Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy–lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic–lysosomal function in neuronal health and disease.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nat. Med. 10 Suppl, S10–S17 (2004).
Jayaraj, G. G., Hipp, M. S. & Hartl, F. U. Functional modules of the proteostasis network. Cold Spring Harb. Perspect. Biol. 12, 30833457 (2020).
Nishida, Y. et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654–658 (2009).
Fleming, A. et al. The different autophagy degradation pathways and neurodegeneration. Neuron 110, 935–966 (2022).
Bourdenx, M. et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 184, 2696–2714.e25 (2021).
Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).
Settembre, C. & Perera, R. M. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat. Rev. Mol. Cell Biol. 25, 223–245 (2024).
Son, S. M. et al. Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A. Cell Metab. 29, 192–201.e7 (2019).
Son, S. M. et al. Leucine regulates autophagy via acetylation of the mTORC1 component raptor. Nat. Commun. 11, 3148 (2020).
Korolchuk, V. I. et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13, 453–460 (2011).
Ding, W. X. et al. Oncogenic transformation confers a selective susceptibility to the combined suppression of the proteasome and autophagy. Mol. Cancer Ther. 8, 2036–2045 (2009).
Korolchuk, V. I., Mansilla, A., Menzies, F. M. & Rubinsztein, D. C. Autophagy inhibition compromises degradation of ubiquitin–proteasome pathway substrates. Mol. Cell 33, 517–527 (2009).
Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).
Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12, 747–757 (2010).
Fraser, J. et al. Targeting of early endosomes by autophagy facilitates EGFR recycling and signalling. EMBO Rep. 20, e47734 (2019).
Lees, M. B. Basic Neurochemistry 5th edn, Vol. 39 (Raven Press, 1994).
Lee, S., Sato, Y. & Nixon, R. A. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J. Neurosci. 31, 7817–7830 (2011).
Lie, P. P. Y. et al. Post-Golgi carriers, not lysosomes, confer lysosomal properties to pre-degradative organelles in normal and dystrophic axons. Cell Rep. 35, 109034 (2021).
Lie, P. P. Y. et al. Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca2+ efflux and disrupted by PSEN1 loss of function. Sci. Adv. 8, eabj5716 (2022).
Overly, C. C. & Hollenbeck, P. J. Dynamic organization of endocytic pathways in axons of cultured sympathetic neurons. J. Neurosci. 16, 6056–6064 (1996).
Yap, C. C., Mason, A. J. & Winckler, B. Dynamics and distribution of endosomes and lysosomes in dendrites. Curr. Opin. Neurobiol. 74, 102537 (2022).
Lipka, J., Kuijpers, M., Jaworski, J. & Hoogenraad, C. C. Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochem. Soc. Trans. 41, 1605–1612 (2013).
Aranda-Anzaldo, A. The post-mitotic state in neurons correlates with a stable nuclear higher-order structure. Commun. Integr. Biol. 5, 134–139 (2012).
Plascencia-Villa, G. & Perry, G. Roles of oxidative stress in synaptic dysfunction and neuronal cell death in Alzheimer’s disease. Antioxid 12, 1628 (2023).
Park, S. J. et al. Vinexin contributes to autophagic decline in brain ageing across species. Cell Death Differ. 29, 1055–1070 (2022).
Tsong, H., Holzbaur, E. L. & Stavoe, A. K. Aging differentially affects axonal autophagosome formation and maturation. Autophagy 19, 3079–3095 (2023).
Carmona-Gutierrez, D., Hughes, A. L., Madeo, F. & Ruckenstuhl, C. The crucial impact of lysosomes in aging and longevity. Ageing Res. Rev. 32, 2–12 (2016).
Hansen, M., Rubinsztein, D. C. & Walker, D. W. Autophagy as a promoter of longevity: insights from model organisms. Nat. Rev. Mol. Cell Biol. 19, 579–593 (2018).
Burrinha, T. et al. Deacidification of endolysosomes by neuronal aging drives synapse loss. Traffic 24, 334–354 (2023).
Nixon, R. A. The aging lysosome: an essential catalyst for late-onset neurodegenerative diseases. Biochim. Biophys. Acta Proteins Proteom. 1868, 140443 (2020).
Ashkenazi, A. et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545, 108–111 (2017).
Winslow, A. R. et al. α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J. Cell Biol. 190, 1023–1037 (2010).
Festa, B. P. et al. Microglial-to-neuronal CCR5 signaling regulates autophagy in neurodegeneration. Neuron 111, 2021–2037.e12 (2023).
Plascencia-Villa, G. & Perry, G. Exploring molecular targets for mitochondrial therapies in neurodegenerative diseases. Int. J. Mol. Sci. 24, 12486 (2023).
Reed, T. T. et al. Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. J. Cell Mol. Med. 13, 2019–2029 (2009).
Di Domenico, F. et al. Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer’s disease neuropathology: redox proteomics analysis of human brain. Biochim. Biophys. Acta 1832, 1249–1259 (2013).
Perluigi, M. et al. Redox proteomics in aging rat brain: involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. J. Neurosci. Res. 88, 3498–3507 (2010).
Butterfield, D. A. Oxidative stress in brain in amnestic mild cognitive impairment. Antioxidants 12, 462 (2023).
Klein, M. & Hermey, G. Converging links between adult-onset neurodegenerative Alzheimer’s disease and early life neurodegenerative neuronal ceroid lipofuscinosis? Neural Regen. Res. 18, 1463–1471 (2023).
Simon, M. J., Logan, T., DeVos, S. L. & Di Paolo, G. Lysosomal functions of progranulin and implications for treatment of frontotemporal dementia. Trends Cell Biol. 33, 324–339 (2023).
Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).
Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).
Kim, M. et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. eLife 5, e12245 (2016).
Jelani, M. et al. A mutation in the major autophagy gene, WIPI2, associated with global developmental abnormalities. Brain 142, 1242–1254 (2019).
Collier, J. J. et al. Developmental consequences of defective ATG7-mediated autophagy in humans. N. Engl. J. Med. 384, 2406–2417 (2021).
Dooley, H. C. et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5–16L1. Mol. Cell. 55, 238–252 (2014).
Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).
Takahashi, Y. et al. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat. Commun. 9, 2855 (2018).
Migliano, S. M., Wenzel, E. M. & Stenmark, H. Biophysical and molecular mechanisms of ESCRT functions, and their implications for disease. Curr. Opin. Cell Biol. 75, 102062 (2022).
Radulovic, M. et al. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival. Embo J. 37, e99753 (2018).
Eriksson, I., Wäster, P. & Öllinger, K. Restoration of lysosomal function after damage is accompanied by recycling of lysosomal membrane proteins. Cell Death Dis. 11, 370 (2020).
Bonet-Ponce, L. et al. LRRK2 mediates tubulation and vesicle sorting from lysosomes. Sci. Adv. 6, eabb2454 (2020).
Herbst, S. et al. LRRK2 activation controls the repair of damaged endomembranes in macrophages. EMBO J. 39, e104494 (2020).
Morrison, R. et al. LRRK2 kinase dependent and independent function on endolysosomal repair promotes macrophage cell death. Preprint at bioRxiv https://doi.org/10.1101/2023.09.27.559807 (2023).
Chen, J. J. et al. Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. J. Biol. Chem. 294, 18952–18966 (2019).
Puri, C., Gratian, M. J. & Rubinsztein, D. C. Mammalian autophagosomes form from finger-like phagophores. Dev. Cell. 58 2746–2760.e5 (2023).
Puri, C. et al. A DNM2 centronuclear myopathy mutation reveals a link between recycling endosome scission and autophagy. Dev. Cell 53, 154–168.e6 (2020).
Ravikumar, B. et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet. 37, 771–776 (2005).
Ishikawa, K. I. et al. p150glued deficiency impairs effective fusion between autophagosomes and lysosomes due to their redistribution to the cell periphery. Neurosci. Lett. 690, 181–187 (2019).
Cierny, M. et al. Novel destabilizing dynactin variant (DCTN1 p.Tyr78His) in patient with Perry syndrome. Parkinsonism Relat. Disord. 77, 110–113 (2020).
Cóppola-Segovia, V. & Reggiori, F. Molecular insights into aggrephagy: their cellular functions in the context of neurodegenerative diseases. J. Mol. Biol. 436, 168493 (2024).
D’Arcy, M. S. Mitophagy in health and disease. Molecular mechanisms, regulatory pathways, and therapeutic implications. Apoptosis https://doi.org/10.1007/s10495-024-01977-y (2024).
Iavarone, F., Di Lorenzo, G. & Settembre, C. Regulatory events controlling ER-phagy. Curr. Opin. Cell Biol. 76, 102084 (2022).
Deng, Z. et al. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 16, 917–931 (2020).
Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).
Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354–358 (2015).
Foronda, H. et al. Heteromeric clusters of ubiquitinated ER-shaping proteins drive ER-phagy. Nature 618, 402–410 (2023).
Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273 (2015).
McWilliams, T. G. et al. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 27, 439–449.e5 (2018).
Pirooznia, S. K. et al. PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency. Mol. Neurodegener. 15, 17 (2020).
Goldsmith, J., Ordureau, A., Harper, J. W. & Holzbaur, E. L. F. Brain-derived autophagosome profiling reveals the engulfment of nucleoid-enriched mitochondrial fragments by basal autophagy in neurons. Neuron 110, 967–976.e8 (2022).
D’Acunzo, P. et al. Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome. Sci. Adv. 7, eabe5085 (2021).
Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).
Pena-Llopis, S. et al. Regulation of TFEB and v-ATPases by mTORC1. EMBO J. 30, 3242–3258 (2011).
Martinez-Vicente, M. et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat. Neurosci. 13, 567–576 (2010).
Wong, Y. C. & Holzbaur, E. L. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J. Neurosci. 34, 1293–1305 (2014).
Moreau, K. et al. PICALM modulates autophagy activity and tau accumulation. Nat. Commun. 5, 4998 (2014).
Moreau, K., Ravikumar, B., Renna, M., Puri, C. & Rubinsztein, D. C. Autophagosome precursor maturation requires homotypic fusion. Cell 146, 303–317 (2011).
Puri, C., Renna, M., Bento, C. F., Moreau, K. & Rubinsztein, D. C. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154, 1285–1299 (2013).
Simons, M., Levin, J. & Dichgans, M. Tipping points in neurodegeneration. Neuron 111, 2954–2968 (2023).
Sarkar, S. et al. Complex inhibitory effects of nitric oxide on autophagy. Mol. Cell. 43, 19–32 (2011).
Ping, S., Qiu, X., Kyle, M. & Zhao, L. R. Brain-derived CCR5 contributes to neuroprotection and brain repair after experimental stroke. Aging Dis. 12, 72–92 (2021).
Choi, I. et al. Autophagy enables microglia to engage amyloid plaques and prevents microglial senescence. Nat. Cell Biol. 25, 963–974 (2023).
Wang, C., Telpoukhovskaia, M. A., Bahr, B. A., Chen, X. & Gan, L. Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases. Curr. Opin. Neurobiol. 48, 52–58 (2018).
Nixon, R. A. The role of autophagy in neurodegenerative disease. Nat. Med. 19, 983–997 (2013).
de Duve, C. The lysosome turns fifty. Nat. Cell Biol. 7, 847–849 (2005).
de Duve, C. Lysosomes, a New Group of Cytoplasmic Particle (Ronald Press, 1959).
Nixon, R. A., Yang, D. S. & Lee, J. H. Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy 4, 590–599 (2008).
Ponsford, A. H. et al. Live imaging of intra-lysosome pH in cell lines and primary neuronal culture using a novel genetically encoded biosensor. Autophagy 17, 1500–1518 (2021).
Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M. & Tashiro, Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 266, 17707–17712 (1991).
Stoka, V., Turk, V. & Turk, B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res. Rev. 32, 22–37 (2016).
Nishi, T. & Forgac, M. The vacuolar (H+)-ATPases-nature’s most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3, 94–103 (2002).
Collins, M. P. & Forgac, M. Regulation and function of v-ATPases in physiology and disease. Biochim. Biophys. Acta Biomembr. 1862, 183341 (2020).
Coffey, E. E., Beckel, J. M., Laties, A. M. & Mitchell, C. H. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 263, 111–124 (2014).
Colacurcio, D. J. & Nixon, R. A. Disorders of lysosomal acidification-the emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res. Rev. 32, 75–88 (2016).
Zhang, J. et al. Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition of the TMEM175 channel. Mol. Cell 83, 2524–2539.e7 (2023).
Turk, B. et al. Acidic pH as a physiological regulator of human cathepsin L activity. Eur. J. Biochem. 259, 926–932 (1999).
Lie, P. P. Y. & Nixon, R. A. Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiol. Dis. 122, 94–105 (2019).
Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334, 678–683 (2011).
Jung, J., Genau, H. M. & Behrends, C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell Biol. 35, 2479–2494 (2015).
Rebsamen, M. et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477–481 (2015).
Wang, S. et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194 (2015).
Bendl, J. et al. The three-dimensional landscape of cortical chromatin accessibility in Alzheimer’s disease. Nat. Neurosci. 25, 1366–1378 (2022).
Lapierre, L. R. et al. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat. Commun. 4, 2267 (2013).
Vilchez, D., Simic, M. S. & Dillin, A. Proteostasis and aging of stem cells. Trends Cell Biol. 24, 161–170 (2014).
El Far, O. & Seagar, M. A role for v-ATPase subunits in synaptic vesicle fusion? J. Neurochem. 117, 603–612 (2011).
Higashida, H., Yokoyama, S., Tsuji, C. & Muramatsu, S. I. Neurotransmitter release: vacuolar ATPase V0 sector c-subunits in possible gene or cell therapies for Parkinson’s, Alzheimer’s, and psychiatric diseases. J. Physiol. Sci. 67, 11–17 (2017).
Lee, J. H. et al. Presenilin 1 maintains lysosomal Ca2+ homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification. Cell Rep. 12, 1430–1444 (2015).
Bourdenx, M. et al. Nanoparticles restore lysosomal acidification defects: Implication for Parkinson and other lysosomal-related diseases. Autophagy 12, 472–483 (2016).
Schroder, B. & Saftig, P. Intramembrane proteolysis within lysosomes. Ageing Res. Rev. 32, 51–64 (2016).
De Strooper, B., Iwatsubo, T. & Wolfe, M. S. Presenilins and γ-secretase: structure, function, and role in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006304 (2012).
Haapasalo, A. & Kovacs, D. M. The many substrates of presenilin/γ-secretase. J. Alzheimers Dis. 25, 3–28 (2011).
Sannerud, R. et al. Restricted location of PSEN2/γ-secretase determines substrate specificity and generates an intracellular Aβ pool. Cell 166, 193–208 (2016).
Pasternak, S. H. et al. Presenilin-1, nicastrin, amyloid precursor protein, and γ-secretase activity are co-localized in the lysosomal membrane. J. Biol. Chem. 278, 26687–26694 (2003).
Bagshaw, R. D., Pasternak, S. H., Mahuran, D. J. & Callahan, J. W. Nicastrin is a resident lysosomal membrane protein. Biochem. Biophys. Res. Commun. 300, 615–618 (2003).
Yu, W. H. et al. Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for β-amyloid peptide over-production and localization in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 36, 2531–2540 (2004).
Wolfe, D. M. et al. Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur. J. Neurosci. 37, 1949–1961 (2013).
Lee, J. H. et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158 (2010).
Avrahami, L. et al. Inhibition of glycogen synthase kinase-3 ameliorates β-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J. Biol. Chem. 288, 1295–1306 (2013).
Sharma, D. et al. γ-Secretase orthologs are required for lysosomal activity and autophagic degradation in Dictyostelium discoideum, independent of PSEN (presenilin) proteolytic function. Autophagy 15, 1407–1418 (2019).
Im, E. et al. Lysosomal dysfunction in Down syndrome and Alzheimer mouse models is caused by selective v-ATPase inhibition by Tyr682 phosphorylated APP βCTF. Sci. Adv. 9, eadg1925 (2023).
Lee, J. H. et al. Transgenic expression of a ratiometric autophagy probe specifically in neurons enables the interrogation of brain autophagy in vivo. Autophagy 15, 543–557 (2019).
Mustaly-Kalimi, S. et al. Protein mishandling and impaired lysosomal proteolysis generated through calcium dysregulation in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 119, e2211999119 (2022).
Malampati, S. et al. Pharmacological reacidification of lysosomes attenuates intraneuronal amyloidosis, early neuron death, and amyloid plaque formation in 5xFAD mice. In Alzheimer’s Association International Conference (2024).
Chou, C. C. et al. Proteostasis and lysosomal quality control deficits in Alzheimer’s disease neurons. Preprint at bioRxiv https://doi.org/10.1101/2023.03.27.534444 (2023).
Yang, M. et al. Alzheimer’s disease presenilin-1 mutation sensitizes neurons to impaired autophagy flux and propofol neurotoxicity: role of calcium dysregulation. J. Alzheimers Dis. 67, 137–147 (2019).
Coen, K. et al. Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J. Cell Biol. 198, 23–35 (2012).
Nixon, R. A., Lee, J. H. & Wolfe, D. Comments on presenilins and lysosome pH revisited again. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0556-12.2012 (2012).
Tong, B. C. et al. Lysosomal TPCN (two pore segment channel) inhibition ameliorates β-amyloid pathology and mitigates memory impairment in Alzheimer disease. Autophagy 18, 624–642 (2022).
Karagas, N. E. & Venkatachalam, K. Roles for the endoplasmic reticulum in regulation of neuronal calcium homeostasis. Cells 8, 1232 (2019).
Lee, J. H. et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nat. Neurosci. 25, 688–701 (2022).
Jiang, Y. et al. Lysosomal dysfunction in down syndrome is APP-dependent and mediated by APP-βCTF (C99). J. Neurosci. 39, 5255–5268 (2019).
Pulina, M. V., Hopkins, M., Haroutunian, V., Greengard, P. & Bustos, V. C99 selectively accumulates in vulnerable neurons in Alzheimer’s disease. Alzheimers Dement. 16, 273–282 (2020).
Nixon, R. A. Amyloid precursor protein and endosomal–lysosomal dysfunction in Alzheimer’s disease: inseparable partners in a multifactorial disease. FASEB J. 31, 2729–2743 (2017).
Lauritzen, I. et al. The β-secretase-derived C-terminal fragment of βAPP, C99, but not Aβ, is a key contributor to early intraneuronal lesions in triple-transgenic mouse hippocampus. J. Neurosci. 32, 16243–16255a (2012).
Lauritzen, I. et al. Intraneuronal aggregation of the β-CTF fragment of APP (C99) induces Aβ-independent lysosomal-autophagic pathology. Acta Neuropathol. 132, 257–276 (2016).
Tamayev, R., Matsuda, S., Arancio, O. & D’Adamio, L. β- but not γ-secretase proteolysis of APP causes synaptic and memory deficits in a mouse model of dementia. EMBO Mol. Med. 4, 171–179 (2012).
Lauritzen, I. et al. Targeting γ-secretase triggers the selective enrichment of oligomeric APP-CTFs in brain extracellular vesicles from Alzheimer cell and mouse models. Transl. Neurodegener. 8, 35 (2019).
Jiang, Y. et al. Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF. Neurobiol. Aging 39, 90–98 (2016).
Jiang, Y. et al. Alzheimer’s-related endosome dysfunction in down syndrome is Aβ-independent but requires APP and is reversed by BACE-1 inhibition. Proc. Natl Acad. Sci. USA 107, 1630–1635 (2010).
Area-Gomez, E. et al. A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis. 9, 335 (2018).
Van Acker, Z. P. et al. Phospholipase D3 degrades mitochondrial DNA to regulate nucleotide signaling and APP metabolism. Nat. Commun. 14, 2847 (2023).
Yuan, P. et al. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease. Nature 612, 328–337 (2022).
Wallings, R., Connor-Robson, N. & Wade-Martins, R. LRRK2 interacts with the vacuolar-type H+-ATPase pump a1 subunit to regulate lysosomal function. Hum. Mol. Genet. 28, 2696–2710 (2019).
Bagh, M. B. et al. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat. Commun. 8, 14612 (2017).
Steger, M. et al. Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. eLife 5, e12813 (2016).
Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184–1191 (2006).
Farias, F. H. et al. A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers. Neurobiol. Dis. 42, 468–474 (2011).
Schultheis, P. J. et al. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. Hum. Mol. Genet. 22, 2067–2082 (2013).
Bras, J., Verloes, A., Schneider, S. A., Mole, S. E. & Guerreiro, R. J. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum. Mol. Genet. 21, 2646–2650 (2012).
van Veen, S. et al. ATP13A2 deficiency disrupts lysosomal polyamine export. Nature 578, 419–424 (2020).
van Veen, S. et al. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson’s disease and other neurological disorders. Front. Mol. Neurosci. 7, 48 (2014).
Dubos, A. et al. Conditional depletion of intellectual disability and parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration. Hum. Mol. Genet. 24, 6736–6755 (2015).
Korvatska, O. et al. Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Hum. Mol. Genet. 22, 3259–3268 (2013).
Park, J. S. et al. Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor–Rakeb syndrome, a form of early-onset parkinsonism. Hum. Mutat. 32, 956–964 (2011).
Dehay, B. et al. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc. Natl Acad. Sci. USA 109, 9611–9616 (2012).
Usenovic, M., Tresse, E., Mazzulli, J. R., Taylor, J. P. & Krainc, D. Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity. J. Neurosci. 32, 4240–4246 (2012).
Vrijsen, S., Houdou, M., Cascalho, A., Eggermont, J. & Vangheluwe, P. Polyamines in Parkinson’s disease: balancing between neurotoxicity and neuroprotection. Annu. Rev. Biochem. 92, 435–464 (2023).
Jinn, S. et al. Functionalization of the TMEM175 p.M393T variant as a risk factor for Parkinson disease. Hum. Mol. Genet. 28, 3244–3254 (2019).
Krohn, L. et al. Genetic, structural, and functional evidence link TMEM175 to synucleinopathies. Ann. Neurol. 87, 139–153 (2020).
Palomba, N. P. et al. Common and rare variants in TMEM175 gene concur to the pathogenesis of Parkinson’s disease in Italian patients. Mol. Neurobiol. 60, 2150–2173 (2023).
Cang, C., Aranda, K., Seo, Y. J., Gasnier, B. & Ren, D. TMEM175 Is an organelle K+ channel regulating lysosomal function. Cell 162, 1101–1112 (2015).
Jinn, S. et al. TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation. Proc. Natl Acad. Sci. USA 114, 2389–2394 (2017).
Hu, M. et al. Parkinson’s disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes. Cell 185, 2292–2308.e20 (2022).
Zheng, W. et al. pH regulates potassium conductance and drives a constitutive proton current in human TMEM175. Sci. Adv. 8, eabm1568 (2022).
Tang, T., Jian, B. & Liu, Z. Transmembrane protein 175, a lysosomal ion channel related to Parkinson’s disease. Biomolecules 13, 802 (2023).
Wie, J. et al. A growth-factor-activated lysosomal K+ channel regulates Parkinson’s pathology. Nature 591, 431–437 (2021).
Henderson, M. X. et al. Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat. Neurosci. 22, 1248–1257 (2019).
Rohrer, J. D. et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology 73, 1451–1456 (2009).
Logan, T. et al. Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell 184, 4651–4668.e25 (2021).
Hasan, S. et al. Multi-modal proteomic characterization of lysosomal function and proteostasis in progranulin-deficient neurons. Mol. Neurodegener. 18, 87 (2023).
Klein, Z. A. et al. Loss of TMEM106B ameliorates lysosomal and frontotemporal dementia-related phenotypes in progranulin-deficient mice. Neuron 95, 281–296.e6 (2017).
Brady, O. A., Zheng, Y., Murphy, K., Huang, M. & Hu, F. The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum. Mol. Genet. 22, 685–695 (2013).
Schwenk, B. M. et al. The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes. EMBO J. 33, 450–467 (2014).
Lang, C. M. et al. Membrane orientation and subcellular localization of transmembrane protein 106B (TMEM106B), a major risk factor for frontotemporal lobar degeneration. J. Biol. Chem. 287, 19355–19365 (2012).
Van Deerlin, V. M. et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat. Genet. 42, 234-239 (2010).
Cruchaga, C. et al. Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch. Neurol. 68, 581–586 (2011).
Finch, N. et al. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 76, 467–474 (2011).
Feng, T. et al. Loss of TMEM106B and PGRN leads to severe lysosomal abnormalities and neurodegeneration in mice. EMBO Rep. 21, e50219 (2020).
Werner, G. et al. Loss of TMEM106B potentiates lysosomal and FTLD-like pathology in progranulin-deficient mice. EMBO Rep. 21, e50241 (2020).
Zhou, X. et al. Loss of TMEM106B leads to myelination deficits: implications for frontotemporal dementia treatment strategies. Brain 143, 1905–1919 (2020).
Stroobants, S., D’Hooge, R. & Damme, M. Aged Tmem106b knockout mice display gait deficits in coincidence with Purkinje cell loss and only limited signs of non-motor dysfunction. Brain Pathol. 31, 223–238 (2021).
Luningschror, P. et al. The FTLD risk factor TMEM106B regulates the transport of lysosomes at the axon initial segment of motoneurons. Cell Rep. 30, 3506–3519.e6 (2020).
Yadati, T., Houben, T., Bitorina, A. & Shiri-Sverdlov, R. The ins and outs of cathepsins: physiological function and role in disease management. Cells 9, 1679 (2020).
Vidoni, C., Follo, C., Savino, M., Melone, M. A. & Isidoro, C. The role of cathepsin D in the pathogenesis of human neurodegenerative disorders. Med. Res. Rev. 36, 845–870 (2016).
Zhang, K. Y., Yang, S., Warraich, S. T. & Blair, I. P. Ubiquilin 2: a component of the ubiquitin–proteasome system with an emerging role in neurodegeneration. Int. J. Biochem. Cell Biol. 50, 123–126 (2014).
Wu, J. J. et al. ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function. Proc. Natl Acad. Sci. USA 117, 15230–15241 (2020).
Şentürk, M. et al. Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification. Nat. Cell Biol. 21, 384–396 (2019).
Christensen, K. A., Myers, J. T. & Swanson, J. A. pH-dependent regulation of lysosomal calcium in macrophages. J. Cell Sci. 115, 599–607 (2002).
Churchill, G. C. et al. NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111, 703–708 (2002).
Guse, A. H. & Lee, H. C. NAADP: a universal Ca2+ trigger. Sci. Signal. 1, re10 (2008).
Feng, X. & Yang, J. Lysosomal calcium in neurodegeneration. Messenger 5, 56–66 (2016).
Tedeschi, V. & Secondo, A. Emerging role of lysosomal calcium store as a hub of neuroprotection. Neural Regen. Res. 17, 1259–1260 (2022).
Lloyd-Evans, E. & Waller-Evans, H. Lysosomal Ca2+ homeostasis and signaling in health and disease. Cold Spring Harb. Perspect. Biol. 12, a035311 (2020).
Medina, D. L. et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17, 288–299 (2015).
Berman, E. R., Livni, N., Shapira, E., Merin, S. & Levij, I. S. Congenital corneal clouding with abnormal systemic storage bodies: a new variant of mucolipidosis. J. Pediatr. 84, 519–526 (1974).
Shen, D. et al. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat. Commun. 3, 731 (2012).
Samie, M. A. et al. The tissue-specific expression of TRPML2 (MCOLN-2) gene is influenced by the presence of TRPML1. Pflug. Arch. 459, 79–91 (2009).
Grimm, C., Hassan, S., Wahl-Schott, C. & Biel, M. Role of TRPML and two-pore channels in endolysosomal cation homeostasis. J. Pharmacol. Exp. Ther. 342, 236–244 (2012).
Guse, A. H. Second messenger signaling: multiple receptors for NAADP. Curr. Biol. 19, R521–R523 (2009).
Xiong, J. & Zhu, M. X. Regulation of lysosomal ion homeostasis by channels and transporters. Sci. China Life Sci. 59, 777–791 (2016).
Cheng, X., Zhang, X., Yu, L. & Xu, H. Calcium signaling in membrane repair. Semin. Cell Dev. Biol. 45, 24–31 (2015).
Morgan, A. J., Platt, F. M., Lloyd-Evans, E. & Galione, A. Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem. J. 439, 349–374 (2011).
Patel, S. & Cai, X. Evolution of acidic Ca2+ stores and their resident Ca2+-permeable channels. Cell Calcium 57, 222–230 (2015).
Waller-Evans, H. & Lloyd-Evans, E. Regulation of TRPML1 function. Biochem. Soc. Trans. 43, 442–446 (2015).
Soyombo, A. A. et al. TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J. Biol. Chem. 281, 7294–7301 (2006).
Zhang, X. et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat. Commun. 7, 12109 (2016).
Butterfield, D. A., Di Domenico, F., Swomley, A. M., Head, E. & Perluigi, M. Redox proteomics analysis to decipher the neurobiology of Alzheimer-like neurodegeneration: overlaps in Down’s syndrome and Alzheimer’s disease brain. Biochem. J. 463, 177–189 (2014).
Mundy, D. I., Li, W. P., Luby-Phelps, K. & Anderson, R. G. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content. Mol. Biol. Cell 23, 864–880 (2012).
Ollinger, K. & Brunk, U. T. Cellular injury induced by oxidative stress is mediated through lysosomal damage. Free. Radic. Biol. Med. 19, 565–574 (1995).
Samie, M. et al. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev. Cell 26, 511–524 (2013).
Elbaz-Alon, Y. et al. A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell 30, 95–102 (2014).
Li, L., Tan, J., Miao, Y., Lei, P. & Zhang, Q. ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol. Neurobiol. 35, 615–621 (2015).
Potz, B. A., Abid, M. R. & Sellke, F. W. Role of calpain in pathogenesis of human disease processes. J. Nat. Sci. 2, e218 (2016).
Nixon, R. A. The calpains in aging and aging-related diseases. Ageing Res. Rev. 2, 407–418 (2003).
Diepenbroek, M. et al. Overexpression of the calpain-specific inhibitor calpastatin reduces human α-synuclein processing, aggregation and synaptic impairment in [A30P]αSyn transgenic mice. Hum. Mol. Genet. 23, 3975–3989 (2014).
Menzies, F. M. et al. Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity. Cell Death Differ. 22, 433–444 (2015).
Rao, M. V. et al. Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice. J. Neurosci. 34, 9222–9234 (2014).
Requejo-Aguilar, R. Cdk5 and aberrant cell cycle activation at the core of neurodegeneration. Neural Regen. Res. 18, 1186–1190 (2023).
Yang, J., Zhao, Z., Gu, M., Feng, X. & Xu, H. Release and uptake mechanisms of vesicular Ca2+ stores. Protein Cell 10, 8–19 (2019).
Ogunbayo, O. A. et al. mTORC1 controls lysosomal Ca2+ release through the two-pore channel TPC2. Sci. Signal. 11, eaao5775 (2018).
Thakore, P. et al. TRPML1 channels initiate Ca2+ sparks in vascular smooth muscle cells. Sci. Signal. https://doi.org/10.1126/scisignal.aba1015 (2020).
Griffin, C. S. et al. The intracellular Ca2+ release channel TRPML1 regulates lower urinary tract smooth muscle contractility. Proc. Natl Acad. Sci. USA 117, 30775–30786 (2020).
Li, G. & Li, P. L. Lysosomal TRPML1 channel: implications in cardiovascular and kidney diseases. Adv. Exp. Med. Biol. 1349, 275–301 (2021).
Scotto Rosato, A. et al. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nat. Commun. 10, 5630 (2019).
Kilpatrick, B. S. Connecting Ca2+ and lysosomes to Parkinson disease. Messenger 5, 76–86 (2016).
Kilpatrick, B. S. et al. Endoplasmic reticulum and lysosomal Ca2+ stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts. Cell Calcium 59, 12–20 (2016).
Hui, L. et al. Acidifying endolysosomes prevented low-density lipoprotein-induced amyloidogenesis. J. Alzheimers Dis. 67, 393–410 (2019).
Somogyi, A. et al. The synthetic TRPML1 agonist ML-SA1 rescues Alzheimer-related alterations of the endosomal–autophagic–lysosomal system. J. Cell Sci. 136, jcs259875 (2023).
Drobny, A. et al. The role of lysosomal cathepsins in neurodegeneration: mechanistic insights, diagnostic potential and therapeutic approaches. Biochim. Biophys. Acta Mol. Cell Res. 1869, 119243 (2022).
Samie, M. A. & Xu, H. Lysosomal exocytosis and lipid storage disorders. J. Lipid Res. 55, 995–1009 (2014).
Hoglinger, D. et al. NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress. Nat. Commun. 10, 4276 (2019).
Tancini, B. et al. Insight into the role of extracellular vesicles in lysosomal storage disorders. Genes 10, 510 (2019).
Lloyd-Evans, E. & Platt, F. M. Lipids on trial: the search for the offending metabolite in Niemann–Pick type C disease. Traffic 11, 419–428 (2010).
Wheeler, S., Schmid, R. & Sillence, D. J. Lipid–protein interactions in Niemann–Pick type C disease: insights from molecular modeling. Int. J. Mol. Sci. 20, 717 (2019).
Butterfield, D. A., Gu, L., Di Domenico, F. & Robinson, R. A. Mass spectrometry and redox proteomics: applications in disease. Mass. Spectrom. Rev. 33, 277–301 (2014).
Di Domenico, F. et al. Redox proteomics analyses of the influence of co-expression of wild-type or mutated LRRK2 and Tau on C. elegans protein expression and oxidative modification: relevance to Parkinson disease. Antioxid. Redox Signal. 17, 1490–1506 (2012).
Yang, D. S. et al. Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits. Brain 137, 3300–3318 (2014).
Cox, T. M. Lysosomal diseases and neuropsychiatry: opportunities to rebalance the mind. Front. Mol. Biosci. 7, 177 (2020).
Matutino Santos, P., Pereira Campos, G. & Nascimento, C. Endo-lysosomal and autophagy pathway and ubiquitin-proteasome system in mood disorders: a review article. Neuropsychiatr. Dis. Treat. 19, 133–151 (2023).
Chu, C. T. Autophagic stress in neuronal injury and disease. J. Neuropathol. Exp. Neurol. 65, 423–432 (2006).
Kang, R., Zeh, H. J., Lotze, M. T. & Tang, D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18, 571–580 (2011).
Park, H., Kang, J. H. & Lee, S. Autophagy in neurodegenerative diseases: a hunter for aggregates. Int. J. Mol. Sci. 21, 3369 (2020).
Dehay, B. et al. Pathogenic lysosomal depletion in Parkinson’s disease. J. Neurosci. 30, 12535–12544 (2010).
Papadopoulos, C. & Meyer, H. Detection and clearance of damaged lysosomes by the endo-lysosomal damage response and lysophagy. Curr. Biol. 27, R1330–R1341 (2017).
Alu, A. et al. The role of lysosome in regulated necrosis. Acta Pharm. Sin. B. 10, 1880–1903 (2020).
Ketterer, S. et al. Inherited diseases caused by mutations in cathepsin protease genes. FEBS J. 284, 1437–1454 (2017).
Perluigi, M., Di Domenico, F. & Butterfield, D. A. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol. Rev. 104, 103–197 (2024).
Perry, G., Cash, A. D. & Smith, M. A. Alzheimer disease and oxidative stress. J. Biomed. Biotechnol. 2, 120–123 (2002).
J., S. Does high iron push a person with pathology into dementia? ALZFORUM https://www.alzforum.org/news/research-news/does-high-iron-push-person-pathology-dementia (2019).
Zhang, G. et al. The potential role of ferroptosis in Alzheimer’s disease. J. Alzheimers Dis. 80, 907–925 (2021).
Sheftel, A. D., Zhang, A. S., Brown, C., Shirihai, O. S. & Ponka, P. Direct interorganellar transfer of iron from endosome to mitochondrion. Blood 110, 125–132 (2007).
Ashraf, A., Clark, M. & So, P. W. The aging of iron man. Front. Aging Neurosci. 10, 65 (2018).
Schubert, D. & Chevion, M. The role of iron in β-amyloid toxicity. Biochem. Biophys. Res. Commun. 216, 702–707 (1995).
Smith, M. A. & Perry, G. Free radical damage, iron, and Alzheimer’s disease. J. Neurol. Sci. 134, 92–94 (1995).
Yambire, K. F. et al. Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. eLife 8, e51031 (2019).
Ou, M. et al. Role and mechanism of ferroptosis in neurological diseases. Mol. Metab. 61, 101502 (2022).
Pensalfini, A. et al. Intracellular amyloid and the neuronal origin of Alzheimer neuritic plaques. Neurobiol. Dis. 71, 53–61 (2014).
Eckman, E. A. et al. Nascent Aβ42 fibrillization in synaptic endosomes precedes plaque formation in a mouse model of Alzheimer’s-like β-amyloidosis. J. Neurosci. 43, 8812–8824 (2023).
Decressac, M. et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc. Natl Acad. Sci. USA 110, E1817–E1826 (2013).
Siddiqi, F. H. et al. Felodipine induces autophagy in mouse brains with pharmacokinetics amenable to repurposing. Nat. Commun. 10, 1817 (2019).
Young, M. M. et al. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J. Biol. Chem. 287, 12455–12468 (2012).
Maetzel, D. et al. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann–Pick type C patient-specific iPS cells. Stem Cell Rep. 2, 866–880 (2014).
Elrick, M. J., Yu, T., Chung, C. & Lieberman, A. P. Impaired proteolysis underlies autophagic dysfunction in Niemann–Pick type C disease. Hum. Mol. Genet. 21, 4876–4887 (2012).
Song, J. X. et al. HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy 10, 144–154 (2014).
Fujii, T. et al. Parkinson’s disease-associated ATP13A2/PARK9 functions as a lysosomal H+,K+-ATPase. Nat. Commun. 14, 2174 (2023).
Menzies, F. M. et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93, 1015–1034 (2017).
Boland, B. et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 17, 660–688 (2018).
Morawe, M. P. et al. Pharmacological mTOR-inhibition facilitates clearance of AD-related tau aggregates in the mouse brain. Eur. J. Pharmacol. 934, 175301 (2022).
Majumder, S., Richardson, A., Strong, R. & Oddo, S. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS ONE 6, e25416 (2011).
Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).
Wang, H., Zhu, Y., Liu, H., Liang, T. & Wei, Y. Advances in drug discovery targeting lysosomal membrane proteins. Pharmaceuticals 16, 601 (2023).
Xue, W., Zhang, J. & Li, Y. Enhancement of lysosome biogenesis as a potential therapeutic approach for neurodegenerative diseases. Neural Regen. Res. 18, 2370–2376 (2023).
Peng, W., Minakaki, G., Nguyen, M. & Krainc, D. Preserving lysosomal function in the aging brain: insights from neurodegeneration. Neurotherapeutics 16, 611–634 (2019).
Bonam, S. R., Wang, F. & Muller, S. Lysosomes as a therapeutic target. Nat. Rev. Drug Discov. 18, 923–948 (2019).
Lee, J. H. et al. β2-Adrenergic agonists rescue lysosome acidification and function in PSEN1 deficiency by reversing defective ER-to-lysosome delivery of ClC-7. J. Mol. Biol. 432, 2633–2650 (2020).
Yang, D. S. et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134, 258–277 (2011).
Cason, S. E. et al. Sequential dynein effectors regulate axonal autophagosome motility in a maturation-dependent pathway. J. Cell Biol. 220, e202010179 (2021).
Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).
Checler, F., Afram, E., Pardossi-Piquard, R. & Lauritzen, I. Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J. Biol. Chem. 296, 100489 (2021).
Bourgeois, A. et al. Intraneuronal accumulation of C99 contributes to synaptic alterations, apathy-like behavior, and spatial learning deficits in 3xTgAD and 2xTgAD mice. Neurobiol. Aging 71, 21–31 (2018).
Jin, L. W., Shie, F. S., Maezawa, I., Vincent, I. & Bird, T. Intracellular accumulation of amyloidogenic fragments of amyloid-β precursor protein in neurons with Niemann–Pick type C defects is associated with endosomal abnormalities. Am. J. Pathol. 164, 975–985 (2004).
Holsinger, R. M., McLean, C. A., Beyreuther, K., Masters, C. L. & Evin, G. Increased expression of the amyloid precursor β-secretase in Alzheimer’s disease. Ann. Neurol. 51, 783–786 (2002).
Tian, Y., Bustos, V., Flajolet, M. & Greengard, P. A small-molecule enhancer of autophagy decreases levels of Aβ and APP-CTF via Atg5-dependent autophagy pathway. FASEB J. 25, 1934–1942 (2011).
Lauritzen, I., Pardossi-Piquard, R., Bourgeois, A., Bécot, A. & Checler, F. Does intraneuronal accumulation of carboxyl-terminal fragments of the amyloid precursor protein trigger early neurotoxicity in Alzheimer’s disease? Curr. Alzheimer Res. 16, 453–457 (2019).
Lardelli, M. An alternative view of familial Alzheimer’s disease genetics. J. Alzheimers Dis. 96, 13–39 (2023).
Vaillant-Beuchot, L. et al. Accumulation of amyloid precursor protein C-terminal fragments triggers mitochondrial structure, function, and mitophagy defects in Alzheimer’s disease models and human brains. Acta Neuropathol. 141, 39–65 (2021).
Fukumoto, H., Cheung, B. S., Hyman, B. T. & Irizarry, M. C. β-Secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch. Neurol. 59, 1381–1389 (2002).
Ahmed, R. R. et al. BACE1 and BACE2 enzymatic activities in Alzheimer’s disease. J. Neurochem. 112, 1045–1053 (2010).
Kim, H. S. et al. Carboxyl-terminal fragment of Alzheimer’s APP destabilizes calcium homeostasis and renders neuronal cells vulnerable to excitotoxicity. FASEB J. 14, 1508–1517 (2000).
Takasugi, N. et al. The pursuit of the “inside” of the amyloid hypothesis — is C99 a promising therapeutic target for Alzheimer’s disease? Cells 12, 454 (2023).
Pera, M. et al. MAM and C99, key players in the pathogenesis of Alzheimer’s disease. Int. Rev. Neurobiol. 154, 235–278 (2020).
Patel, S., Yuan, Y., Gunaratne, G. S., Rahman, T. & Marchant, J. S. Activation of endo-lysosomal two-pore channels by NAADP and PI(3,5)P2. Five things to know. Cell Calcium 103, 102543 (2022).
Lu, Y., Hao, B., Graeff, R. & Yue, J. NAADP/TPC2/Ca2+ signaling inhibits autophagy. Commun. Integr. Biol. 6, e27595 (2013).
Moriyama, Y., Maeda, M. & Futai, M. Involvement of a non-proton pump factor (possibly Donnan-type equilibrium) in maintenance of an acidic pH in lysosomes. FEBS Lett. 302, 18–20 (1992).
Grabe, M. & Oster, G. Regulation of organelle acidity. J. Gen. Physiol. 117, 329–344 (2001).
Guerrero-Navarro, L., Jansen-Dürr, P. & Cavinato, M. Age-related lysosomal dysfunctions. Cells 11, 1977 (2022).
Fischer, P.-D. D. Oskar Miliare Nekrosen mit drusigen Wucherungen der Neurofibrillen, eine regelmässige Veränderung der Hirnrinde bei seniler Demenz [German]. Monatsschrift f.ür. Psychiatr. und Neurologie. 22, 361–372 (1907).
Puri, C. et al. The RAB11A-positive compartment is a primary platform for autophagosome assembly mediated by WIPI2 recognition of PI3P-RAB11A. Dev. Cell. 45, 114–131.e8 (2018).
Gomez-Sanchez, R., Tooze, S. A. & Reggiori, F. Membrane supply and remodeling during autophagosome biogenesis. Curr. Opin. Cell Biol. 71, 112–119 (2021).
Zheng, Q. et al. Calcium transients on the ER surface trigger liquid–liquid phase separation of FIP200 to specify autophagosome initiation sites. Cell 185, 4082–4098.e22 (2022).
Osawa, T., Matoba, K. & Noda, N. N. Lipid transport from endoplasmic reticulum to autophagic membranes. Cold Spring Harb. Perspect. Biol. 14, a041254 (2022).
Li, S. et al. A new type of ERGIC–ERES membrane contact mediated by TMED9 and SEC12 is required for autophagosome biogenesis. Cell Res. 32, 119–138 (2022).
Kumar, S. et al. Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes. Cell 184, 5950–5969.e22 (2021).
Jahreiss, L., Menzies, F. M. & Rubinsztein, D. C. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 9, 574–587 (2008).
Zhao, Y. G., Codogno, P. & Zhang, H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol. 22, 733–750 (2021).
Liang, W. et al. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nat. Commun. 14, 5031 (2023).
Heckmann, B. L. et al. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell 183, 1733–1734 (2020).
Deretic, V. et al. Membrane atg8ylation in canonical and noncanonical autophagy. J. Mol. Biol. https://doi.org/10.1016/j.jmb.2024.168532 (2024).
Almeida, M. F., Bahr, B. A. & Kinsey, S. T. Endosomal–lysosomal dysfunction in metabolic diseases and Alzheimer’s disease. Int. Rev. Neurobiol. 154, 303–324 (2020).
Qureshi, Y. H., Baez, P. & Reitz, C. Endosomal trafficking in Alzheimer’s disease, Parkinson’s disease, and neuronal ceroid lipofuscinosis. Mol. Cell Biol. 40 e00262–20 (2020).
Winckler, B. et al. The endolysosomal system and proteostasis: from development to degeneration. J. Neurosci. 38, 9364–9374 (2018).
Small, S. A. & Petsko, G. A. Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat. Rev. Neurosci. 16, 126–132 (2015).
Mathews, P. M. & Levy, E. Exosome production is key to neuronal endosomal pathway integrity in neurodegenerative diseases. Front. Neurosci. 13, 1347 (2019).
Izco, M., Carlos, E. & Alvarez-Erviti, L. Impact of endolysosomal dysfunction upon exosomes in neurodegenerative diseases. Neurobiol. Dis. 166, 105651 (2022).
Annunziata, I. et al. Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis. Nat. Commun. 4, 2734 (2013).
Bodzeta, A., Kahms, M. & Klingauf, J. The presynaptic v-ATPase reversibly disassembles and thereby modulates exocytosis but is not part of the fusion machinery. Cell Rep. 20, 1348–1359 (2017).
Schiapparelli, L. M. et al. Proteomic screen reveals diverse protein transport between connected neurons in the visual system. Cell Rep. 38, 110287 (2022).
Bae, E. J. et al. Haploinsufficiency of cathepsin D leads to lysosomal dysfunction and promotes cell-to-cell transmission of α-synuclein aggregates. Cell Death Dis. 6, e1901 (2015).
Acknowledgements
Research in the Nixon laboratory has been supported by grants (P01 AG017617; R01 AG062376) from the National Institute on Aging, New Vision Research Foundation (Leonard Litwin Scholar award), Cure Huntington’s Disease Initiative (CHDI) Foundation, Takeda Corp. and Johnson & Johnson. D.C.R. received funding from the UK Dementia Research Institute (funded by the MRC, Alzheimer’s Research UK and the Alzheimer’s Society), Parkinson’s UK, the National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre (NIHR203312), Rosetrees Trust and the Tau Consortium/Rainwater Charitable Foundation. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. The authors acknowledge the expert assistance of S. Jain in preparing this manuscript for publication. They thank G. Di Paolo and A. Henry for critical reading of the manuscript and suggestions. The authors appreciate additional contributions made to the subjects reviewed that regretfully could not be cited due to space and reference limitations.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
D.C.R. is a consultant for Aladdin Healthcare Technologies Ltd, Mindrank AI, Nido Biosciences, Drishti Discoveries, Retro Biosciences, PAQ Therapeutics and Alexion Pharma Intl Ops Ltd. R.A.N. declares no competing interests.
Peer review
Peer review information
Nature Reviews Molecular Cell Biology thanks Zhenyu Yue and the other, anonymous, reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- α-Synuclein
-
A highly soluble neuronal protein that regulates synaptic vesicle trafficking and subsequent neurotransmitter release, and accumulates in Lewy bodies and Lewy neurites in Parkinson disease (PD) and other synucleinopathies. Mutations of α-synuclein are linked to familial PD.
- β-Amyloid precursor protein
-
(APP). A single-pass transmembrane protein highly expressed in the brain but of mainly unknown function. APP undergoes rapid cleavage into multiple bioactive products by sequential proteases, including the intramembranous γ-secretase complex that generates β-carboxy-terminal fragment (βCTF) and amyloid-β, two polypeptides implicated in Alzheimer disease (AD) pathogenesis and overproduced by APP mutations that cause autosomal dominant AD.
- Alzheimer disease
-
(AD). The most common form of dementia involving neurodegeneration of brain regions controlling thought, memory and language. AD progresses from memory loss to impaired language expression, comprehension and inability to perform activities of daily living. Autosomal dominant gene mutations (β-amyloid precursor protein (APP), presenilin 1 (PSEN1), PSEN2) induce adult early-onset (age <65 years) AD, whereas most cases are late-onset (age >65 years) AD involving influences of varied genetic and environmental risk factors.
- Conjugation of ATG8 (LC3) family membranes to single membranes
-
(CASM). A non-canonical autophagy pathway that shares some of the common ATG machinery but bears key mechanistic and functional distinctions, and is characterized by conjugation of ATG8 (LC3) to single membranes such as lysosomes and phagosomes.
- Endolysosomal escape
-
Escape of substrates from vesicles in the endocytic and lysosomal systems.
- Endoplasmic reticulum-associated degradation
-
(ERAD). The recognition of substrates in the lumen and membrane of the endoplasmic reticulum (ER), and their translocation into the cytosol, ubiquitination and delivery to the proteasome for degradation.
- Exosomes
-
Membrane-bound extracellular vesicles that are produced in the endosomal compartment of eukaryotic cells.
- Frontotemporal lobar degeneration
-
(FTLD). Also known as Pick disease. A group of brain disorders caused by degeneration of the frontal and anterior temporal lobes of the brain and characterized by progressive decline in behaviour (for example, personality changes, apathy) or movement, speaking or language comprehension.
- Huntingtin
-
A ubiquitously expressed protein with varied roles in synaptic transmission, transport and cell survival. Abnormal expansion of a glutamine stretch (polyQ) in mutant huntingtin causes Huntington disease (HD).
- Huntington disease
-
(HD). A monogenic neurodegenerative disorder caused by the huntingtin gene, HTT, characterized by loss of striatal neurons, and resulting in motor, psychiatric and cognitive symptoms.
- Induced pluripotent stem cells
-
A type of stem cells derived from adult somatic cells which have been reprogrammed through inducing genes and factors to be pluripotent.
- LC3 family members
-
Members of the ATG8 gene family that are classical markers for autophagosomes
- Lewy body dementia
-
(LBD). A progressive dementia involving a decline in thinking, movement, behaviour and mood and associated with abnormal deposits of α-synuclein in the brain, called Lewy bodies.
- Lysosomal storage disorder
-
(LSD). A group of more than 50 mainly childhood disorders that are inborn errors of metabolism characterized by abnormal accumulation of substrates due to defective lysosomes and usually involving deficiency of a single lipid metabolizing enzyme.
- Micropinocytosis
-
A process in which macromolecules are engulfed by small vesicles from the plasma membrane.
- Microvesicles
-
Diverse membrane‐enclosed vesicles that are released from cells into the extracellular space.
- Neuronal ceroid lipofuscinosis
-
(NCL). Also called Batten disease. A group of 14 inherited lysosomal storage disorders (LSDs) characterized by intracellular accumulation of autofluorescent lipopigment (ceroid and lipofuscin) and progressive neurodegeneration.
- Nucleoid
-
A structure comprising mitochondrial DNA (mtDNA) and numerous nucleoid-associated proteins that enables submitochondrial organization of mtDNA.
- Parkinson disease
-
(PD). A chronic degenerative disorder targeting dopaminergic neural circuits and initially causing tremors, rigidity and slowed movement, and later additional intellectual functions, including dementia in a minor population of affected individuals.
- Presenilin 1
-
(PSEN1). A multifunctional transmembrane protein that, in loss-of-function mutant form, is one of three autosomal dominant causes of Alzheimer disease (AD). PSEN1 is one of four core proteins in the γ-secretase endoprotease complex that performs intramembrane cleavage of dozens of integral membrane proteins, including β-amyloid precursor protein (APP) that sequentially generates the β-carboxy-terminal fragment (βCTF) and amyloid-β, two polypeptides implicated in AD pathogenesis.
- Ryanodine receptors
-
(RyRs). Ion channels residing in the sarcoplasmic/endoplasmic reticulum membrane and responsible for Ca2+ release from intracellular stores in excitable tissues, such as muscles and neurons.
- Tau
-
(MAPT). A group of six highly soluble protein isoforms produced by alternative splicing from MAPT that help stabilize the microtubule cytoskeleton of neurons and compose neurofibrillary tangles, a hallmark of Alzheimer disease (AD).
- TFEB, TFE3
-
Members of the MiT-TFE family of helix–loop–helix leucine zipper transcription factors that regulate expression of genes involved in the biogenesis and function of lysosomes and autophagosomes.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nixon, R.A., Rubinsztein, D.C. Mechanisms of autophagy–lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00757-5
Accepted:
Published:
DOI: https://doi.org/10.1038/s41580-024-00757-5