Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural and functional complexity of HSP90 in cellular homeostasis and disease

Abstract

Heat shock protein 90 (HSP90) is a chaperone with vital roles in regulating proteostasis, long recognized for its function in protein folding and maturation. A view is emerging that identifies HSP90 not as one protein that is structurally and functionally homogeneous but, rather, as a protein that is shaped by its environment. In this Review, we discuss evidence of multiple structural forms of HSP90 in health and disease, including homo-oligomers and hetero-oligomers, also termed epichaperomes, and examine the impact of stress, post-translational modifications and co-chaperones on their formation. We describe how these variations influence context-dependent functions of HSP90 as well as its interaction with other chaperones, co-chaperones and proteins, and how this structural complexity of HSP90 impacts and is impacted by its interaction with small molecule modulators. We close by discussing recent developments regarding the use of HSP90 inhibitors in cancer and how our new appreciation of the structural and functional heterogeneity of HSP90 invites a re-evaluation of how we discover and implement HSP90 therapeutics for disease treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors that can alter the balance of putative HSP90 conformations and HSP90 oligomerization state.
Fig. 2: HSP90 oligomers.
Fig. 3: Unique post-translational modifications affect the interaction of HSP90 with co-chaperones and client proteins in disease.

References

  1. Duan, G. & Walther, D. The roles of post-translational modifications in the context of protein interaction networks. PLoS Comput. Biol. 11, e1004049 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stetz, G., Tse, A. & Verkhivker, G. M. Dissecting structure-encoded determinants of allosteric cross-talk between post-translational modification sites in the Hsp90 chaperones. Sci. Rep. 8, 6899 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu, Z., Miller, D., Li, F., Liu, X. & Levy, S. F. A large accessory protein interactome is rewired across environments. eLife 9, e62365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nussinov, R., Tsai, C. J. & Jang, H. Protein ensembles link genotype to phenotype. PLoS Comput. Biol. 15, e1006648 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ginsberg, S. D. et al. Disease-specific interactome alterations via epichaperomics: the case for Alzheimer’s disease. FEBS J. 289, 2047–2066 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Bludau, I. & Aebersold, R. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat. Rev. Mol. Cell Biol. 21, 327–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Sui, X. et al. Widespread remodeling of proteome solubility in response to different protein homeostasis stresses. Proc. Natl Acad. Sci. USA 117, 2422–2431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Steurer, B. et al. DNA damage-induced transcription stress triggers the genome-wide degradation of promoter-bound Pol II. Nat. Commun. 13, 3624 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beadle, G. W. & Tatum, E. L. Genetic control of biochemical reactions in neurospora. Proc. Natl Acad. Sci. USA 27, 499–506 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5, 761–772 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Trepel, J., Mollapour, M., Giaccone, G. & Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer 10, 537–549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schopf, F. H., Biebl, M. M. & Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 18, 345–360 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Biebl, M. M. & Buchner, J. Structure, function, and regulation of the hsp90 machinery. Cold Spring Harb. Perspect. Biol. 11, a034017 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prodromou, C. Mechanisms of Hsp90 regulation. Biochem. J. 473, 2439–2452 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Pearl, L. H. Review: the HSP90 molecular chaperone—an enigmatic ATPase. Biopolymers 105, 594–607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maiti, S. & Picard, D. Cytosolic Hsp90 isoform-specific functions and clinical significance. Biomolecules 12, 1166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Altieri, D. C., Stein, G. S., Lian, J. B. & Languino, L. R. TRAP-1, the mitochondrial Hsp90. Biochim. Biophys. Acta 1823, 767–773 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Marzec, M., Eletto, D. & Argon, Y. GRP94: an HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim. Biophys. Acta 1823, 774–787 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Prodromou, C. et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65–75 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Stebbins, C. E. et al. Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Chiosis, G. et al. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem. Biol. 8, 289–299 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Zuehlke, A. & Johnson, J. L. Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers 93, 211–217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, R. Y. et al. Structure of Hsp90–Hsp70–Hop–GR reveals the Hsp90 client-loading mechanism. Nature 601, 460–464 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Verba, K. A. et al. Atomic structure of Hsp90–Cdc37–Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science 352, 1542–1547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oberoi, J. et al. HSP90–CDC37–PP5 forms a structural platform for kinase dephosphorylation. Nat. Commun. 13, 7343 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu, W. et al. Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1. Nat. Commun. 10, 2574 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wolmarans, A., Lee, B., Spyracopoulos, L. & LaPointe, P. The mechanism of Hsp90 ATPase stimulation by Aha1. Sci. Rep. 6, 33179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marcu, M. G., Chadli, A., Bouhouche, I., Catelli, M. & Neckers, L. M. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J. Biol. Chem. 275, 37181–37186 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Allan, R. K., Mok, D., Ward, B. K. & Ratajczak, T. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization. J. Biol. Chem. 281, 7161–7171 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Prodromou, C. et al. The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J. 19, 4383–4392 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wayne, N. & Bolon, D. N. Dimerization of Hsp90 is required for in vivo function. design and analysis of monomers and dimers. J. Biol. Chem. 282, 35386–35395 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Echeverria, P. C., Bernthaler, A., Dupuis, P., Mayer, B. & Picard, D. An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS ONE 6, e26044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Southworth, D. R. & Agard, D. A. Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:Hop complex. Mol. Cell 42, 771–781 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, K. et al. The structure of an Hsp90–immunophilin complex reveals cochaperone recognition of the client maturation state. Mol. Cell 81, 3496–3508 e3495 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Czemeres, J., Buse, K. & Verkhivker, G. M. Atomistic simulations and network-based modeling of the Hsp90–Cdc37 chaperone binding with Cdk4 client protein: a mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. PLoS ONE 12, e0190267 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Karagoz, G. E. et al. Hsp90–Tau complex reveals molecular basis for specificity in chaperone action. Cell 156, 963–974 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Grammatikakis, N., Lin, J. H., Grammatikakis, A., Tsichlis, P. N. & Cochran, B. H. p50cdc37 acting in concert with Hsp90 is required for Raf-1 function. Mol. Cell Biol. 19, 1661–1672 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Makhnevych, T. & Houry, W. A. The role of Hsp90 in protein complex assembly. Biochim. Biophys. Acta 1823, 674–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Pratt, W. B. & Dittmar, K. D. Studies with purified chaperones advance the understanding of the mechanism of glucocorticoid receptor–hsp90 heterocomplex assembly. Trends Endocrinol. Metab. 9, 244–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Jhaveri, K., Taldone, T., Modi, S. & Chiosis, G. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim. Biophys. Acta 1823, 742–755 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Neckers, L. & Workman, P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res. 18, 64–76 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferraro, M. et al. Allosteric modulators of HSP90 and HSP70: dynamics meets function through structure-based drug design. J. Med. Chem. 62, 60–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Shrestha, L., Patel, H. J. & Chiosis, G. Chemical tools to investigate mechanisms associated with HSP90 and HSP70 in disease. Cell Chem. Biol. 23, 158–172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, L., Wang, L., You, Q. D. & Xu, X. L. Heat shock protein 90 inhibitors: an update on achievements, challenges, and future directions. J. Med. Chem. 63, 1798–1822 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Bickel, D. & Gohlke, H. C-terminal modulators of heat shock protein of 90 kDa (HSP90): state of development and modes of action. Bioorg. Med. Chem. 27, 115080 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Yang, S. et al. Design and synthesis of TRAP1 selective inhibitors: H-bonding with Asn171 residue in TRAP1 increases paralog selectivity. ACS Med. Chem. Lett. 12, 1173–1180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patel, P. D. et al. Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat. Chem. Biol. 9, 677–684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pugh, K. W., Alnaed, M., Brackett, C. M. & Blagg, B. S. J. The biology and inhibition of glucose-regulated protein 94/gp96. Med. Res. Rev. 42, 2007–2024 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Peng, S., Woodruff, J., Pathak, P. K., Matts, R. L. & Deng, J. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target. Acta Crystallogr. D. Struct. Biol. 78, 571–585 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jaeger, A. M. & Whitesell, L. HSP90: enabler of cancer adaptation. Annu. Rev. Cancer Biol. 3, 275–297 (2019).

    Article  Google Scholar 

  51. Rodina, A. et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538, 397–401 (2016). This study describes the discovery of epichaperomes, reports on molecular factors that drive epichaperome formation in cancer and discusses the implications of epichaperomes in cancer for rationalizing the vulnerability of tumours to HSP90 therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pastorek, M., Muller, P., Coates, P. J. & Vojtesek, B. Intrinsic proteotoxic stress levels vary and act as a predictive marker for sensitivity of cancer cells to Hsp90 inhibition. PLoS ONE 13, e0202758 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brown, G. C. Total cell protein concentration as an evolutionary constraint on the metabolic control distribution in cells. J. Theor. Biol. 153, 195–203 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Srivastava, D. K. & Bernhard, S. A. Enzyme–enzyme interactions and the regulation of metabolic reaction pathways. Curr. Top. Cell. Regul. 28, 1–68 (1986).

    Article  CAS  PubMed  Google Scholar 

  55. Albe, K. R., Butler, M. H. & Wright, B. E. Cellular concentrations of enzymes and their substrates. J. Theor. Biol. 143, 163–195 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Ellis, R. J. & Minton, A. P. Cell biology: join the crowd. Nature 425, 27–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Halpin, J. C., Huang, B., Sun, M. & Street, T. O. Crowding activates heat shock protein 90. J. Biol. Chem. 291, 6447–6455 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maldonado, E. N. & Lemasters, J. J. ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect. Mitochondrion 19PA, 78–84 (2014).

    Article  PubMed Central  Google Scholar 

  59. Halpin, J. C. & Street, T. O. Hsp90 sensitivity to ADP reveals hidden regulation mechanisms. J. Mol. Biol. 429, 2918–2930 (2017). This report is the first to suggest that an ATP–ADP heterodimer of cytosolic HSP90 may be the predominant conformer under physiologic conditions and suggests that altering ADP inhibition of HSP90 may provide a mechanism of HSP90 regulation in cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lopez, A. et al. Client binding shifts the populations of dynamic Hsp90 conformations through an allosteric network. Sci. Adv. 7, eabl7295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chavez, J. D., Schweppe, D. K., Eng, J. K. & Bruce, J. E. In vivo conformational dynamics of Hsp90 and its interactors. Cell Chem. Biol. 23, 716–726 (2016). This study is the first to describe a mass spectrometry-based approach to allow quantitative measurements of in vitro and in cellulo effects of small molecule inhibitors on HSP90 conformation, and interaction with co-chaperones and client proteins. The technique allows the derivation of structural models explaining how HSP90 engages its interaction partners in cellulo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schmid, S. & Hugel, T. Controlling protein function by fine-tuning conformational flexibility. eLife 9, e57180 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu, W. et al. Dynamic tyrosine phosphorylation modulates cycling of the HSP90–P50CDC37–AHA1 chaperone machine. Mol. Cell 47, 434–443 (2012). This study is the first to demonstrate that Yes kinase-mediated phosphorylation of HSP90α-Tyr313 in cells results in a 7-fold enrichment of chaperone–AHA1 complexes. Further, the affinity of AHA1 for the phosphomimetic HSP90-Tyr313Glu is increased 3.5-fold compared with AHA1 affinity for wild-type HSP90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takakuwa, J. E., Nitika, Knighton, L. E. & Truman, A. W. Oligomerization of Hsp70: current perspectives on regulation and function. Front. Mol. Biosci. 6, 81 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yonehara, M., Minami, Y., Kawata, Y., Nagai, J. & Yahara, I. Heat-induced chaperone activity of HSP90. J. Biol. Chem. 271, 2641–2645 (1996). This report is one of the first on HSP90 oligomer formation induced by heat, noting that following oligomerization under heat HSP90 acquires a distinct activity, that is, binding substrates and preventing their irreversible aggregation.

    Article  CAS  PubMed  Google Scholar 

  66. Moullintraffort, L. et al. Biochemical and biophysical characterization of the Mg2+-induced 90-kDa heat shock protein oligomers. J. Biol. Chem. 285, 15100–15110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nemoto, T. & Sato, N. Oligomeric forms of the 90-kDa heat shock protein. Biochem. J. 330, 989–995 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jakob, U. et al. Structural organization of procaryotic and eucaryotic Hsp90. Influence of divalent cations on structure and function. J. Biol. Chem. 270, 14412–14419 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Chadli, A., Ladjimi, M. M., Baulieu, E. E. & Catelli, M. G. Heat-induced oligomerization of the molecular chaperone Hsp90. Inhibition by ATP and geldanamycin and activation by transition metal oxyanions. J. Biol. Chem. 274, 4133–4139 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Ginsberg, S. D. et al. The penalty of stress—epichaperomes negatively reshaping the brain in neurodegenerative disorders. J. Neurochem. 159, 958–979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Minami, Y., Kawasaki, H., Miyata, Y., Suzuki, K. & Yahara, I. Analysis of native forms and isoform compositions of the mouse 90-kDa heat shock protein, HSP90. J. Biol. Chem. 266, 10099–10103 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Bolaender, A. et al. Chemical tools for epichaperome-mediated interactome dysfunctions of the central nervous system. Nat. Commun. 12, 4669 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kourtis, N. et al. Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat. Med. 24, 1157–1166 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zong, H. et al. A hyperactive signalosome in acute myeloid leukemia drives addiction to a tumor-specific Hsp90 species. Cell Rep. 13, 2159–2173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kishinevsky, S. et al. HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons. Nat. Commun. 9, 4345 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Inda, M. C. et al. The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nat. Commun. 11, 319 (2020). This study demonstrates the impact of epichaperome formation on brain activity in Alzheimer disease; reports epichaperome formation in the human brain and the proteins and protein networks that become dysregulated through epichaperomes in Alzheimer disease; and shows how these networks, and their function, can be restored to pre-stressor levels through pharmacologic epichaperome disruption.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Joshi, S. et al. Adapting to stress—chaperome networks in cancer. Nat. Rev. Cancer 18, 562–575 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garnier, C. et al. Phosphorylation and oligomerization states of native pig brain HSP90 studied by mass spectrometry. Eur. J. Biochem. 268, 2402–2407 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Sugita, M. et al. Targeting the epichaperome as an effective precision medicine approach in a novel PML–SYK fusion acute myeloid leukemia. NPJ Precis. Oncol. 5, 44 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rodina, A. et al. Systems-level analyses of protein–protein interaction network dysfunctions via epichaperomics identify cancer-specific mechanisms of stress adaptation. Nat. Commun. 14, 3742 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yan, P. et al. Molecular stressors engender protein connectivity dysfunction through aberrant N-glycosylation of a chaperone. Cell Rep. 31, 107840 (2020). This report is the first to show that PTMs may promote HSP90 incorporation into epichaperomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ginsberg, S. D., Sharma, S., Norton, L. & Chiosis, G. Targeting stressor-induced dysfunctions in protein–protein interaction networks via epichaperomes. Trends Pharmacol. Sci. 44, 20–33 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Castelli, M. et al. How aberrant N-glycosylation can alter protein functionality and ligand binding: an atomistic view. Structure https://doi.org/10.1016/j.str.2023.05.017 (2023).

    Article  PubMed  Google Scholar 

  84. Lee, C. C., Lin, T. W., Ko, T. P. & Wang, A. H. The hexameric structures of human heat shock protein 90. PLoS ONE 6, e19961 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lepvrier, E. et al. Hsp90 oligomerization process: how can p23 drive the chaperone machineries? Biochim. Biophys. Acta 1854, 1412–1424 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Lepvrier, E. et al. Hsp90 oligomers interacting with the Aha1 cochaperone: an outlook for the Hsp90 chaperone machineries. Anal. Chem. 87, 7043–7051 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Joshi, S. et al. Pharmacologically controlling protein–protein interactions through epichaperomes for therapeutic vulnerability in cancer. Commun. Biol. 4, 1333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Muda, K. et al. Parkinson-related LRRK2 mutation R1441C/G/H impairs PKA phosphorylation of LRRK2 and disrupts its interaction with 14-3-3. Proc. Natl Acad. Sci. USA 111, E34–E43 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Kato, H. et al. Cancer-derived UTX TPR mutations G137V and D336G impair interaction with MLL3/4 complexes and affect UTX subcellular localization. Oncogene 39, 3322–3335 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Yan, W. et al. Structural insights into the SPRED1–Neurofibromin–KRAS complex and disruption of SPRED1–neurofibromin interaction by oncogenic EGFR. Cell Rep. 32, 107909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nemoto, T. K., Ono, T. & Tanaka, K. Substrate-binding characteristics of proteins in the 90 kDa heat shock protein family. Biochem. J. 354, 663–670 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lepvrier, E., Thomas, D. & Garnier, C. Hsp90 quaternary structures and the chaperone cycle: highly flexible dimeric and oligomeric structures and their regulation by co-chaperones. Curr. Proteom. 16, 5–11 (2019).

    Article  CAS  Google Scholar 

  93. Rickner, H. D. et al. Single cell transcriptomic profiling of a neuron-astrocyte assembloid tauopathy model. Nat. Commun. 13, 6275 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shemesh, N. et al. The landscape of molecular chaperones across human tissues reveals a layered architecture of core and variable chaperones. Nat. Commun. 12, 2180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hadizadeh Esfahani, A., Sverchkova, A., Saez-Rodriguez, J., Schuppert, A. A. & Brehme, M. A systematic atlas of chaperome deregulation topologies across the human cancer landscape. PLoS Comput. Biol. 14, e1005890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Brehme, M. et al. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 9, 1135–1150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Backe, S. J., Sager, R. A., Woodford, M. R., Makedon, A. M. & Mollapour, M. Post-translational modifications of Hsp90 and translating the chaperone code. J. Biol. Chem. 295, 11099–11117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rein, T. Post-translational modifications and stress adaptation: the paradigm of FKBP51. Biochem. Soc. Trans. 48, 441–449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shevtsov, M. et al. Membrane-associated heat shock proteins in oncology: from basic research to new theranostic targets. Cells 9, 1263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Muller, P. et al. C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 32, 3101–3110 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Richter, K., Muschler, P., Hainzl, O., Reinstein, J. & Buchner, J. Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the ATPase cycle. J. Biol. Chem. 278, 10328–10333 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Bhattacharya, K. et al. The Hsp70–Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation. Nat. Commun. 11, 5975 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lackie, R. E. et al. Stress-inducible phosphoprotein 1 (HOP/STI1/STIP1) regulates the accumulation and toxicity of α-synuclein in vivo. Acta Neuropathol. 144, 881–910 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shelton, L. B., Koren, J. 3rd & Blair, L. J. Imbalances in the Hsp90 chaperone machinery: implications for tauopathies. Front. Neurosci. 11, 724 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shelton, L. B. et al. Hsp90 activator Aha1 drives production of pathological tau aggregates. Proc. Natl Acad. Sci. USA 114, 9707–9712 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lackie, R. E. et al. Increased levels of stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer’s disease. Acta Neuropathol. Commun. 8, 143 (2020). This study is the first to show that despite HOP overexpression being protective in Caenorhabditis elegans, the principal effect of elevated HOP in mouse models of neurodegeneration is deleterious.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Blair, L. J. et al. The disease-associated chaperone FKBP51 impairs cognitive function by accelerating AMPA receptor recycling. eNeuro 6, 242–318 (2019).

    Article  Google Scholar 

  108. Oroz, J. et al. Structure and pro-toxic mechanism of the human Hsp90/PPIase/Tau complex. Nat. Commun. 9, 4532 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rutledge, B. S., Choy, W. Y. & Duennwald, M. L. Folding or holding?—Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease. J. Biol. Chem. 298, 101905 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sager, R. A. et al. Targeting extracellular Hsp90: a unique frontier against cancer. Front. Mol. Biosci. 9, 982593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee, A. S. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat. Rev. Cancer 14, 263–276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Amoroso, M. R. et al. TRAP1 revisited: novel localizations and functions of a ‘next-generation’ biomarker (review). Int. J. Oncol. 45, 969–977 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Jay, D., Luo, Y. & Li, W. Extracellular heat shock protein-90 (eHsp90): everything you need to know. Biomolecules 12, 911 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Secli, L., Fusella, F., Avalle, L. & Brancaccio, M. The dark-side of the outside: how extracellular heat shock proteins promote cancer. Cell. Mol. Life Sci. 78, 4069–4083 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Poggio, P., Sorge, M., Secli, L. & Brancaccio, M. Extracellular HSP90 machineries build tumor microenvironment and boost cancer progression. Front. Cell Dev. Biol. 9, 735529 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Tang, X. et al. Tumour-secreted Hsp90α on external surface of exosomes mediates tumour–stromal cell communication via autocrine and paracrine mechanisms. Sci. Rep. 9, 15108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yang, Y. et al. Role of acetylation and extracellular location of heat shock protein 90α in tumor cell invasion. Cancer Res. 68, 4833–4842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Weidenauer, L. & Quadroni, M. Phosphorylation in the charged linker modulates interactions and secretion of Hsp90β. Cells 10, 1701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zou, M. et al. Evolutionarily conserved dual lysine motif determines the non-chaperone function of secreted Hsp90α in tumour progression. Oncogene 36, 2160–2171 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Baker-Williams, A. J. et al. Co-chaperones TIMP2 and AHA1 competitively regulate extracellular HSP90:client MMP2 activity and matrix proteolysis. Cell Rep. 28, 1894–1906.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Graner, M. W. HSP90 and immune modulation in cancer. Adv. Cancer Res. 129, 191–224 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Yamano, T. et al. Two distinct pathways mediated by PA28 and hsp90 in major histocompatibility complex class I antigen processing. J. Exp. Med. 196, 185–196 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kunisawa, J. & Shastri, N. Hsp90α chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. Immunity 24, 523–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Jaeger, A. M. et al. Deciphering the immunopeptidome in vivo reveals new tumour antigens. Nature 607, 149–155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jaeger, A. M. et al. Rebalancing protein homeostasis enhances tumor antigen presentation. Clin. Cancer Res. 25, 6392–6405 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Haggerty, T. J. et al. Heat shock protein-90 inhibitors enhance antigen expression on melanomas and increase T cell recognition of tumor cells. PLoS ONE 9, e114506 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Rerole, A. L., Jego, G. & Garrido, C. Hsp70: anti-apoptotic and tumorigenic protein. Methods Mol. Biol. 787, 205–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Yuno, A. et al. Clinical evaluation and biomarker profiling of Hsp90 inhibitors. Methods Mol. Biol. 1709, 423–441 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Do, K. et al. Phase I study of the heat shock protein 90 (Hsp90) inhibitor onalespib (AT13387) administered on a daily for 2 consecutive days per week dosing schedule in patients with advanced solid tumors. Invest. N. Drugs 33, 921–930 (2015).

    Article  CAS  Google Scholar 

  130. Rajan, A. et al. A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clin. Cancer Res. 17, 6831–6839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pillarsetty, N. et al. Paradigms for precision medicine in epichaperome cancer therapy. Cancer Cell 36, 559–573.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mbofung, R. M. et al. HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes. Nat. Commun. 8, 451 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Calvo-Vidal, M. N. et al. Oncogenic HSP90 facilitates metabolic alterations in aggressive B-cell lymphomas. Cancer Res. 81, 5202–5216 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zavareh, R. B., Spangenberg, S. H., Woods, A., Martinez-Pena, F. & Lairson, L. L. HSP90 inhibition enhances cancer immunotherapy by modulating the surface expression of multiple immune checkpoint proteins. Cell Chem. Biol. 28, 158–168.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Martinet, J. et al. Impact of epichaperome inhibitor PU-H71 on anti-tumor T cell responses and its implications for immune and cellular therapy. Blood 140, 1171–1172 (2022).

    Article  Google Scholar 

  136. Miles, J., Scherz-Shouval, R. & van Oosten-Hawle, P. Expanding the organismal proteostasis network: linking systemic stress signaling with the innate immune response. Trends Biochem. Sci. 44, 927–942 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Mimnaugh, E. G., Worland, P. J., Whitesell, L. & Neckers, L. M. Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the hsp90 stress protein and the pp60v-src tyrosine kinase. J. Biol. Chem. 270, 28654–28659 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Soroka, J. et al. Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation. Mol. Cell 45, 517–528 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Mollapour, M. & Neckers, L. Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim. Biophys. Acta 1823, 648–655 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Cloutier, P. & Coulombe, B. Regulation of molecular chaperones through post-translational modifications: decrypting the chaperone code. Biochim. Biophys. Acta 1829, 443–454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Woodford, M. R. et al. Mps1 mediated phosphorylation of Hsp90 confers renal cell carcinoma sensitivity and selectivity to Hsp90 inhibitors. Cell Rep. 14, 872–884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wengert, L. A., Backe, S. J., Bourboulia, D., Mollapour, M. & Woodford, M. R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules 12, 786 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zuehlke, A. D. et al. An Hsp90 co-chaperone protein in yeast is functionally replaced by site-specific posttranslational modification in humans. Nat. Commun. 8, 15328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rehn, A. et al. A methylated lysine is a switch point for conformational communication in the chaperone Hsp90. Nat. Commun. 11, 1219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rehn, A. et al. Allosteric regulation points control the conformational dynamics of the molecular chaperone Hsp90. J. Mol. Biol. 428, 4559–4571 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Wolfgeher, D. et al. The dynamic interactome of human Aha1 upon Y223 phosphorylation. Data Brief. 5, 752–755 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dunn, D. M. et al. c-Abl mediated tyrosine phosphorylation of Aha1 activates its co-chaperone function in cancer cells. Cell Rep. 12, 1006–1018 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bachman, A. B. et al. Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation. Nat. Commun. 9, 265 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Scroggins, B. T. et al. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol. Cell 25, 151–159 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schmid, A. B. et al. The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO J. 31, 1506–1517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Panaretou, B. et al. Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone Aha1. Mol. Cell 10, 1307–1318 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Ali, M. M. et al. Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. McLaughlin, S. H. et al. The co-chaperone p23 arrests the Hsp90 ATPase cycle trap client proteins. J. Mol. Biol. 356, 746–758 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Wang, X. et al. Thr90 phosphorylation of Hsp90α by protein kinase A regulates its chaperone machinery. Biochem. J. 441, 387–397 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Woodford, M. R. et al. Hsp90 chaperone code and the tumor suppressor VHL cooperatively regulate the mitotic checkpoint. Cell Stress. Chaperones 26, 965–971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mollapour, M. et al. Asymmetric Hsp90 N domain SUMOylation recruits Aha1 and ATP-competitive inhibitors. Mol. Cell 53, 317–329 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mollapour, M., Tsutsumi, S. & Neckers, L. Hsp90 phosphorylation, Wee1 and the cell cycle. Cell Cycle 9, 2310–2316 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Longshaw, V. M., Chapple, J. P., Balda, M. S., Cheetham, M. E. & Blatch, G. L. Nuclear translocation of the Hsp70/Hsp90 organizing protein mSTI1 is regulated by cell cycle kinases. J. Cell Sci. 117, 701–710 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Biebl, M. M., Riedl, M. & Buchner, J. Hsp90 co-chaperones form plastic genetic networks adapted to client maturation. Cell Rep. 32, 108063 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Lagadari, M., Zgajnar, N. R., Gallo, L. I. & Galigniana, M. D. Hsp90-binding immunophilin FKBP51 forms complexes with hTERT enhancing telomerase activity. Mol. Oncol. 10, 1086–1098 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mayer, M. P. & Le Breton, L. Hsp90: breaking the symmetry. Mol. Cell 58, 8–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Nguyen, M. T. N. et al. Isoform-specific phosphorylation in human Hsp90β affects interaction with clients and the cochaperone Cdc37. J. Mol. Biol. 429, 732–752 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Thorne, M. E. & McQuade, K. L. Heat-induced oligomerization of gp96 occurs via a site distinct from substrate binding and is regulated by ATP. Biochem. Biophys. Res. Commun. 323, 1163–1171 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Feldweg, A. M. & Srivastava, P. K. Molecular heterogeneity of tumor rejection antigen/heat shock protein GP96. Int. J. Cancer 63, 310–314 (1995).

    Article  CAS  PubMed  Google Scholar 

  165. Pagetta, A. et al. Structural insights into complexes of glucose-regulated protein 94 (Grp94) with human immunoglobulin G. Relevance for Grp94–IgG complexes that form in vivo in pathological conditions. PLoS ONE 9, e86198 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Ratna, A. et al. Myeloid endoplasmic reticulum resident chaperone GP96 facilitates inflammation and steatosis in alcohol-associated liver disease. Hepatol. Commun. 5, 1165–1182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sumitomo, T. et al. GP96 drives exacerbation of secondary bacterial pneumonia following influenza A virus infection. mBio 12, e0326920 (2021).

    Article  PubMed  Google Scholar 

  168. Chaumonnot, K. et al. The HSP GRP94 interacts with macrophage intracellular complement C3 and impacts M2 profile during ER stress. Cell Death Dis. 12, 114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rothan, H. A. et al. Small molecule grp94 inhibitors block dengue and Zika virus replication. Antivir. Res. 171, 104590 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Joshi, A. et al. The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis. BMC Biol. 18, 10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chretien, D. et al. Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol. 16, e2003992 (2018). This study is the first to clearly demonstrate that mitochondria are more than 10 °C warmer than adjacent cytoplasm when the respiratory chain is fully functional, establishing their physiologic temperature under these conditions at 45–47 °C, equivalent to what is considered a heat shock temperature range.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Woodford, M. R. et al. Mutation of the co-chaperone Tsc1 in bladder cancer diminishes Hsp90 acetylation and reduces drug sensitivity and selectivity. Oncotarget 10, 5824–5834 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Rao, R. et al. HDAC6 inhibition enhances 17-AAG-mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood 112, 1886–1893 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Moulick, K. et al. Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat. Chem. Biol. 7, 818–826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Butler, L. M., Ferraldeschi, R., Armstrong, H. K., Centenera, M. M. & Workman, P. Maximizing the therapeutic potential of HSP90 inhibitors. Mol. Cancer Res. 13, 1445–1451 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Jhaveri, K. L. et al. Measuring tumor epichaperome expression using [124I] PU-H71 positron emission tomography as a biomarker of response for PU-H71 plus nab-paclitaxel in HER2-negative metastatic breast cancer. JCO Precis. Oncol. 4, PO.20.00273 (2020).

    PubMed  PubMed Central  Google Scholar 

  177. Speranza, G. et al. First-in-human study of the epichaperome inhibitor PU-H71: clinical results and metabolic profile. Invest. N. Drugs 36, 230–239 (2018).

    Article  CAS  Google Scholar 

  178. Silverman, M., Wallner, B., Key, C., Duggan, S. M. & Reynolds, L. A single- and multiple-ascending dose study to evaluate the safety and pharmacokinetics of oral PU-AD, an epichaperome inhibitor to treat Alzheimer’s disease. Alzheimers Dement. 16, e041144 (2020).

    Article  Google Scholar 

  179. Kurokawa, Y. et al. Pimitespib in patients with advanced gastrointestinal stromal tumor (CHAPTER-GIST-301): a randomized, double-blind, placebo-controlled phase III trial. Ann. Oncol. 33, 959–967 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute (NCI) Intramural Program and the National Institutes of Health (NIH) Extramural Program (R01 CA172546, P01 CA186866, R56 AG061869, R01 AG067598, P01 AG014449, P01 AG017617, R01 AG074004, R56 AG072599, RF1 AG071805 and P30 CA08748), The Breast Cancer Fund, Mr. William H. and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, and the Experimental Therapeutics Center of Memorial Sloan Kettering Cancer Center (MSKCC).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. L.N., G.C. and J.B.T. contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Gabriela Chiosis or Len Neckers.

Ethics declarations

Competing interests

Memorial Sloan Kettering Cancer Center (MSKCC) holds the intellectual rights to the epichaperome portfolio. G.C. and C.S.D. are inventors on patents related to heat shock protein 90 (HSP90) composition of matter and methods of use. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Matthias Mayer, Patricija van Oosten-Hawle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

HSP90 molecular chaperone complex database: https://www.picard.ch/downloads/

PhosphoSitePlus: https://www.phosphosite.org/homeAction.action

Supplementary information

Glossary

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors

Receptors integral to plasticity and synaptic transmission at many postsynaptic membranes. Their modulation is the ultimate mechanism that underlies much of the plasticity of excitatory transmission that is expressed in the brain.

CAR-T cell

(Chimeric antigen receptor (CAR)-T cell). CAR-T cell therapy is a type of cancer immunotherapy treatment that uses T cells that are genetically altered to enable them to locate and destroy cancer cells more effectively. CARs recognize and bind to specific proteins, or antigens, on the surface of cancer cells.

Graft versus host disease

A condition in which immune cells from a donor may view the recipient’s body as foreign, and the donated cells may attack the recipient’s body.

OVA models

Tumour models that express the immunogen ovalbumin (OVA). They usually develop into highly immunogenic tumours for which the transfer of OVA-specific T cells confers tumour rejection.

Tumour microenvironment

An ecosystem that surrounds a tumour. It includes immune cells, the extracellular matrix, blood vessels and other cells, such as fibroblasts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiosis, G., Digwal, C.S., Trepel, J.B. et al. Structural and functional complexity of HSP90 in cellular homeostasis and disease. Nat Rev Mol Cell Biol 24, 797–815 (2023). https://doi.org/10.1038/s41580-023-00640-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00640-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research