Cell Proteom. 21, 100254 (2022).

    Article  CAS  Google Scholar 

  179. Yurchenco, P. D. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. 3, a004911(2011).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Jayadev, R. & Sherwood, D. R. Basement membranes. Curr. Biol. 27, R207–R211 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Jayadev, R. et al. A basement membrane discovery pipeline uncovers network complexity, regulators, and human disease associations. Sci. Adv. 8, eabn2265 (2022). Study that uses a combination of computational and imaging approaches to define the basement membrane matrisome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Loreti, M. & Sacco, A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. npj Regen. Med. 7, 16 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Mashinchian, O., Pisconti, A., Le Moal, E. & Bentzinger, C. F. The muscle stem cell niche in health and disease. Curr. Top. Dev. Biol. 126, 23–65 (2018).

    Article  PubMed  Google Scholar 

  184. Watt, F. M. & Fujiwara, H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb. Perspect. Biol. 3, a005124 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Rousselle, P., Laigle, C. & Rousselet, G. The basement membrane in epidermal polarity, stemness, and regeneration. Am. J. Physiol. Cell Physiol. 323, C1807–C1822 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Morrissey, M. A. & Sherwood, D. R. An active role for basement membrane assembly and modification in tissue sculpting. J. Cell Sci. 128, 1661–1668 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and how? Trends Cell Biol. 18, 560–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Garde, A. & Sherwood, D. R. Fueling cell invasion through extracellular matrix. Trends Cell Biol. 31, 445–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hamanaka, R. B. & Mutlu, G. M. The role of metabolic reprogramming and de novo amino acid synthesis in collagen protein production by myofibroblasts: implications for organ fibrosis and cancer. Amino Acids 53, 1851–1862 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kay, E. J., Koulouras, G. & Zanivan, S. Regulation of extracellular matrix production in activated fibroblasts: roles of amino acid metabolism in collagen synthesis. Front. Oncol. 11, 719922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Phang, J. M. Perspectives, past, present and future: the proline cycle/proline-collagen regulatory axis. Amino Acids 53, 1967–1975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Shen, L. et al. SLC38A2 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation. eLife 11, e76963 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kay, E. J. et al. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix. Nat. Metab. 4, 693–710 (2022). Study identifying proline synthesis by cancer-associated fibroblasts as a key step to build the collagen ECM of the tumour microenvironment that supports cancer growth and metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Reversade, B. et al. Mutations in PYCR1 cause cutis laxa with progeroid features. Nat. Genet. 41, 1016–1021 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Schwörer, S. et al. Fibroblast pyruvate carboxylase is required for collagen production in the tumour microenvironment. Nat. Metab. 3, 1484–1499 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  196. He, J., Fang, B., Shan, S. & Li, Q. Mechanical stiffness promotes skin fibrosis through Piezo1-mediated arginine and proline metabolism. Cell Death Discov. 9, 354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Torrino, S. & Bertero, T. Metabo-reciprocity in cell mechanics: feeling the demands/feeding the demand. Trends Cell Biol. 32, 624–636 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Raote, I. et al. A physical mechanism of TANGO1-mediated bulky cargo export. eLife 9, e59426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lekszas, C. et al. Biallelic TANGO1 mutations cause a novel syndromal disease due to hampered cellular collagen secretion. eLife 9, e51319 (2020). Recent study reporting the identification of a mutation in the gene encoding TANGO1, a protein key to the trafficking of collagens through the secretory pathway and resulting clinical presentation affecting broadly connective tissues.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Ito, S. & Nagata, K. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J. Biol. Chem. 294, 2133–2141 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Ishikawa, Y., Rubin, K., Bächinger, H. P. & Kalamajski, S. The endoplasmic reticulum-resident collagen chaperone Hsp47 interacts with and promotes the secretion of decorin, fibromodulin, and lumican. J. Biol. Chem. 293, 13707–13716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Raote, I., Saxena, S. & Malhotra, V. Sorting and export of proteins at the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 15, a041258 (2023).

    Article  CAS  PubMed  Google Scholar 

  203. Gomez-Navarro, N. & Miller, E. Protein sorting at the ER–Golgi interface. J. Cell Biol. 215, 769–778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lu, C.-L. et al. Collagen has a unique SEC24 preference for efficient export from the endoplasmic reticulum. Traffic 23, 81–93 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Ishikawa, Y. et al. Lysyl hydroxylase 3-mediated post-translational modifications are required for proper biosynthesis of collagen α1α1α2(IV). J. Biol. Chem. 298, 102713 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Holmes, D. F., Lu, Y., Starborg, T. & Kadler, K. E. Collagen fibril assembly and function. Curr. Top. Dev. Biol. 130, 107–142 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Lamandé, S. R. & Bateman, J. F. Collagen VI disorders: insights on form and function in the extracellular matrix and beyond. Matrix Biol. 71–72, 348–367 (2018).

    Article  PubMed  Google Scholar 

  208. McKee, K. K., Hohenester, E., Aleksandrova, M. & Yurchenco, P. D. Organization of the laminin polymer node. Matrix Biol. 98, 49–63 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kulczyk, A. W. et al. Cryo-EM reveals the molecular basis of laminin polymerization and LN-lamininopathies. Nat. Commun. 14, 317 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Shaw, L., Sugden, C. J. & Hamill, K. J. Laminin polymerization and inherited disease: lessons from genetics. Front. Genet. 12, 707087 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Leiss, M., Beckmann, K., Girós, A., Costell, M. & Fässler, R. The role of integrin binding sites in fibronectin matrix assembly in vivo. Curr. Opin. Cell Biol. 20, 502–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Mao, Y. & Schwarzbauer, J. E. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 24, 389–399 (2005).

    Article  CAS  PubMed  Google Scholar 

  213. Lovett, B. M., Hill, K. E., Randolph, E. M., Wang, L. & Schwarzbauer, J. E. Nucleation of fibronectin fibril assembly requires binding between heparin and the 13th type III module of fibronectin. J. Biol. Chem. 299, 104622 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Hill, K. E., Lovett, B. M. & Schwarzbauer, J. E. Heparan sulfate is necessary for the early formation of nascent fibronectin and collagen I fibrils at matrix assembly sites. J. Biol. Chem. 298, 101479 (2022).

    Article  CAS  PubMed  Google Scholar 

  215. Benn, M. C., Weber, W., Klotzsch, E., Vogel, V. & Pot, S. A. Tissue transglutaminase in fibrosis — more than an extracellular matrix cross-linker. Curr. Opin. Biomed. Eng. 10, 156–164 (2019).

    Article  Google Scholar 

  216. Kadler, K. E., Hill, A. & Canty-Laird, E. G. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 20, 495–501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Graham, J., Raghunath, M. & Vogel, V. Fibrillar fibronectin plays a key role as nucleator of collagen I polymerization during macromolecular crowding-enhanced matrix assembly. Biomater. Sci. 7, 4519–4535 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Saunders, J. T. & Schwarzbauer, J. E. Fibronectin matrix as a scaffold for procollagen proteinase binding and collagen processing. MBoC 30, 2218–2226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Sabatier, L. et al. Complex contributions of fibronectin to initiation and maturation of microfibrils. Biochem. J. 456, 283–295 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Kinsey, R. et al. Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J. Cell Sci. 121, 2696–2704 (2008).

    Article  CAS  PubMed  Google Scholar 

  221. Robinson, K. A. et al. Decorin and biglycan are necessary for maintaining collagen fibril structure, fiber realignment, and mechanical properties of mature tendons. Matrix Biol. 64, 81–93 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Przyklenk, M. et al. LTBP1 promotes fibrillin incorporation into the extracellular matrix. Matrix Biol. 110, 60–75 (2022). Recent example showing the crucial role of protein interactions and the differential role of ECM protein isoforms in the assembly of the ECM meshwork.

    Article  CAS  PubMed  Google Scholar 

  223. Godwin, A. R. F. et al. Fibrillin microfibril structure identifies long-range effects of inherited pathogenic mutations affecting a key regulatory latent TGFβ-binding site. Nat. Struct. Mol. Biol. 30, 608–618 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Clerc, O. et al. MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucleic Acids Res. 47, D376–D381 (2019). Publication reporting the development of MatrixDB, the database compiling curated interactions between ECM proteins, glycosaminoglycans, lipids and cations.

    Article  CAS  PubMed  Google Scholar 

  225. Chang, J. et al. Circadian control of the secretory pathway maintains collagen homeostasis. Nat. Cell Biol. 22, 74–86 (2020). Seminal publication demonstrating the rhythmic secretion of collagens into a sacrificial ECM with a role to protect the homeostatic tendon ECM from daily damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Chen, G. et al. Developmental growth plate cartilage formation suppressed by artificial light at night via inhibiting BMAL1-driven collagen hydroxylation. Cell Death Differ. 30, 1503–1516 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Sherratt, M. J. et al. Circadian rhythms in skin and other elastic tissues. Matrix Biol. 84, 97–110 (2019).

    Article  CAS  PubMed  Google Scholar 

  228. Dudek, M. et al. Circadian time series proteomics reveals daily dynamics in cartilage physiology. Osteoarthr. Cartil. 29, 739–749 (2021).

    Article  CAS  Google Scholar 

  229. Dudek, M. et al. The clock transcription factor BMAL1 is a key regulator of extracellular matrix homeostasis and cell fate in the intervertebral disc. Matrix Biol. 122, 1–9 (2023).

    Article  CAS  PubMed  Google Scholar 

  230. Preston, R., Meng, Q.-J. & Lennon, R. The dynamic kidney matrisome - is the circadian clock in control? Matrix Biol. 114, 138–155 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Bansode, S. B. & Gacche, R. N. Glycation-induced modification of tissue-specific ECM proteins: a pathophysiological mechanism in degenerative diseases. Biochim. Biophys. Acta Gen. Subj. 1863, 129411 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Nerger, B. A. et al. Local accumulation of extracellular matrix regulates global morphogenetic patterning in the developing mammary gland. Curr. Biol. 31, 1903–1917.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Barriga, E. H., Franze, K., Charras, G. & Mayor, R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554, 523–527 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Chen, D.-Y., Crest, J., Streichan, S. J. & Bilder, D. Extracellular matrix stiffness cues junctional remodeling for 3D tissue elongation. Nat. Commun. 10, 3339 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Crest, J., Diz-Muñoz, A., Chen, D.-Y., Fletcher, D. A. & Bilder, D. Organ sculpting by patterned extracellular matrix stiffness. eLife 6, e24958 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Moretti, L., Stalfort, J., Barker, T. H. & Abebayehu, D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J. Biol. Chem. 298, 101530 (2022).

    Article  CAS  PubMed  Google Scholar 

  237. Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Chaudhuri, O. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).

    Article  CAS  PubMed  Google Scholar 

  239. Salvador, F. et al. Lysyl oxidase–like protein LOXL2 promotes lung metastasis of breast cancer. Cancer Res. 77, 5846–5859 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Kai, F., Laklai, H. & Weaver, V. M. Force matters: biomechanical regulation of cell invasion and migration in disease. Trends Cell Biol. 26, 486–497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Deng, B. et al. Biological role of matrix stiffness in tumor growth and treatment. J. Transl Med. 20, 540 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Caprio, N. D. & Bellas, E. Collagen stiffness and architecture regulate fibrotic gene expression in engineered adipose tissue. Adv. Biosyst. 4, 1900286 (2020).

    Article  Google Scholar 

  243. Pastino, A. K., Greco, T. M., Mathias, R. A., Cristea, I. M. & Schwarzbauer, J. E. Stimulatory effects of advanced glycation endproducts (AGEs) on fibronectin matrix assembly. Matrix Biol. 59, 39–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  244. Bansode, S. et al. Glycation changes molecular organization and charge distribution in type I collagen fibrils. Sci. Rep. 10, 3397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Nicolas, C. et al. Carbamylation and glycation compete for collagen molecular aging in vivo. Sci. Rep. 9, 18291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Gautieri, A., Redaelli, A., Buehler, M. J. & Vesentini, S. Age- and diabetes-related nonenzymatic crosslinks in collagen fibrils: candidate amino acids involved in advanced glycation end-products. Matrix Biol. 34, 89–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  247. Lyu, C. et al. Advanced glycation end-products as mediators of the aberrant crosslinking of extracellular matrix in scarred liver tissue. Nat. Biomed. Eng. 7, 1437–1454 (2023).

    Article  PubMed  Google Scholar 

  248. Koorman, T. et al. Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment. Oncogene 41, 2458–2469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Rojas, A., Añazco, C., González, I. & Araya, P. Extracellular matrix glycation and receptor for advanced glycation end-products activation: a missing piece in the puzzle of the association between diabetes and cancer. Carcinogenesis 39, 515–521 (2018).

    Article  CAS  PubMed  Google Scholar 

  250. Resnikoff, H. A., Miller, C. G. & Schwarzbauer, J. E. Implications of fibrotic extracellular matrix in diabetic retinopathy. Exp. Biol. Med. 247, 1093–1102 (2022).

    Article  CAS  Google Scholar 

  251. Mead, T. J., Bhutada, S., Martin, D. R. & Apte, S. S. Proteolysis: a key post-translational modification regulating proteoglycans. Am. J. Physiol. Cell Physiol. 323, C651–C665 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Parks, W. C. & Mecham, R. Extracellular Matrix Degradation (Springer, 2011).

  253. Ricard-Blum, S. & Salza, R. Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp. Dermatol. 23, 457–463 (2014).

    Article  CAS  PubMed  Google Scholar 

  254. de Castro Brás, L. E. & Frangogiannis, N. G. Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biol. 91–92, 176–187 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Madsen, D. H. et al. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation. J. Biol. Chem. 282, 27037–27045 (2007).

    Article  CAS  PubMed  Google Scholar 

  256. Jürgensen, H. J. et al. Complex determinants in specific members of the mannose receptor family govern collagen endocytosis. J. Biol. Chem. 289, 7935–7947 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Yeung, C.-Y. C. et al. Mmp14 is required for matrisome homeostasis and circadian rhythm in fibroblasts. Matrix Biol. 124, 8–22 (2023).

    Article  CAS  PubMed  Google Scholar 

  258. Nørregaard, K. S. et al. The endocytic receptor uPARAP is a regulator of extracellular thrombospondin-1. Matrix Biol. 111, 307–328 (2022).

    Article  PubMed  Google Scholar 

  259. Dankovich, T. M. et al. Extracellular matrix remodeling through endocytosis and resurfacing of tenascin-R. Nat. Commun. 12, 7129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Grillet, B. et al. Matrix metalloproteinases in arthritis: towards precision medicine. Nat. Rev. Rheumatol. 19, 363–377 (2023).

    Article  PubMed  Google Scholar 

  262. Åhrman, E. et al. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. J. Proteom. 189, 23–33 (2018).

    Article  Google Scholar 

  263. Burgstaller, G. et al. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur. Respir. J. 50, 1601805 (2017).

    Article  PubMed  Google Scholar 

  264. Hsueh, M.-F., Önnerfjord, P. & Kraus, V. B. Biomarkers and proteomic analysis of osteoarthritis. Matrix Biol. 39, 56–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  265. Jensen, C. et al. Non-invasive biomarkers derived from the extracellular matrix associate with response to immune checkpoint blockade (anti-CTLA-4) in metastatic melanoma patients. J. Immunother. Cancer 6, 152 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Genovese, F. & Karsdal, M. A. Protein degradation fragments as diagnostic and prognostic biomarkers of connective tissue diseases: understanding the extracellular matrix message and implication for current and future serological biomarkers. Expert Rev. Proteom. 13, 213–225 (2016).

    Article  CAS  Google Scholar 

  267. Nielsen, S. H. et al. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biol. 75-76, 43–57 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Luo, B.-H. & Springer, T. A. Integrin structures and conformational signaling. Curr. Opin. Cell Biol. 18, 579–586 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Harburger, D. S. & Calderwood, D. A. Integrin signalling at a glance. J. Cell Sci. 122, 159–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  270. Lu, J. et al. Basement membrane regulates fibronectin organization using sliding focal adhesions driven by a contractile Winch. Dev. Cell 52, 631–646.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Hastings, J. F., Skhinas, J. N., Fey, D., Croucher, D. R. & Cox, T. R. The extracellular matrix as a key regulator of intracellular signalling networks. Br. J. Pharmacol. 176, 82–92 (2019).

    Article  CAS  PubMed  Google Scholar 

  272. Moreno-Layseca, P., Icha, J., Hamidi, H. & Ivaska, J. Integrin trafficking in cells and tissues. Nat. Cell Biol. 21, 122–132 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Alanko, J. & Ivaska, J. Endosomes: emerging platforms for integrin-mediated FAK signalling. Trends Cell Biol. 26, 391–398 (2016). Review discussing recently discovered mechanisms of signal transduction downstream of integrins from the endocytic compartment.

    Article  CAS  PubMed  Google Scholar 

  274. Ariosa-Morejon, Y. et al. Age-dependent changes in protein incorporation into collagen-rich tissues of mice by in vivo pulsed SILAC labelling. eLife 10, e66635 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Statzer, C., Park, J. Y. C. & Ewald, C. Y. Extracellular matrix dynamics as an emerging yet understudied hallmark of aging and longevity. Aging Dis. 14, 670–693 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Angelidis, I. et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10, 963 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Santinha, D. et al. Remodeling of the cardiac extracellular matrix proteome during chronological and pathological aging. Mol. Cell Proteom. 23, 100706 (2024).

    Article  CAS  Google Scholar 

  278. Tam, V. et al. DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics. eLife 9, e64940 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Eckersley, A. et al. Peptide location fingerprinting identifies species- and tissue-conserved structural remodelling of proteins as a consequence of ageing and disease. Matrix Biol. 114, 108–137 (2022).

    Article  CAS  PubMed  Google Scholar 

  280. Chaqour, B. & Karrasch, C. Eyeing the extracellular matrix in vascular development and microvascular diseases and bridging the divide between vascular mechanics and function. Int. J. Mol. Sci. 21, 3487 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Bianchi-Frias, D. et al. The aged microenvironment influences the tumorigenic potential of malignant prostate epithelial cells. Mol. Cancer Res. 17, 321–331 (2019).

    Article  CAS  PubMed  Google Scholar 

  282. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  283. Habashi, J. P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Hofmann Bowman, M. A., Eagle, K. A. & Milewicz, D. M. Update on clinical trials of losartan with and without β-blockers to block aneurysm growth in patients with Marfan syndrome: a review. JAMA Cardiol. 4, 702–707 (2019).

    Article  PubMed  Google Scholar 

  285. Sampaio, L. P. et al. Topical losartan inhibits corneal scarring fibrosis and collagen type IV deposition after Descemet’s membrane-endothelial excision in rabbits. Exp. Eye Res. 216, 108940 (2022).

    Article  CAS  PubMed  Google Scholar 

  286. Vos, M. B. et al. Randomized placebo‐controlled trial of losartan for pediatric NAFLD. Hepatology 76, 429 (2022).

    Article  CAS  PubMed  Google Scholar 

  287. Nyström, A., Bernasconi, R. & Bornert, O. Therapies for genetic extracellular matrix diseases of the skin. Matrix Biol. 71–72, 330–347 (2018).

    Article  PubMed  Google Scholar 

  288. Bornert, O. et al. QR-313, an antisense oligonucleotide, shows therapeutic eficacy for treatment of dominant and recessive dystrophic epidermolysis bullosa: a preclinical study. J. Invest. Dermatol. 141, 883–893.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  289. Crockett, D. K. et al. The Alport syndrome COL4A5 variant database. Hum. Mutat. 31, E1652–E1657 (2010).

    Article  PubMed  Google Scholar 

  290. Omachi, K., Kai, H., Roberge, M. & Miner, J. H. NanoLuc reporters identify COL4A5 nonsense mutations susceptible to drug-induced stop codon readthrough. iScience 25, 103891 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Dabrowski, M., Bukowy-Bieryllo, Z. & Zietkiewicz, E. Advances in therapeutic use of a drug-stimulated translational readthrough of premature termination codons. Mol. Med. 24, 25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Raab-Westphal, S., Marshall, J. F. & Goodman, S. L. Integrins as therapeutic targets: successes and cancers. Cancers 9, 110 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Slack, R. J., Macdonald, S. J. F., Roper, J. A., Jenkins, R. G. & Hatley, R. J. D. Emerging therapeutic opportunities for integrin inhibitors. Nat. Rev. Drug Discov. 21, 60–78 (2022). Review revisiting the potential of targeting integrins to achieve clinical benefits.

    Article  CAS  PubMed  Google Scholar 

  294. Hamidi, H. & Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Fields, G. B. The rebirth of matrix metalloproteinase inhibitors: moving beyond the dogma. Cells 8, 984 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Zhao, M. et al. Targeting fibrosis: mechanisms and clinical trials. Signal Transduct. Target. Ther. 7, 206 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Nicolas-Boluda, A. et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. eLife 10, e58688 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Chitty, J. L. et al. A first-in-class pan-lysyl oxidase inhibitor impairs stromal remodeling and enhances gemcitabine response and survival in pancreatic cancer. Nat. Cancer 4, 1326–1344 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Jain, S. et al. Advances and prospects for the human biomolecular atlas program (HuBMAP). Nat. Cell Biol. 25, 1089–1100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the Naba laboratory is supported in part by grants from the NIH (HG012680, CA261642, GM148423). The author thanks her mentor R. O. Hynes for an introduction to the wonders of the extracellular matrix. The author thanks S. Ricard-Blum for her critical reading of the manuscript and excellent suggestions. The author also acknowledges D. Pally, postdoctoral fellow in the Naba laboratory, for proposing the term ‘matritherapy’. The author apologizes to colleagues whose work could not be cited owing to space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Naba.

Ethics declarations

Competing interests

The Naba laboratory holds a sponsored research agreement with Boehringer-Ingelheim for work not related to the content of this manuscript. A.N. holds a consulting agreement with XM Therapeutics, AbbVie, and RA Capital.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Thomas Cox, Nikos Karamanos and Kenneth M. Yamada for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

basement membraneBASE: https://bmbase.manchester.ac.uk/

MatrisomeDB: https://matrisomedb.org

MatrixDB: http://matrixdb.univ-lyon1.fr/

MEROPS peptidase database: https://www.ebi.ac.uk/merops/

Proteomics Standards Initiative: https://hupo.org/Proteomics-Standards-Initiative-(PSI)

SMART: http://smart.embl-heidelberg.de

The Matrixome Project (archived website): https://dbarchive.biosciencedbc.jp/archive/matrixome/bm/AboutProject/DesProject/description.html

The Matrisome Project website: https://matrisome.org

Glossary

Epidermolysis bullosa

Group of rare genetic skin disorders characterized clinically by skin and mucosal blistering and skin fragility.

Immune checkpoint inhibitors

Drugs that block proteins involved in immune checkpoints, the pathways that regulate activation of the immune system. In cancer imunotherapy, these drugs (for example, anti-CTLA4, anti-PD1) are used to activate antitumour immunity.

Intimal rupture

Rupture of the innermost — intimal — layer of a blood vessel wall. The tunica intima is composed of the endothelium and a subendothelial extracellular matrix including a basement membrane and elastic layer in arteries.

Liquid chromatography coupled to tandem mass spectrometry

(LC–MS/MS). Analytical proteomic method that combines peptide separation by LC and the subsequent analysis of these peptides by tandem MS.

Premature termination codon readthrough drugs

Drugs that allow the translation machinery to read through a premature stop codon and promote the synthesis of a full-length protein.

Proteoforms

Different molecular forms of a protein produced from a single gene. Can arise from single amino acid variant, alternative splicing or post-translational modification.

Schwann cells

Glial cells that form the myelin sheath of axons of the peripheral nervous system.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naba, A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00767-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00767-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing