Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of cellular and systemic sphingolipid homeostasis

Abstract

One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual “Sphinx-like” lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of sphingolipid structures and metabolic pathways.
Fig. 2: Intracellular sphingolipid biosynthesis and distribution in organelles.
Fig. 3: Systemic regulation of sphingolipids.
Fig. 4: S1P metabolism and its therapeutic strategies.

Similar content being viewed by others

References

  1. Thudichum, J. L. W. A Treatise on the Chemical Constitution of the Brain (Archon Books, 1962).

  2. Carter, H. E. & Humiston, C. G. Biochemistry of the sphingolipides. V. The structure of sphingine. J. Biol. Chem. 191, 727–733 (1951).

    Article  CAS  PubMed  Google Scholar 

  3. Klenk, E. Contribution to the concept of gangliosides [German]. Hoppe Seylers Z. Physiol. Chem. 288, 216–220 (1951).

    CAS  PubMed  Google Scholar 

  4. Brady, R. O. The sphingolipidoses. N. Engl. J. Med. 275, 312–318 (1966).

    Article  CAS  PubMed  Google Scholar 

  5. Stoffel, W. Sphingolipids. Annu. Rev. Biochem. 40, 57–82 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. Hannun, Y. A. & Bell, R. M. Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science 235, 670–674 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Kolesnick, R. N. 1,2-Diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis in GH3 pituitary cells. J. Biol. Chem. 262, 16759–16762 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Obeid, L. M., Linardic, C. M., Karolak, L. A. & Hannun, Y. A. Programmed cell death induced by ceramide. Science 259, 1769–1771 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Ghosh, T. K., Bian, J. & Gill, D. L. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science 248, 1653–1656 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Olivera, A. & Spiegel, S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365, 557–560 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Choi, O. H., Kim, J. H. & Kinet, J. P. Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature 380, 634–636 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Hla, T. & Maciag, T. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J. Biol. Chem. 265, 9308–9313 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, M. J. et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279, 1552–1555 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. & Kluk, M. J. Lysophospholipids–receptor revelations. Science 294, 1875–1878 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Brinkmann, V. et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9, 883–897 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Hojjati, M. R., Li, Z. & Jiang, X. C. Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim. Biophys. Acta 1737, 44–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Buede, R., Rinker-Schaffer, C., Pinto, W. J., Lester, R. L. & Dickson, R. C. Cloning and characterization of LCB1, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids. J. Bacteriol. 173, 4325–4332 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park, W. J. & Park, J. W. The role of sphingolipids in endoplasmic reticulum stress. FEBS Lett. 594, 3632–3651 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Hernandez-Corbacho, M. J., Salama, M. F., Canals, D., Senkal, C. E. & Obeid, L. M. Sphingolipids in mitochondria. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 56–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Dunn, T. M., Tifft, C. J. & Proia, R. L. A perilous path: the inborn errors of sphingolipid metabolism. J. Lipid Res. 60, 475–483 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mandon, E. C., Ehses, I., Rother, J., van Echten, G. & Sandhoff, K. Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J. Biol. Chem. 267, 11144–11148 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Brady, R. O. & Koval, G. J. The enzymatic synthesis of sphingosine. J. Biol. Chem. 233, 26–31 (1958).

    Article  CAS  PubMed  Google Scholar 

  23. Brady, R. O., Formica, J. V. & Koval, G. J. The enzymatic synthesis of sphingosine. II. Further studies on the mechanism of the reaction. J. Biol. Chem. 233, 1072–1076 (1958).

    Article  CAS  PubMed  Google Scholar 

  24. Weiss, B. & Stoffel, W. Human and murine serine-palmitoyl-CoA transferase — cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur. J. Biochem. 249, 239–247 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Hornemann, T., Richard, S., Rutti, M. F., Wei, Y. & von Eckardstein, A. Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J. Biol. Chem. 281, 37275–37281 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Han, G. et al. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc. Natl Acad. Sci. USA 106, 8186–8191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mandon, E. C., van Echten, G., Birk, R., Schmidt, R. R. & Sandhoff, K. Sphingolipid biosynthesis in cultured neurons. Down-regulation of serine palmitoyltransferase by sphingoid bases. Eur. J. Biochem. 198, 667–674 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Davis, D. L., Gable, K., Suemitsu, J., Dunn, T. M. & Wattenberg, B. W. The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: reconstitution of SPT regulation in isolated membranes. J. Biol. Chem. 294, 5146–5156 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Breslow, D. K. et al. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048–1053 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohassel, P. et al. Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat. Med. 27, 1197–1204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Srivastava, S. et al. SPTSSA variants alter sphingolipid synthesis and cause a complex hereditary spastic paraplegia. Brain 146, 1420–1435 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lone, M. A. et al. SPTLC1 variants associated with ALS produce distinct sphingolipid signatures through impaired interaction with ORMDL proteins. J. Clin. Invest. 132, e161908 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beeler, T. et al. The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutant. J. Biol. Chem. 273, 30688–30694 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Kihara, A. & Igarashi, Y. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. J. Biol. Chem. 279, 49243–49250 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, Q. et al. 3-Ketodihydrosphingosine reductase maintains ER homeostasis and unfolded protein response in leukemia. Leukemia 36, 100–110 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Pilz, R. et al. Formation of keto-type ceramides in palmoplantar keratoderma based on biallelic KDSR mutations in patients. Hum. Mol. Genet. 31, 1105–1114 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Guillas, I. et al. C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J. 20, 2655–2665 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schorling, S., Vallee, B., Barz, W. P., Riezman, H. & Oesterhelt, D. Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Mol. Biol. Cell 12, 3417–3427 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levy, M. & Futerman, A. H. Mammalian ceramide synthases. IUBMB Life 62, 347–356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zelnik, I. D., Rozman, B., Rosenfeld-Gur, E., Ben-Dor, S. & Futerman, A. H. A stroll down the CerS lane. Adv. Exp. Med. Biol. 1159, 49–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. York, A. G. et al. IL-10 constrains sphingolipid metabolism to limit inflammation. Nature 627, 628–635 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Griess, K. et al. Sphingolipid subtypes differentially control proinsulin processing and systemic glucose homeostasis. Nat. Cell Biol. 25, 20–29 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Siddique, M. M., Li, Y., Chaurasia, B., Kaddai, V. A. & Summers, S. A. Dihydroceramides: from bit players to lead actors. J. Biol. Chem. 290, 15371–15379 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chaurasia, B. et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386–392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hammerschmidt, P. et al. CerS6-derived sphingolipids interact with Mff and promote mitochondrial fragmentation in obesity. Cell 177, 1536–1552.e23 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Senkal, C. E. et al. Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network. J. Biol. Chem. 286, 42446–42458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van der Bijl, P., Strous, G. J., Lopes-Cardozo, M., Thomas-Oates, J. & van Meer, G. Synthesis of non-hydroxy-galactosylceramides and galactosyldiglycerides by hydroxy-ceramide galactosyltransferase. Biochem. J. 317, 589–597 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Takahashi, T. & Suzuki, T. Role of sulfatide in normal and pathological cells and tissues. J. Lipid Res. 53, 1437–1450 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Venkataraman, K. & Futerman, A. H. Do longevity assurance genes containing Hox domains regulate cell development via ceramide synthesis? FEBS Lett. 528, 3–4 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Sociale, M. et al. Ceramide synthase schlank is a transcriptional regulator adapting gene expression to energy requirements. Cell Rep. 22, 967–978 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Mendelson, K. et al. The ceramide synthase 2b gene mediates genomic sensing and regulation of sphingosine levels during zebrafish embryogenesis. eLife 6, e21992 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mandala, S. M. et al. Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proc. Natl Acad. Sci. USA 97, 7859–7864 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ogawa, C., Kihara, A., Gokoh, M. & Igarashi, Y. Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. J. Biol. Chem. 278, 1268–1272 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Van Veldhoven, P. P. & Mannaerts, G. P. Subcellular localization and membrane topology of sphingosine-1-phosphate lyase in rat liver. J. Biol. Chem. 266, 12502–12507 (1991).

    Article  PubMed  Google Scholar 

  55. Saba, J. D., Nara, F., Bielawska, A., Garrett, S. & Hannun, Y. A. The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. J. Biol. Chem. 272, 26087–26090 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Ikeda, M., Kihara, A. & Igarashi, Y. Sphingosine-1-phosphate lyase SPL is an endoplasmic reticulum-resident, integral membrane protein with the pyridoxal 5’-phosphate binding domain exposed to the cytosol. Biochem. Biophys. Res. Commun. 325, 338–343 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Bektas, M. et al. Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. J. Biol. Chem. 285, 10880–10889 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arana, L., Gangoiti, P., Ouro, A., Trueba, M. & Gomez-Munoz, A. Ceramide and ceramide 1-phosphate in health and disease. Lipids Health Dis. 9, 15 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hoeferlin, L. A., Wijesinghe, D. S. & Chalfant, C. E. The role of ceramide-1-phosphate in biological functions. Handb. Exp. Pharmacol. 215, 153–166 (2013).

    Article  CAS  Google Scholar 

  60. Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Huitema, K., van den Dikkenberg, J., Brouwers, J. F. & Holthuis, J. C. Identification of a family of animal sphingomyelin synthases. EMBO J. 23, 33–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. D’Angelo, G. et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449, 62–67 (2007).

    Article  PubMed  Google Scholar 

  63. Chatterjee, S., Ghosh, N. & Khurana, S. Purification of uridine diphosphate-galactose:glucosyl ceramide, β1-4 galactosyltransferase from human kidney. J. Biol. Chem. 267, 7148–7153 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Kawano, M., Kumagai, K., Nishijima, M. & Hanada, K. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J. Biol. Chem. 281, 30279–30288 (2006)

    Article  CAS  PubMed  Google Scholar 

  65. Sugiki, T. et al. Structural basis for the Golgi association by the pleckstrin homology domain of the ceramide trafficking protein (CERT). J. Biol. Chem. 287, 33706–33718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Villani, M. et al. Sphingomyelin synthases regulate production of diacylglycerol at the Golgi. Biochem. J. 414, 31–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Fugmann, T. et al. Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein. J. Cell Biol. 178, 15–22 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kumagai, K. et al. Interorganelle trafficking of ceramide is regulated by phosphorylation-dependent cooperativity between the PH and START domains of CERT. J. Biol. Chem. 282, 17758–17766 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. D’Angelo, G., Vicinanza, M., Di Campli, A. & De Matteis, M. A. The multiple roles of PtdIns(4)P – not just the precursor of PtdIns(4,5)P2. J. Cell Sci. 121, 955–963 (2008).

    Google Scholar 

  70. Mesmin, B. et al. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155, 830–843 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Mesmin, B. et al. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. EMBO J. 36, 3156–3174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Capasso, S. et al. Sphingolipid metabolic flow controls phosphoinositide turnover at the trans-Golgi network. EMBO J. 36, 1736–1754 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015).

    Article  Google Scholar 

  74. Lelieveld, S. H. et al. Spatial clustering of de novo missense mutations identifies candidate neurodevelopmental disorder-associated genes. Am. J. Hum. Genet. 101, 478–484 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gehin, C. et al. CERT1 mutations perturb human development by disrupting sphingolipid homeostasis. J. Clin. Invest. 133, e165019 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Murakami, H. et al. Intellectual disability-associated gain-of-function mutations in CERT1 that encodes the ceramide transport protein CERT. PLoS One 15, e0243980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Crivelli, S. M. et al. CERTL reduces C16 ceramide, amyloid-β levels, and inflammation in a model of Alzheimer’s disease. Alzheimers Res. Ther. 13, 45 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gewaid, H. et al. Sphingomyelin is essential for the structure and function of the double-membrane vesicles in hepatitis C virus RNA replication factories. J. Virol. 94, e01080–e01120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tachida, Y. et al. Chlamydia trachomatis-infected human cells convert ceramide to sphingomyelin without sphingomyelin synthases 1 and 2. FEBS Lett. 594, 519–529 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Carreira, A. C. et al. Mammalian sphingoid bases: biophysical, physiological and pathological properties. Prog. Lipid Res. 594, 100995 (2019).

    Article  Google Scholar 

  81. Duran, J. M. et al. Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex. EMBO J. 31, 4535–4546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Galen, J. et al. Sphingomyelin homeostasis is required to form functional enzymatic domains at the trans-Golgi network. J. Cell Biol. 206, 609–618 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Campelo, F. et al. Sphingomyelin metabolism controls the shape and function of the Golgi cisternae. eLife 6, e24603 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sokoya, T. et al. Pathogenic variants of sphingomyelin synthase SMS2 disrupt lipid landscapes in the secretory pathway. eLife 11, e79278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pekkinen, M. et al. Osteoporosis and skeletal dysplasia caused by pathogenic variants in SGMS2. JCI Insight 4, e126180 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lipsky, N. G. & Pagano, R. E. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J. Cell Biol. 100, 27–34 (1985).

    Article  CAS  PubMed  Google Scholar 

  87. Milhas, D., Clarke, C. J. & Hannun, Y. A. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett. 584, 1887–1894 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Ray, T. K., Skipski, V. P., Barclay, M., Essner, E. & Archibald, F. M. Lipid composition of rat liver plasma membranes. J. Biol. Chem. 244, 5528–5536 (1969).

    Article  CAS  PubMed  Google Scholar 

  89. Carreira, A. C., Ventura, A. E., Varela, A. R. & Silva, L. C. Tackling the biophysical properties of sphingolipids to decipher their biological roles. Biol. Chem. 396, 597–609 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Abe, M. et al. PMP2/FABP8 induces PI(4,5)P(2)-dependent transbilayer reorganization of sphingomyelin in the plasma membrane. Cell Rep. 37, 109935 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Alvarez-Prats, A. et al. Schwann-cell-specific deletion of phosphatidylinositol 4-kinase alpha causes aberrant myelination. Cell Rep. 23, 2881–2890 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Das, A., Brown, M. S., Anderson, D. D., Goldstein, J. L. & Radhakrishnan, A. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. eLife 3, e02882 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Johnson, K. A., Endapally, S., Vazquez, D. C., Infante, R. E. & Radhakrishnan, A. Ostreolysin A and anthrolysin O use different mechanisms to control movement of cholesterol from the plasma membrane to the endoplasmic reticulum. J. Biol. Chem. 294, 17289–17300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Endapally, S. et al. Molecular discrimination between two conformations of sphingomyelin in plasma membranes. Cell 176, 1040–1053.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Scheek, S., Brown, M. S. & Goldstein, J. L. Sphingomyelin depletion in cultured cells blocks proteolysis of sterol regulatory element binding proteins at site 1. Proc. Natl Acad. Sci. USA 94, 11179–11183 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim, Y., Mavodza, G., Senkal, C. E. & Burd, C. G. Cholesterol-dependent homeostatic regulation of very long chain sphingolipid synthesis. J. Cell. Biol. 222, e202308055 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bieberich, E. Sphingolipids and lipid rafts: novel concepts and methods of analysis. Chem. Phys. Lipids 216, 114–131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Grassi, S. et al. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J. Lipid Res. 61, 636–654 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Andreone, B. J. et al. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94, 581–594.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Russo, D., Parashuraman, S. & D’Angelo, G. Glycosphingolipid-protein interaction in signal transduction. Int. J. Mol. Sci. 17, 1732 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Malchiodi-Albedi, F. et al. Lipid raft disruption protects mature neurons against amyloid oligomer toxicity. Biochim. Biophys. Acta 1802, 406–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Pernber, Z., Blennow, K., Bogdanovic, N., Mansson, J. E. & Blomqvist, M. Altered distribution of the gangliosides GM1 and GM2 in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 33, 174–188 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Andersson, L. et al. Glucosylceramide synthase deficiency in the heart compromises β1-adrenergic receptor trafficking. Eur. Heart J. 42, 4481–4492 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jongsma, M. L. M. et al. The SPPL3-defined glycosphingolipid repertoire orchestrates HLA class I-mediated immune responses. Immunity 54, 132–150.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Capolupo, L. et al. Sphingolipids control dermal fibroblast heterogeneity. Science 376, eabh1623 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Quintern, L. E. et al. Acid sphingomyelinase from human urine: purification and characterization. Biochim. Biophys. Acta 922, 323–336 (1987).

    Article  CAS  PubMed  Google Scholar 

  107. Furst, W., Machleidt, W. & Sandhoff, K. The precursor of sulfatide activator protein is processed to three different proteins. Biol. Chem. Hoppe Seyler 369, 317–328 (1988).

    Article  CAS  PubMed  Google Scholar 

  108. O’Brien, J. S. et al. Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science 241, 1098–1101 (1988).

    Article  PubMed  Google Scholar 

  109. Kolter, T. & Sandhoff, K. Lysosomal degradation of membrane lipids. FEBS Lett. 584, 1700–1712 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Gatt, S. Enzymatic hydrolysis of sphingolipids. I. Hydrolysis and synthesis of ceramides by an enzyme from rat brain. J. Biol. Chem. 241, 3724–3730 (1966).

    Article  CAS  PubMed  Google Scholar 

  111. Sasaki, H., Arai, H., Cocco, M. J. & White, S. H. pH dependence of sphingosine aggregation. Biophys. J. 96, 2727–2733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lloyd-Evans, E. et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 14, 1247–1255 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Hoglinger, D. et al. Intracellular sphingosine releases calcium from lysosomes. eLife 4, e10616 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Taha, T. A. et al. Tumor necrosis factor induces the loss of sphingosine kinase-1 by a cathepsin B-dependent mechanism. J. Biol. Chem. 280, 17196–17202 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Le Stunff, H. et al. Recycling of sphingosine is regulated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine kinase 2. J. Biol. Chem. 282, 34372–34380 (2007).

    Article  PubMed  Google Scholar 

  116. Altuzar, J. et al. Lysosome-targeted multifunctional lipid probes reveal the sterol transporter NPC1 as a sphingosine interactor. Proc. Natl Acad. Sci. USA 120, e2213886120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hempelmann, P. et al. The sterol transporter STARD3 transports sphingosine at ER-lysosome contact sites. Preprint at bioRxiv https://doi.org/10.1101/2023.09.18.557036 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ha, H. T. et al. Lack of SPNS1 results in accumulation of lysolipids and lysosomal storage disease in mouse models. JCI Insight 9, e175462 (2024).

    PubMed  PubMed Central  Google Scholar 

  119. Wilhelm, L. P. et al. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. EMBO J. 36, 1412–1433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Palladino, E. N. D. et al. Sphingosine kinases regulate ER contacts with late endocytic organelles and cholesterol trafficking. Proc. Natl Acad. Sci. USA 119, e2204396119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage diseases. Nat. Rev. Dis. Prim. 4, 27 (2018).

    Article  PubMed  Google Scholar 

  122. Tharkeshwar, A. K. et al. A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency. Sci. Rep. 7, 41408 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Breiden, B. & Sandhoff, K. Lysosomal glycosphingolipid storage diseases. Annu. Rev. Biochem. 88, 461–485 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Daum, G. Lipids of mitochondria. Biochim. Biophys. Acta 822, 1–42 (1985).

    Article  CAS  PubMed  Google Scholar 

  125. Fugio, L. B., Coeli-Lacchini, F. B. & Leopoldino, A. M. Sphingolipids and mitochondrial dynamic. Cells 9, 581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C. & Hannun, Y. A. Ceramide activates heterotrimeric protein phosphatase 2A. J. Biol. Chem. 268, 15523–15530 (1993).

    Article  CAS  PubMed  Google Scholar 

  127. Ruvolo, P. P., Deng, X., Ito, T., Carr, B. K. & May, W. S. Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J. Biol. Chem. 274, 20296–20300 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Mukhopadhyay, A. et al. Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB J. 23, 751–763 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bourbon, N. A., Sandirasegarane, L. & Kester, M. Ceramide-induced inhibition of Akt is mediated through protein kinase Cζ: implications for growth arrest. J. Biol. Chem. 277, 3286–3292 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Birbes, H., El Bawab, S., Hannun, Y. A. & Obeid, L. M. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 15, 2669–2679 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Siskind, L. J. & Colombini, M. The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis. J. Biol. Chem. 275, 38640–38644 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Lee, H. et al. Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation. PLoS One 6, e19783 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shimeno, H. et al. Partial purification and characterization of sphingosine N-acyltransferase (ceramide synthase) from bovine liver mitochondrion-rich fraction. Lipids 33, 601–605 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. El Bawab, S. et al. Molecular cloning and characterization of a human mitochondrial ceramidase. J. Biol. Chem. 275, 21508–21513 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Yabu, T., Shimuzu, A. & Yamashita, M. A novel mitochondrial sphingomyelinase in zebrafish cells. J. Biol. Chem. 284, 20349–20363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Baden, P. et al. Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism. Nat. Commun. 14, 1930 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Strub, G. M. et al. Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J. 25, 600–612 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stiban, J., Caputo, L. & Colombini, M. Ceramide synthesis in the endoplasmic reticulum can permeabilize mitochondria to proapoptotic proteins. J. Lipid Res. 49, 625–634 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Mignard, V. et al. Sphingolipid distribution at mitochondria-associated membranes (MAMs) upon induction of apoptosis. J. Lipid Res. 61, 1025–1037 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Aaltonen, M. J., Alecu, I., Konig, T., Bennett, S. A. & Shoubridge, E. A. Serine palmitoyltransferase assembles at ER-mitochondria contact sites. Life Sci. Alliance 5, e202101278 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Planas-Serra, L. et al. Sphingolipid desaturase DEGS1 is essential for mitochondria-associated membrane integrity. J. Clin. Invest. 133, e162957 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tafesse, F. G. et al. Sphingomyelin synthase-related protein SMSr is a suppressor of ceramide-induced mitochondrial apoptosis. J. Cell Sci. 127, 445–454 (2014).

    CAS  PubMed  Google Scholar 

  143. Walther, T. C., Chung, J. & Farese, R. V. Jr Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol. 33, 491–510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Senkal, C. E. et al. Ceramide is metabolized to acylceramide and stored in lipid droplets. Cell Metab. 25, 686–697 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Iqbal, J., Walsh, M. T., Hammad, S. M. & Hussain, M. M. Sphingolipids and lipoproteins in health and metabolic disorders. Trends Endocrinol. Metab. 28, 506–518 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Verderio, C., Gabrielli, M. & Giussani, P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J. Lipid Res. 59, 1325–1340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Heaver, S. L., Johnson, E. L. & Ley, R. E. Sphingolipids in host-microbial interactions. Curr. Opin. Microbiol. 43, 92–99 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Vesper, H. et al. Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J. Nutr. 129, 1239–1250 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Nilsson, A. Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim. Biophys. Acta 164, 575–584 (1968).

    Article  CAS  PubMed  Google Scholar 

  150. Kono, M. et al. Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J. Biol. Chem. 281, 7324–7331 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Nilsson, A. & Duan, R. D. Absorption and lipoprotein transport of sphingomyelin. J. Lipid Res. 47, 154–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Fukuda, Y., Kihara, A. & Igarashi, Y. Distribution of sphingosine kinase activity in mouse tissues: contribution of SPHK1. Biochem. Biophys. Res. Commun. 309, 155–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Nakahara, K. et al. The Sjogren-Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol. Cell 46, 461–471 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Schmelz, E. M., Crall, K. J., Larocque, R., Dillehay, D. L. & Merrill, A. H. Jr Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J. Nutr. 124, 702–712 (1994).

    Article  CAS  PubMed  Google Scholar 

  155. Morifuji, M. et al. Milk phospholipids enhance lymphatic absorption of dietary sphingomyelin in lymph-cannulated rats. Lipids 50, 987–996 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Yamashita, S., Kinoshita, M. & Miyazawa, T. Dietary sphingolipids contribute to health via intestinal maintenance. Int. J. Mol. Sci. 22, 7052 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Norris, G. H., Milard, M., Michalski, M. C. & Blesso, C. N. Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J. Nutr. Biochem. 73, 108224 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Vors, C. et al. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: towards a gut sphingomyelin-cholesterol interplay. Gut 69, 487–501 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Le Barz, M. et al. Milk polar lipids favorably alter circulating and intestinal ceramide and sphingomyelin species in postmenopausal women. JCI Insight 6, e146161 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kinjo, Y. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. An, D. et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156, 123–133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Brown, E. M. et al. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host Microbe 25, 668–680.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Johnson, E. L. et al. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat. Commun. 11, 2471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Le, H. H., Lee, M. T., Besler, K. R. & Johnson, E. L. Host hepatic metabolism is modulated by gut microbiota-derived sphingolipids. Cell Host Microbe 30, 798–808.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cohen, L. J. et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Possemiers, S., Van Camp, J., Bolca, S. & Verstraete, W. Characterization of the bactericidal effect of dietary sphingosine and its activity under intestinal conditions. Int. J. Food Microbiol. 105, 59–70 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Sprong, R. C., Hulstein, M. F. & Van der Meer, R. Bactericidal activities of milk lipids. Antimicrob. Agents Chemother. 45, 1298–1301 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Norris, G. H., Jiang, C., Ryan, J., Porter, C. M. & Blesso, C. N. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. J. Nutr. Biochem. 30, 93–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Milard, M. et al. Milk polar lipids in a high-fat diet can prevent body weight gain: modulated abundance of gut bacteria in relation with fecal loss of specific fatty acids. Mol. Nutr. Food Res. 63, e1801078 (2019).

    Article  PubMed  Google Scholar 

  170. Lee, M. T., Le, H. H. & Johnson, E. L. Dietary sphinganine is selectively assimilated by members of the mammalian gut microbiome. J. Lipid Res. 62, 100034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bowden, J. A. et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-metabolites in frozen human plasma. J. Lipid Res. 58, 2275–2288 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hammad, S. M. et al. Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J. Lipid Res. 51, 3074–3087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Iqbal, J. et al. Microsomal triglyceride transfer protein transfers and determines plasma concentrations of ceramide and sphingomyelin but not glycosylceramide. J. Biol. Chem. 290, 25863–25875 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hussain, M. M., Shi, J. & Dreizen, P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J. Lipid Res. 44, 22–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. Li, Z. et al. Liver-specific deficiency of serine palmitoyltransferase subunit 2 decreases plasma sphingomyelin and increases apolipoprotein E levels. J. Biol. Chem. 284, 27010–27019 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Maric, J., Kiss, R. S., Franklin, V. & Marcel, Y. L. Intracellular lipidation of newly synthesized apolipoprotein A-I in primary murine hepatocytes. J. Biol. Chem. 280, 39942–39949 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Choi, H. Y. et al. Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann-Pick type C disease. J. Biol. Chem. 278, 32569–32577 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Hotta, N., Abe-Dohmae, S., Taguchi, R. & Yokoyama, S. Preferential incorporation of shorter and less unsaturated acyl phospholipids into high density lipoprotein-like particles in the ABCA1- and ABCA7-mediated biogenesis with apoA-I. Chem. Phys. Lipids 187, 1–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Kersten, S. Physiological regulation of lipoprotein lipase. Biochim. Biophys. Acta 1841, 919–933 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Illingworth, D. R. & Portman, O. W. Exchange of phospholipids between low and high density lipoproteins of squirrel monkeys. J. Lipid Res. 13, 220–227 (1972).

    Article  CAS  PubMed  Google Scholar 

  181. Rao, R., Albers, J. J., Wolfbauer, G. & Pownall, H. J. Molecular and macromolecular specificity of human plasma phospholipid transfer protein. Biochemistry 36, 3645–3653 (1997).

    Article  CAS  PubMed  Google Scholar 

  182. Jiang, X. C. et al. Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels. J. Clin. Invest. 103, 907–914 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Qin, S. et al. Phospholipid transfer protein gene knock-out mice have low high density lipoprotein levels, due to hypercatabolism, and accumulate apoA-IV-rich lamellar lipoproteins. J. Lipid Res. 41, 269–276 (2000).

    Article  CAS  PubMed  Google Scholar 

  184. Bentejac, M., Bugaut, M., Delachambre, M. C. & Lecerf, J. Metabolic fate of sphingomyelin of high-density lipoprotein in rat plasma. Lipids 25, 653–660 (1990).

    Article  CAS  PubMed  Google Scholar 

  185. Jeong, T. et al. Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. J. Clin. Invest. 101, 905–912 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lee, J. Y. et al. Functional LCAT deficiency in human apolipoprotein A-I transgenic, SR-BI knockout mice. J. Lipid Res. 48, 1052–1061 (2007).

    Article  PubMed  Google Scholar 

  187. Li, Z. et al. Effect of total SMS activity on LDL catabolism in mice. Arterioscler. Thromb. Vasc. Biol. 43, 1251–1261 (2023).

    Article  CAS  PubMed  Google Scholar 

  188. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  PubMed  Google Scholar 

  189. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. Menck, K. et al. Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J. Extracell. Vesicles 6, 1378056 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Yuyama, K., Sun, H., Mitsutake, S. & Igarashi, Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J. Biol. Chem. 287, 10977–10989 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Crivelli, S. M. et al. Function of ceramide transfer protein for biogenesis and sphingolipid composition of extracellular vesicles. J. Extracell. Vesicles 11, e12233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kajimoto, T. et al. Involvement of Gβγ subunits of Gi protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes. J. Biol. Chem. 293, 245–253 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Yuyama, K. et al. Decreased amyloid-beta pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J. Biol. Chem. 289, 24488–24498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang, R. et al. Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration. J. Biol. Chem. 290, 30684–30696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kuo, A. et al. Murine endothelial serine palmitoyltransferase 1 (SPTLC1) is required for vascular development and systemic sphingolipid homeostasis. eLife 11, e78861 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hammad, S. M. & Lopes-Virella, M. F. Circulating sphingolipids in insulin resistance, diabetes and associated complications. Int. J. Mol. Sci. 24, 4015 (2023).

    Article  Google Scholar 

  198. van Kruining, D. et al. Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Adv. Drug Deliv. Rev. 159, 232–244 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Tang, H., Huang, X. & Pang, S. Regulation of the lysosome by sphingolipids: potential role in aging. J. Biol. Chem. 298, 102118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Summers, S. A., Chaurasia, B. & Holland, W. L. Metabolic messengers: ceramides. Nat. Metab. 1, 1051–1058 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Meikle, P. J. et al. Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 31, 2723–2732 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Laaksonen, R. et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 37, 1967–1976 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Havulinna, A. S. et al. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler. Thromb. Vasc. Biol. 36, 2424–2430 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Hilvo, M. et al. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur. Heart J. 41, 371–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  205. Igarashi, J., Thatte, H. S., Prabhakar, P., Golan, D. E. & Michel, T. Calcium-independent activation of endothelial nitric oxide synthase by ceramide. Proc. Natl Acad. Sci. USA 96, 12583–12588 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. SenthilKumar, G. et al. Necessary role of ceramides in the human microvascular endothelium during health and disease. Circ. Res. 134, 81–96 (2024).

    Article  CAS  PubMed  Google Scholar 

  207. Choi, R. H., Tatum, S. M., Symons, J. D., Summers, S. A. & Holland, W. L. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat. Rev. Cardiol. 18, 701–711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Cartier, A. & Hla, T. Sphingosine 1-phosphate: lipid signaling in pathology and therapy. Science 366, eaar5551 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ding, G. et al. Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. J. Biol. Chem. 282, 27493–27502 (2007).

    Article  CAS  PubMed  Google Scholar 

  210. Maceyka, M. et al. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J. Biol. Chem. 280, 37118–37129 (2005).

    Article  CAS  PubMed  Google Scholar 

  211. Johnson, K. R., Becker, K. P., Facchinetti, M. M., Hannun, Y. A. & Obeid, L. M. PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J. Biol. Chem. 277, 35257–35262 (2002).

    Article  CAS  PubMed  Google Scholar 

  212. Pitson, S. M. et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22, 5491–5500 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. ter Braak, M. et al. Gαq-mediated plasma membrane translocation of sphingosine kinase-1 and cross-activation of S1P receptors. Biochim. Biophys. Acta 1791, 357–370 (2009).

    Article  PubMed  Google Scholar 

  214. Venkataraman, K. et al. Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochem. J. 397, 461–471 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Soldi, R. et al. Sphingosine kinase 1 is a critical component of the copper-dependent FGF1 export pathway. Exp. Cell Res. 313, 3308–3318 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kawahara, A. et al. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323, 524–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  217. Hisano, Y., Kobayashi, N., Yamaguchi, A. & Nishi, T. Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS One 7, e38941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Vu, T. M. et al. Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets. Nature 550, 524–528 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Kobayashi, N. et al. MFSD2B is a sphingosine 1-phosphate transporter in erythroid cells. Sci. Rep. 8, 4969 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Xu, N. & Dahlback, B. A novel human apolipoprotein (apoM). J. Biol. Chem. 274, 31286–31290 (1999).

    Article  CAS  PubMed  Google Scholar 

  221. Christoffersen, C. et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc. Natl Acad. Sci. USA 108, 9613–9618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Venkataraman, K. et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res. 102, 669–676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kharel, Y. et al. Mechanism of sphingosine 1-phosphate clearance from blood. Biochem. J. 477, 925–935 (2020).

    Article  CAS  PubMed  Google Scholar 

  224. Kono, M. et al. Identification of two lipid phosphatases that regulate sphingosine-1-phosphate cellular uptake and recycling. J. Lipid Res. 63, 100225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Zhang, N., Zhang, J., Purcell, K. J., Cheng, Y. & Howard, K. The Drosophila protein Wunen repels migrating germ cells. Nature 385, 64–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  226. Starz-Gaiano, M., Cho, N. K., Forbes, A. & Lehmann, R. Spatially restricted activity of a Drosophila lipid phosphatase guides migrating germ cells. Development 128, 983–991 (2001).

    Article  CAS  PubMed  Google Scholar 

  227. Igarashi, N. et al. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J. Biol. Chem. 278, 46832–46839 (2003).

    Article  CAS  PubMed  Google Scholar 

  228. Hait, N. C. et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ihlefeld, K., Claas, R. F., Koch, A., Pfeilschifter, J. M. & Meyer Zu Heringdorf, D. Evidence for a link between histone deacetylation and Ca2+ homoeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts. Biochem. J. 447, 457–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  230. Hait, N. C. et al. Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory. Nat. Neurosci. 17, 971–980 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Hait, N. C. et al. The phosphorylated prodrug FTY720 is a histone deacetylase inhibitor that reactivates ERalpha expression and enhances hormonal therapy for breast cancer. Oncogenesis 4, e156 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Yin, P. et al. Glial sphingosine-mediated epigenetic regulation stabilizes synaptic function in Drosophila models of Alzheimer’s disease. J. Neurosci. 43, 6954–6971 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ji, X. et al. Sphingolipid metabolism controls mammalian heart regeneration. Cell Metab. 36, 839–856.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  234. Alvarez, S. E. et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465, 1084–1088 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Xia, P. et al. Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-α signaling. J. Biol. Chem. 277, 7996–8003 (2002).

    Article  CAS  PubMed  Google Scholar 

  236. Etemadi, N. et al. TRAF2 regulates TNF and NF-κB signalling to suppress apoptosis and skin inflammation independently of sphingosine kinase 1. eLife 4, e10592 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Verstockt, B. et al. Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 19, 351–366 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Burg, N., Salmon, J. E. & Hla, T. Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat. Rev. Rheumatol. 18, 335–351 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Chen, H. et al. Structure of S1PR2-heterotrimeric G13 signaling complex. Sci. Adv. 8, eabn0067 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Maeda, S. et al. Endogenous agonist-bound S1PR3 structure reveals determinants of G protein-subtype bias. Sci. Adv. 7, eabf5325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Lyapina, E. et al. Structural basis for receptor selectivity and inverse agonism in S1P5 receptors. Nat. Commun. 13, 4736 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Plomgaard, P. et al. Apolipoprotein M predicts pre-beta-HDL formation: studies in type 2 diabetic and nondiabetic subjects. J. Intern. Med. 266, 258–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  243. Kumaraswamy, S. B., Linder, A., Akesson, P. & Dahlback, B. Decreased plasma concentrations of apolipoprotein M in sepsis and systemic inflammatory response syndromes. Crit. Care 16, R60 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Su, W., Jiao, G., Yang, C. & Ye, Y. Evaluation of apolipoprotein M as a biomarker of coronary artery disease. Clin. Biochem. 42, 365–370 (2009).

    Article  CAS  PubMed  Google Scholar 

  245. Chirinos, J. A. et al. Reduced apolipoprotein M and adverse outcomes across the spectrum of human heart failure. Circulation 141, 1463–1476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Marfia, G. et al. Decreased serum level of sphingosine-1-phosphate: a novel predictor of clinical severity in COVID-19. EMBO Mol. Med. 13, e13424 (2021).

    Article  CAS  PubMed  Google Scholar 

  247. Swendeman, S. L. et al. An engineered S1P chaperone attenuates hypertension and ischemic injury. Sci. Signal 10, eaal2722 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Ding, B. S. et al. HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) promotes regeneration and suppresses fibrosis in the liver. JCI Insight 1, e87058 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Niaudet, C. et al. Therapeutic activation of endothelial sphingosine-1-phosphate receptor 1 by chaperone-bound S1P suppresses proliferative retinal neovascularization. EMBO Mol. Med. 15, e16645 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Burg, N., Swendeman, S., Worgall, S., Hla, T. & Salmon, J. E. Sphingosine 1-phosphate receptor 1 signaling maintains endothelial cell barrier function and protects against immune complex-induced vascular injury. Arthritis Rheumatol. 70, 1879–1889 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Fritzemeier, R. et al. Discovery of in vivo active sphingosine-1-phosphate transporter (Spns2) inhibitors. J. Med. Chem. 65, 7656–7681 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. van der Weyden, L. et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 541, 233–236 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Lynch, K. R., Thorpe, S. B. & Santos, W. L. Sphingosine kinase inhibitors: a review of patent literature (2006-2015). Expert Opin. Ther. Pat. 26, 1409–1416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Bu, Y., Wu, H., Deng, R. & Wang, Y. Therapeutic potential of SphK1 inhibitors based on abnormal expression of sphk1 in inflammatory immune related-diseases. Front. Pharmacol. 12, 733387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Wieczorek, I. & Strosznajder, R. P. Recent insight into the role of sphingosine-1-phosphate lyase in neurodegeneration. Int. J. Mol. Sci. 24, 6180 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Pepe, G. et al. Treatment with THI, an inhibitor of sphingosine-1-phosphate lyase, modulates glycosphingolipid metabolism and results therapeutically effective in experimental models of Huntington’s disease. Mol. Ther. 31, 282–299 (2023).

    Article  CAS  PubMed  Google Scholar 

  257. Uranbileg, B. et al. Sphingosine 1-phosphate lyase facilitates cancer progression through converting sphingolipids to glycerophospholipids. Clin. Transl. Med. 12, e1056 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Saba, J. D. et al. Genotype/phenotype interactions and first steps toward targeted therapy for sphingosine phosphate lyase insufficiency syndrome. Cell Biochem. Biophys. 79, 547–559 (2021).

    Article  CAS  PubMed  Google Scholar 

  259. Palaiodimou, L. et al. Fabry disease: current and novel therapeutic strategies. a narrative review. Curr. Neuropharmacol. 21, 440–456 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Fischer, C. L. et al. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria. Antimicrob. Agents Chemother. 56, 1157–1161 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Rollin-Pinheiro, R., Singh, A., Barreto-Bergter, E. & Del Poeta, M. Sphingolipids as targets for treatment of fungal infections. Future Med. Chem. 8, 1469–1484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Caputo, S. et al. Design, synthesis, and biological evaluation of a series of oxazolone carboxamides as a novel class of acid ceramidase inhibitors. J. Med. Chem. 63, 15821–15851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Yi, X. et al. Therapeutic potential of the sphingosine kinase 1 inhibitor, PF-543. Biomed. Pharmacother. 163, 114401 (2023).

    Article  CAS  PubMed  Google Scholar 

  264. Kumar, A., Zamora-Pineda, J., Degagne, E. & Saba, J. D. S1P lyase regulation of thymic egress and oncogenic inflammatory signaling. Mediators Inflamm. 2017, 7685142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Ikushiro, H. et al. Structural insights into the enzymatic mechanism of serine palmitoyltransferase from Sphingobacterium multivorum. J. Biochem. 146, 549–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  266. Wang, Y. et al. Structural insights into the regulation of human serine palmitoyltransferase complexes. Nat. Struct. Mol. Biol. 28, 240–248 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Li, S., Xie, T., Liu, P., Wang, L. & Gong, X. Structural insights into the assembly and substrate selectivity of human SPT-ORMDL3 complex. Nat. Struct. Mol. Biol. 28, 249–257 (2021).

    Article  CAS  PubMed  Google Scholar 

  268. Liu, P. et al. Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex. Sci. Adv. 9, eadg0728 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Schafer, J. H. et al. Structure of the ceramide-bound SPOTS complex. Nat. Commun. 14, 6196 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Roelants, F. M., Breslow, D. K., Muir, A., Weissman, J. S. & Thorner, J. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 108, 19222–19227 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Sun, Y. et al. Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways. Mol. Biol. Cell 23, 2388–2398 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Sasset, L. et al. Sphingosine-1-phosphate controls endothelial sphingolipid homeostasis via ORMDL. EMBO Rep. 24, e54689 (2023).

    Article  CAS  PubMed  Google Scholar 

  273. Cantalupo, A. et al. Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure. Nat. Med. 21, 1028–1037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Bejaoui, K. et al. SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat. Genet. 27, 261–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  275. Dawkins, J. L., Hulme, D. J., Brahmbhatt, S. B., Auer-Grumbach, M. & Nicholson, G. A. Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat. Genet. 27, 309–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  276. Gantner, M. L. et al. Serine and lipid metabolism in macular disease and peripheral neuropathy. N. Engl. J. Med. 381, 1422–1433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Ikushiro, H. et al. Structural insights into the substrate recognition of serine palmitoyltransferase from Sphingobacterium multivorum. J. Biol. Chem. 299, 104684 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Gable, K. et al. A disease-causing mutation in the active site of serine palmitoyltransferase causes catalytic promiscuity. J. Biol. Chem. 285, 22846–22852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Penno, A. et al. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J. Biol. Chem. 285, 11178–11187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Garofalo, K. et al. Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J. Clin. Invest. 121, 4735–4745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Fridman, V. et al. Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology 92, e359–e370 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Othman, A. et al. Plasma 1-deoxysphingolipids are predictive biomarkers for type 2 diabetes mellitus. BMJ Open Diabetes Res. Care 3, e000073 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Handzlik, M. K. et al. Insulin-regulated serine and lipid metabolism drive peripheral neuropathy. Nature 614, 118–124 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Muthusamy, T. et al. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature 586, 790–795 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Alecu, I. et al. Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. J. Lipid Res. 58, 42–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  286. Rosarda, J. D. et al. Imbalanced unfolded protein response signaling contributes to 1-deoxysphingolipid retinal toxicity. Nat. Commun. 14, 4119 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Lauterbach, M. A. et al. 1-Deoxysphingolipids cause autophagosome and lysosome accumulation and trigger NLRP3 inflammasome activation. Autophagy 17, 1947–1961 (2021).

    Article  CAS  PubMed  Google Scholar 

  288. Alecu, I. et al. Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway. J. Lipid Res. 58, 60–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  289. Karsai, G. et al. FADS3 is a Delta14Z sphingoid base desaturase that contributes to gender differences in the human plasma sphingolipidome. J. Biol. Chem. 295, 1889–1897 (2020).

    Article  CAS  PubMed  Google Scholar 

  290. Wang, T. et al. 1-deoxysphingolipids bind to COUP-TF to modulate lymphatic and cardiac cell development. Dev. Cell 56, 3128–3145.e15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Kobayashi, N., Kobayashi, N., Yamaguchi, A. & Nishi, T. Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. J. Biol. Chem. 284, 21192–21200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Mitra, P. et al. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc. Natl Acad. Sci. USA 103, 16394–16399 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Fukuhara, S. et al. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J. Clin. Invest. 122, 1416–1426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Nguyen, T. Q. et al. Erythrocytes efficiently utilize exogenous sphingosines for S1P synthesis and export via Mfsd2b. J. Biol. Chem. 296, 100201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Le, T. N. U. et al. Mfsd2b and Spns2 are essential for maintenance of blood vessels during development and in anaphylactic shock. Cell Rep. 40, 111208 (2022).

    Article  CAS  PubMed  Google Scholar 

  296. Tang, H. et al. The solute carrier SPNS2 recruits PI(4,5)P(2) to synergistically regulate transport of sphingosine-1-phosphate. Mol. Cell 83, 2739–2752.e5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Murata, N. et al. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem. J. 352, 809–815 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Christensen, P. M. et al. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1. FASEB J. 30, 2351–2359 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Del Gaudio, I. et al. Endothelial Spns2 and ApoM regulation of vascular tone and hypertension via sphingosine-1-phosphate. J. Am. Heart Assoc. 10, e021261 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Obinata, H. et al. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. J. Lipid Res. 60, 1912–1921 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Fleming, J. K., Glass, T. R., Lackie, S. J. & Wojciak, J. M. A novel approach for measuring sphingosine-1-phosphate and lysophosphatidic acid binding to carrier proteins using monoclonal antibodies and the kinetic exclusion assay. J. Lipid Res. 57, 1737–1747 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Galvani, S. et al. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci. Signal. 8, ra79 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Huang, X. S., Zhao, S. P., Hu, M. & Luo, Y. P. Apolipoprotein M likely extends its anti-atherogenesis via anti-inflammation. Med. Hypotheses 69, 136–140 (2007).

    Article  CAS  PubMed  Google Scholar 

  304. Schwab, S. R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005).

    Article  CAS  PubMed  Google Scholar 

  305. Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  306. Okuniewska, M. et al. SPNS2 enables T cell egress from lymph nodes during an immune response. Cell Rep. 36, 109368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Breart, B. et al. Lipid phosphate phosphatase 3 enables efficient thymic egress. J. Exp. Med. 208, 1267–1278 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Baeyens, A. et al. Monocyte-derived S1P in the lymph node regulates immune responses. Nature 592, 290–295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Mendoza, A. et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature 546, 158–161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Dixit, D. et al. S1PR1 inhibition induces pro-apoptotic signaling in T cells and limits humoral responses within lymph nodes. J. Clin. Invest. 134, e174984 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.K. is supported in part by a postdoctoral fellowship from the American Heart Association. T.H. acknowledges the support of National Institutes of Health grants (R01EY031715, R01AI173377, R01AG078602 and R35HL135821).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Timothy Hla.

Ethics declarations

Competing interests

T.H. is an inventor on patents and a patent application on S1P chaperones and S1PR modulations.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Long Nguyen, Giovanni D’Angelo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Atherogenic

Substances or conditions that promote the development of atherosclerosis, a disease characterized by the build-up of plaque in arterial walls, leading to narrowing and potential blockages in blood vessels.

Brush border

A dense layer of microvilli on the surface of enterocytes, increasing their surface area for absorption of nutrients from the digestive tract.

Caveolae

Small invaginations in the plasma membrane of cells, serving as specialized lipid rafts involved in various cellular processes such as signal transduction and vesicular trafficking.

Childhood amyotrophic lateral sclerosis

A rare neurodegenerative disorder that affects motor neurons in children, leading to progressive muscle weakness and loss of motor function.

Chylomicrons

Large lipoprotein particles with a diameter typically ranging from 75 to 1,200 nm, primarily composed of apolipoprotein B48, responsible for transporting dietary triglycerides from the intestine to various tissues throughout the body.

Docosahexaenoic acid

A type of omega-3 essential fatty acid with a double bond at C3 and C4 that is enriched in the brain, retina, and skin and is crucial for brain development, cognitive function, and overall health.

Gangliosides

A class of glycosphingolipids primarily found in cell membranes, particularly abundant in nerve cells, containing one or more sialic acids on their sugar moiety. These have essential roles in cell signalling and neuronal development.

Globosides

A class of glycosphingolipids characterized by a common tetrasaccharide core structure containing a terminal Galα1–4Galβ1–4Glcβ1–1Cer motif, frequently observed in biological membranes and involved in various physiological functions.

Hereditary spastic paraplegia

A group of genetic disorders characterized by progressive stiffness and weakness in the lower limbs due to degeneration of the nerves controlling muscle movement.

Hexosylceramide

A class of glycosphingolipids consisting of a hexose linked to the 1-OH group of the ceramide as the monosaccharide, playing essential roles in cell structure and signalling.

High-density lipoprotein

(HDL). A lipoprotein particle with a diameter ranging from 5 to 12 nm, primarily composed of apolipoprotein A-I, transporting cholesterol from tissues back to the liver for excretion, and is known to reduce the risk of cardiovascular disease.

Homeodomain

A protein motif that binds to specific DNA sequences, regulating gene expression and playing crucial roles in embryonic development and cell differentiation.

Human leukocyte antigen class I

A class of proteins on the cell surface that have a critical role in immune system recognition and response by presenting antigenic peptides to cytotoxic T cells.

Invariant natural killer T cells

A distinct population of T cells that express an invariant T cell receptor and recognize glycosphingolipids, such as α-galactosylceramide, to modulate immune responses.

Lipid rafts

Cholesterol-enriched lipid microdomains in cell membranes that play key roles in organizing signalling molecules and facilitating various cellular processes such as signal transduction and membrane trafficking.

Low-density lipoprotein

(LDL). A lipoprotein particle with a diameter ranging from 18 to 25 nm, primarily composed of apolipoprotein B100, carrying cholesterol from the liver to tissues, high levels of which are associated with an increased risk of cardiovascular disease.

Membrane contact sites

(MCS). Specialized regions where the membranes of two organelles come into close proximity, facilitating direct communication and transfer of lipids, ions, and other molecules between them.

Milk polar lipid supplementation

A dietary supplementation of specific polar lipids derived from milk, including enriched glycerophospholipids and sphingolipids, that may confer various health benefits such as improved lipid metabolism and gut health.

Multivesicular bodies

A cellular structure involved in the sorting and trafficking of proteins and lipids, characterized by multiple internal vesicles enclosed within a single membrane.

Niemann–Pick disease

A group of disorders caused by acid sphingomyelinase deficiency, where abnormal amounts of sphingolipids are accumulated in the lysosome, damaging various tissues.

Schwann cells

Specialized glial cells in the peripheral nervous system that wrap around axons to form myelin sheaths, facilitating rapid conduction of nerve impulses.

Sterol regulatory element-binding proteins

A family of membrane-bound proteins that act as transcription factors to regulate cholesterol and fatty acid synthesis.

Unfolded protein response

A cellular mechanism that regulates the folding capacity of the endoplasmic reticulum and manages unfolded or misfolded proteins, aiming to restore protein homeostasis.

Very-low-density lipoprotein

(VLDL). A lipoprotein particle with a diameter ranging from 30 to 80 nm, primarily responsible for transporting triglycerides synthesized in the liver to peripheral tissues, and is metabolized to form LDL particles.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, A., Hla, T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00742-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00742-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing