Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity

Abstract

Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of quiescent stem cells and their features.
Fig. 2: Key signalling pathways of quiescence maintenance, exit or entry.
Fig. 3: Stem cell quiescence and the cell cycle.
Fig. 4: Nuclear post-transcriptional mechanisms that control stem cell quiescence.
Fig. 5: Cytoplasmic post-transcriptional mechanisms that control stem cell quiescence.
Fig. 6: Post-translational mechanisms that control stem cell quiescence.

Similar content being viewed by others

References

  1. Li, N. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheung, T. H. & Rando, T. A. Molecular regulation of stem cell quiescence. Nat. Rev. Mol. Cell Biol. 14, 329–340 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Orford, K. W. & Scadden, D. T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet. 9, 115–128 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Ramalho-Santos, M. & Willenbring, H. On the origin of the term ‘stem cell’. Cell Stem Cell 1, 35–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Barker, N., Bartfeld, S. & Clevers, H. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 7, 656–670 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Cho, I. J. et al. Mechanisms, hallmarks, and implications of stem cell quiescence. Stem Cell Rep. 12, 1190–1200 (2019).

    Article  CAS  Google Scholar 

  7. Clevers, H. & Watt, F. M. Defining adult stem cells by function, not by phenotype. Annu. Rev. Biochem. 87, 1015–1027 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Cable, J. et al. Adult stem cells and regenerative medicine — a symposium report. Ann. N. Y. Acad. Sci. 1462, 27–36 (2020).

    Article  PubMed  Google Scholar 

  9. An, Z. et al. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat. Commun. 9, 378 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lewis, E. E. L. et al. A quiescent, regeneration-responsive tissue engineered mesenchymal stem cell bone marrow niche model via magnetic levitation. ACS Nano 10, 8346–8354 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Barriga, F. M. et al. Mex3a marks a slowly dividing subpopulation of Lgr5+ intestinal stem cells. Cell Stem Cell 20, 801–816.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cai, S. et al. A quiescent Bcl11b high stem cell population is required for maintenance of the mammary gland. Cell Stem Cell 20, 247–260.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Fu, N. Y. et al. Identification of quiescent and spatially restricted mammary stem cells that are hormone responsive. Nat. Cell Biol. 19, 164–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Quarta, M. et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat. Biotechnol. 34, 752–759 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Montarras, D. et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 309, 2064–2067 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Marqués-Torrejón, M. Á. et al. LRIG1 is a gatekeeper to exit from quiescence in adult neural stem cells. Nat. Commun. 12, 259 (2021).

    Article  Google Scholar 

  17. Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H. M. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456, 502–506 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kobayashi, H. et al. Environmental optimization enables maintenance of quiescent hematopoietic stem cells ex vivo. Cell Rep. 28, 145–158.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Mourikis, P. et al. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30, 243–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Bjornson, C. R. R. et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30, 232–242 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Engler, A. et al. Notch2 signaling maintains NSC quiescence in the murine ventricular-subventricular zone. Cell Rep. 22, 992–1002 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, W. et al. Notch2 blockade enhances hematopoietic stem cell mobilization and homing. Haematologica 102, 1785–1795 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujimaki, S. et al. Notch1 and Notch2 coordinately regulate stem cell function in the quiescent and activated states of muscle satellite cells. Stem Cells 36, 278–285 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Sousa-Victor, P., García-Prat, L. & Muñoz-Cánoves, P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat. Rev. Mol. Cell Biol. 23, 204–226 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. De Micheli, A. J. et al. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration. Cell Rep. 30, 3583–3595.e5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Llorens-Bobadilla, E. et al. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17, 329–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez-Fraticelli, A. E. et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature 583, 585–589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cabezas-Wallscheid, N. et al. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169, 807–823.e19 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Machado, L. et al. Tissue damage induces a conserved stress response that initiates quiescent muscle stem cell activation. Cell Stem Cell 28, 1125–1135.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Joost, S. et al. Single-cell transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle heterogeneity. Cell Syst. 3, 221–237.e9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zywitza, V., Misios, A., Bunatyan, L., Willnow, T. E. & Rajewsky, N. Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects impairing adult neurogenesis. Cell Rep. 25, 2457–2469.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Chua, B. A., Van Der Werf, I., Jamieson, C. & Signer, R. A. J. Post-transcriptional regulation of homeostatic, stressed, and malignant stem cells. Cell Stem Cell 26, 138–159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Morrée, A. et al. Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proc. Natl Acad. Sci. USA 114, E8996–E9005 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Urbán, N. et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science 353, 292–295 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ma, X. et al. Msi2 maintains quiescent state of hair follicle stem cells by directly repressing the Hh signaling pathway. J. Invest. Dermatol. 137, 1015–1024 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. van Velthoven, C. T. J. & Rando, T. A. Stem cell quiescence: dynamism, restraint, and cellular idling. Cell Stem Cell 24, 213–225 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Costa, M. R. et al. Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development 138, 1057–1068 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Brett, J. O. et al. Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of cyclin D1. Nat. Metab. 2, 307–317 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shariatmadar, S. et al. Electronic volume of CD34 positive cells from peripheral blood apheresis samples. Cytom. Part. B Clin. Cytom. 74, 182–188 (2008).

    Article  Google Scholar 

  42. Freter, R., Osawa, M. & Nishikawa, S. I. Adult stem cells exhibit global suppression of RNA polymerase II serine-2 phosphorylation. Stem Cells 28, 1571–1580 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. van Velthoven, C. T. J., de Morree, A., Egner, I. M., Brett, J. O. & Rando, T. A. Transcriptional profiling of quiescent muscle stem cells in vivo. Cell Rep. 21, 1994–2004 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tesio, M. & Trumpp, A. Breaking the cell cycle of HSCs by p57 and friends. Cell Stem Cell 9, 187–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Urbach, A. & Witte, O. W. Divide or commit – revisiting the role of cell cycle regulators in adult hippocampal neurogenesis. Front. Cell Dev. Biol. 7, 55 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Johnson, C., Belluschi, S. & Laurenti, E. Beyond “to divide or not to divide”: kinetics matters in hematopoietic stem cells. Exp. Hematol. 92, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, J. et al. The role of Skp2 in hematopoietic stem cell quiescence, pool size, and self-renewal. Blood 118, 5429–5438 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Lien, W. H. et al. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nat. Cell Biol. 16, 179–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, J. Y. et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530, 223–227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cebrián-Silla, A. et al. Unique organization of the nuclear envelope in the post-natal quiescent neural stem cells. Stem Cell Rep. 9, 203–216 (2017).

    Article  Google Scholar 

  53. Schuler, N., Timm, S. & Rübe, C. E. Hair follicle stem cell faith is dependent on chromatin remodeling capacity following low-dose radiation. Stem Cells 36, 574–588 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, L. et al. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep. 4, 189–204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lien, W. H. et al. Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell 9, 219–232 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Puri, D., Gala, H., Mishra, R. & Dhawan, J. High-wire act: the poised genome and cellular memory. FEBS J. 282, 1675–1691 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Addicks, G. C. et al. MLL1 is required for PAX7 expression and satellite cell self-renewal in mice. Nat. Commun. 10, 4256 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. McMahon, K. A. et al. Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 1, 338–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Jones, M. et al. Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells. J. Clin. Invest. 125, 2007–2020 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Venkatraman, A. et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500, 345–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bigot, A. et al. Age-associated methylation suppresses SPRY1, leading to a failure of re-quiescence and loss of the reserve stem cell pool in elderly muscle. Cell Rep. 13, 1172–1182 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Wüst, S. et al. Metabolic maturation during muscle stem cell differentiation is achieved by miR-1/133a-mediated inhibition of the Dlk1-Dio3 mega gene cluster. Cell Metab. 27, 1026–1039.e6 (2018).

    Article  PubMed  Google Scholar 

  64. Latil, M. et al. Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity. Nat. Commun. 3, 903 (2012).

    Article  PubMed  Google Scholar 

  65. Wani, G. A. et al. Metabolic control of adult neural stem cell self-renewal by the mitochondrial protease YME1L. Cell Rep. 38, 110370 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Tang, Y. et al. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration. PeerJ 4, e1821 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Qiu, J. et al. Using mitochondrial activity to select for potent human hematopoietic stem cells. Blood Adv. 5, 1605–1616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Coller, H. A. The paradox of metabolism in quiescent stem cells. FEBS Lett. 593, 2817–2839 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Flores, A. et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat. Cell Biol. 19, 1017–1026 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Stoll, E. A. et al. Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. Stem Cells 33, 2306–2319 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Ryall, J. G. et al. The NAD+-dependent sirt1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16, 171–183 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rodgers, J. T. et al. MTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. Nature 510, 393–396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rodgers, J. T., Schroeder, M. D., Ma, C. & Rando, T. A. HGFA is an injury-regulated systemic factor that induces the transition of stem cells into GAlert. Cell Rep. 19, 479–486 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baser, A. et al. Onset of differentiation is post-transcriptionally controlled in adult neural stem cells. Nature 566, 100–104 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Shan, T. et al. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 32, 2893–2907 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Gan, B. et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468, 701–704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gurumurthy, S. et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468, 659–663 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakada, D., Saunders, T. L. & Morrison, S. J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653–658 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vitale, I., Manic, G., De Maria, R., Kroemer, G. & Galluzzi, L. DNA damage in stem cells. Mol. Cell 66, 306–319 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7, 174–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vahidi Ferdousi, L. et al. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny. Stem Cell Res. 13, 492–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Sotiropoulou, P. A. et al. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nat. Cell Biol. 12, 572–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Barazzuol, L., Ju, L. & Jeggo, P. A. A coordinated DNA damage response promotes adult quiescent neural stem cell activation. PLoS Biol. 15, e2001264 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cameron, B. D. et al. Bcl2-expressing quiescent type B neural stem cells in the ventricular–subventricular zone are resistant to concurrent temozolomide/X-irradiation. Stem Cells 37, 1629–1639 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Flach, J. et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512, 198–202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu, L. et al. Impaired notch signaling leads to a decrease in p53 activity and mitotic catastrophe in aged muscle stem cells. Cell Stem Cell 23, 544–556.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Beerman, I., Seita, J., Inlay, M. A., Weissman, I. L. & Rossi, D. J. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15, 37–50 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Qing, Y., Wang, Z., Bunting, K. D. & Gerson, S. L. Bcl2 overexpression rescues the hematopoietic stem cell defects in Ku70-deficient mice by restoration of quiescence. Blood 123, 1002–1011 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ruzankina, Y. et al. Deletion of the developmentally essential gene ATR in adult mice. Cell Stem Cell 1, 113–126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Onksen, J. L., Brown, E. J. & Blendy, J. A. Selective deletion of a cell cycle checkpoint kinase (ATR) reduces neurogenesis and alters responses in rodent models of behavioral affect. Neuropsychopharmacology 36, 960–969 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Salvi, J. S. et al. ATR activity controls stem cell quiescence via the cyclin F–SCF complex. Proc. Natl Acad. Sci. USA 119, e2115638119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Scaramozza, A. et al. Lineage tracing reveals a subset of reserve muscle stem cells capable of clonal expansion under stress. Cell Stem Cell 24, 944–957 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Daynac, M. et al. Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage. Stem Cell Res. 11, 516–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Kaufmann, K. et al. A latent subset of human hematopoietic stem cells resists regenerative stress to preserve stemness. Nat. Immunol. 22, 723–734 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Signer, R. A. J., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nakada, D. et al. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 505, 555–558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miharada, K., Sigurdsson, V. & Karlsson, S. Dppa5 improves hematopoietic stem cell activity by reducing endoplasmic reticulum stress. Cell Rep. 7, 1381–1392 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Sigurdsson, V. & Miharada, K. Regulation of unfolded protein response in hematopoietic stem cells. Int. J. Hematol. 107, 627–633 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Tümpel, S. & Rudolph, K. L. Quiescence: good and bad of stem cell aging. Trends Cell Biol. 29, 672–685 (2019).

    Article  PubMed  Google Scholar 

  103. Hu, M. et al. SRC-3 is involved in maintaining hematopoietic stem cell quiescence by regulation of mitochondrial metabolism in mice. Blood 132, 911–923 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Murakami, K. et al. OGT regulates hematopoietic stem cell maintenance via PINK1-dependent mitophagy. Cell Rep. 34, 108579 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Gugliuzza, M. V. & Crist, C. Muscle stem cell adaptations to cellular and environmental stress. Skelet. Muscle 12, 5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sueda, R., Imayoshi, I., Harima, Y. & Kageyama, R. High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. Genes Dev. 33, 511–523 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma, Z. et al. Hes1 deficiency causes hematopoietic stem cell exhaustion. Stem Cells 38, 756–768 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Noguchi, Y. T. et al. Cell-autonomous and redundant roles of Hey1 and HeyL in muscle stem cells: HeyL requires HeS1 to bind diverse DNA sites. Development 146, dev163618 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Suen, W. J., Li, S. T. & Yang, L. T. Hes1 regulates anagen initiation and hair follicle regeneration through modulation of hedgehog signaling. Stem Cells 38, 301–314 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Lu, Z. et al. Hair follicle stem cells regulate retinoid metabolism to maintain the self-renewal niche for melanocyte stem cells. Elife 9, e52712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pack, L. R., Daigh, L. H. & Meyer, T. Putting the brakes on the cell cycle: mechanisms of cellular growth arrest. Curr. Opin. Cell Biol. 60, 106–113 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Matsumoto, A. et al. P57 Is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 9, 262–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Zou, P. et al. P57 Kip2 and p27 Kip1 cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell 9, 247–261 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Porlan, E. et al. Transcriptional repression of Bmp2 by p21 Waf1/Cip1 links quiescence to neural stem cell maintenance. Nat. Neurosci. 16, 1567–1575 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Andreu, Z. et al. The cyclin-dependent kinase inhibitor p27kip1 regulates radial stem cell quiescence and neurogenesis in the adult hippocampus. Stem Cells 33, 219–229 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Furutachi, S., Matsumoto, A., Nakayama, K. I. & Gotoh, Y. P57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J. 32, 970–981 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee, J. et al. Runx1 and p21 synergistically limit the extent of hair follicle stem cell quiescence in vivo. Proc. Natl Acad. Sci. USA 110, 4634–4639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chakkalakal, J. V. et al. Early forming label-retaining muscle stem cells require p27kip1 for maintenance of the primitive state. Development 141, 1649–1659 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mademtzoglou, D. et al. Cellular localization of the cell cycle inhibitor Cdkn1c controls growth arrest of adult skeletal muscle stem cells. Elife 7, e33337 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cappell, S. D., Chung, M., Jaimovich, A., Spencer, S. L. & Meyer, T. Irreversible APCCdh1 inactivation underlies the point of no return for cell-cycle entry. Cell 166, 167–180 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hosoyama, T., Nishijo, K., Prajapati, S. I., Li, G. & Keller, C. Rb1 gene inactivation expands satellite cell and postnatal myoblast pools. J. Biol. Chem. 286, 19556–19564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Viatour, P. et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 3, 416–428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim, E. et al. Rb family proteins enforce the homeostasis of quiescent hematopoietic stem cells by repressing Socs3 expression. J. Exp. Med. 214, 1901–1912 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Naser, R. et al. Role of the retinoblastoma protein, Rb, during adult neurogenesis in the olfactory bulb. Sci. Rep. 6, 20230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, J. et al. APC/C is essential for hematopoiesis and impaired in aplastic anemia. Oncotarget 8, 63360–63369 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Eguren, M. et al. The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors. Nat. Commun. 4, 2880 (2013).

    Article  PubMed  Google Scholar 

  127. Liu, Y. et al. p53 Regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37–48 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Meletis, K. et al. P53 Suppresses the self-renewal of adult neural stem cells. Development 133, 363–369 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Sinha, S. et al. Asrij/OCIAD1 suppresses CSN5-mediated p53 degradation and maintains mouse hematopoietic stem cell quiescence. Blood 133, 2385–2400 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Kim, J. Y. et al. Priming mobilization of hair follicle stem cells triggers permanent loss of regeneration after alkylating chemotherapy. Nat. Commun. 10, 3694 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Farioli-Vecchioli, S. et al. Btg1 is required to maintain the pool of stem and progenitor cells of the dentate gyrus and subventricular zone. Front. Neurosci. 6, 124 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lia, Q., Rycaja, K., Chena, X. & Tang, D. G. Cancer stem cells and cell size: a causal link? Semin. Cancer Biol. 35, 191–199 (2015).

    Article  Google Scholar 

  133. Benveniste, P. et al. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6, 48–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Laurenti, E. et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 16, 302–313 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Grinenko, T. et al. Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice. Nat. Commun. 9, 1898 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Mohammad, K., Dakik, P., Medkour, Y., Mitrofanova, D. & Titorenko, V. I. Quiescence entry, maintenance, and exit in adult stem cells. Int. J. Mol. Sci. 20, 2158 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. García-Prat, L. et al. Autophagy maintains stemness by preventing senescence. Nature 529, 37–42 (2016).

    Article  PubMed  Google Scholar 

  138. Tang, A. H. & Rando, T. A. Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO J. 33, 2782–2797 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Leeman, D. S. et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 359, 1277–1283 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liang, R. et al. Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency. Cell Stem Cell 26, 359–376.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mohrin, M. et al. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374–1377 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mohrin, M., Widjaja, A., Liu, Y., Luo, H. & Chen, D. The mitochondrial unfolded protein response is activated upon hematopoietic stem cell exit from quiescence. Aging Cell 17, e12756 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Mohrin, M. & Chen, D. The mitochondrial metabolic checkpoint and aging of hematopoietic stem cells. Curr. Opin. Hematol. 23, 318–324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Troy, A. et al. Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38α/β MAPK. Cell Stem Cell 11, 541–553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jones, N. C. et al. The p38α/β MAPK functions as a molecular switch to activate the quiescent satellite cell. J. Cell Biol. 169, 105–116 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Frelin, C. et al. GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nat. Immunol. 14, 1037–1044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kase, Y., Otsu, K., Shimazaki, T. & Okano, H. Involvement of p38 in age-related decline in adult neurogenesis via modulation of Wnt signaling. Stem Cell Rep. 12, 1313–1328 (2019).

    Article  CAS  Google Scholar 

  148. Hemmati, S. et al. PI3K alpha and delta promote hematopoietic stem cell activation. JCI Insight 5, e125832 (2019).

    Article  PubMed  Google Scholar 

  149. García-Prat, L. et al. FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nat. Cell Biol. 22, 1307–1318 (2020).

    Article  PubMed  Google Scholar 

  150. Meng, D., Frank, A. R. & Jewell, J. L. mTOR signaling in stem and progenitor cells. Development 145, dev152595 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kalaitzidis, D. et al. MTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. Cell Stem Cell 11, 429–439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hartman, N. W. et al. MTORC1 targets the translational repressor 4E-BP2, but not S6 kinase 1/2, to regulate neural stem cell self-renewal in vivo. Cell Rep. 5, 433–444 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Ren, X. et al. Lgr4 deletion delays the hair cycle and inhibits the activation of hair follicle stem cells. J. Invest. Dermatol. 140, 1706–1712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kwon, J. S. et al. Controlling depth of cellular quiescence by an Rb-E2F network switch. Cell Rep. 20, 3223–3235 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Matsuoka, Y. et al. Low level of C-kit expression marks deeply quiescent murine hematopoietic stem cells. Stem Cells 29, 1783–1791 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Rocheteau, P., Gayraud-Morel, B., Siegl-Cachedenier, I., Blasco, M. A. & Tajbakhsh, S. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148, 112–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Ibrayeva, A. et al. Early stem cell aging in the mature brain. Cell Stem Cell 28, 955–966.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Benjamin, D. I. et al. Fasting induces a highly resilient deep quiescent state in muscle stem cells via ketone body signaling. Cell Metab. 34, 902–918 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Shwartz, Y. et al. Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell 182, 578–593.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fujimaki, K. et al. Graded regulation of cellular quiescence depth between proliferation and senescence by a lysosomal dimmer switch. Proc. Natl Acad. Sci. USA 116, 22624–22634 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Urbán, N., Blomfield, I. M. & Guillemot, F. Quiescence of adult mammalian neural stem cells: a highly regulated rest. Neuron 104, 834–848 (2019).

    Article  PubMed  Google Scholar 

  162. Wang, Z. & Ema, H. Mechanisms of self-renewal in hematopoietic stem cells. Int. J. Hematol. 103, 498–509 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Daszczuk, P. et al. An intrinsic oscillation of gene networks inside hair follicle stem cells: an additional layer that can modulate hair stem cell activities. Front. Cell Dev. Biol. 8, 595178 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Bottes, S. et al. Long-term self-renewing stem cells in the adult mouse hippocampus identified by intravital imaging. Nat. Neurosci. 24, 225–233 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Otsuki, L. & Brand, A. H. Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence. Science 360, 99–102 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Giordani, L., Parisi, A. & Le Grand, F. Satellite cell self-renewal. Curr. Top. Dev. Biol. 126, 177–203 (2018).

    Article  PubMed  Google Scholar 

  167. Morizur, L. et al. Distinct molecular signatures of quiescent and activated adult neural stem cells reveal specific interactions with their microenvironment. Stem Cell Rep. 11, 565–577 (2018).

    Article  CAS  Google Scholar 

  168. Dong, J. et al. A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells. Sci. Adv. 5, eaav4416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ottone, C. et al. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat. Cell Biol. 16, 1045–1056 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Morgner, J. et al. Integrin-linked kinase regulates the niche of quiescent epidermal stem cells. Nat. Commun. 6, 8198 (2015).

    Article  PubMed  Google Scholar 

  171. Zhang, Y. et al. Oscillations of Delta-like1 regulate the balance between differentiation and maintenance of muscle stem cells. Nat. Commun. 12, 1318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Belenguer, G. et al. Adult neural stem cells are alerted by systemic inflammation through TNF-α receptor signaling. Cell Stem Cell 28, 285–299.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Cosgrove, B. D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20, 255–264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Charville, G. W. et al. Ex vivo expansion and in vivo self-renewal of human muscle stem cells. Stem Cell Rep. 5, 621–632 (2015).

    Article  CAS  Google Scholar 

  175. Shea, K. L. et al. Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6, 117–129 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Baumgartner, C. et al. An ERK-dependent feedback mechanism prevents hematopoietic stem cell exhaustion. Cell Stem Cell 22, 879–892.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bonaguidi, M. A. et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145, 1142–1155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Porter, S. N. et al. Pten cell autonomously modulates the hematopoietic stem cell response to inflammatory cytokines. Stem Cell Rep. 6, 806–814 (2016).

    Article  CAS  Google Scholar 

  179. Yue, F. et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat. Commun. 8, 14328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lee, J. Y. et al. MTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 7, 593–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Magee, J. A. et al. Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 11, 415–428 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Siegemund, S. et al. IP3 3-kinase B controls hematopoietic stem cell homeostasis and prevents lethal hematopoietic failure in mice. Blood 125, 2786–2797 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Barker, N. et al. Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb. Symp. Quant. Biol. 73, 351–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Shokouhian, M. et al. Altering chromatin methylation patterns and the transcriptional network involved in regulation of hematopoietic stem cell fate. J. Cell. Physiol. 235, 6404–6423 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Yi, R. Concise review: mechanisms of quiescent hair follicle stem cell regulation. Stem Cells 35, 2323–2330 (2017).

    Article  PubMed  Google Scholar 

  186. Urbán, N. & Guillemot, F. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front. Cell. Neurosci. 8, 396 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Robinson, D. C. L. & Dilworth, F. J. Epigenetic regulation of adult myogenesis. Curr. Top. Dev. Biol. 126, 235–284 (2018).

    Article  PubMed  Google Scholar 

  188. Kosan, C. & Godmann, M. Genetic and epigenetic mechanisms that maintain hematopoietic stem cell function. Stem Cell Int. 2016, 5178965 (2016).

    Google Scholar 

  189. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Hausburg, M. A. et al. Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay. Elife 4, e03390 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Grover, A. et al. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 7, 11075 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lechman, E. R. et al. Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell 11, 799–811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Carrelha, J. et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554, 106–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Crist, C. G., Montarras, D. & Buckingham, M. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 11, 118–126 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. de Morree, A. et al. Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function. Science 366, 734–738 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Tian, B. & Manley, J. L. Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 18, 18–30 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Sommerkamp, P. et al. Differential alternative polyadenylation landscapes mediate hematopoietic stem cell activation and regulate glutamine metabolism. Cell Stem Cell 26, 722–738.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Boutet, S. C. et al. Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell 10, 327–336 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Shepard, P. J. et al. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17, 761–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wang, L., Dowell, R. D. & Yi, R. Genome-wide maps of polyadenylation reveal dynamic mRNA 3’-end formation in mammalian cell lineages. RNA 19, 413–425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mueller, A. A., Van Velthoven, C. T., Fukumoto, K. D., Cheung, T. H. S. & Rando, T. A. Intronic polyadenylation of PDGFRα in resident stem cells attenuates muscle fibrosis. Nature 540, 276–279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Pai, A. A. et al. Widespread shortening of 3’ untranslated regions and increased exon inclusion are evolutionarily conserved features of innate immune responses to infection. PLoS Genet. 12, e1006338 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Taliaferro, J. M. et al. Distal alternative last exons localize mRNAs to neural projections. Mol. Cell 61, 821–833 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Der Vartanian, A. et al. PAX3 Confers functional heterogeneity in skeletal muscle stem cell responses to environmental stress. Cell Stem Cell 24, 958–973 (2019).

    Article  PubMed Central  Google Scholar 

  205. Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17, 83–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  206. Jiang, Q. et al. Hyper-editing of cell-cycle regulatory and tumor suppressor RNA promotes malignant progenitor propagation. Cancer Cell 35, 81–94.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Gal-Mark, N. et al. Abnormalities in A-to-I RNA editing patterns in CNS injuries correlate with dynamic changes in cell type composition. Sci. Rep. 7, 43421 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  Google Scholar 

  209. Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article  Google Scholar 

  210. The Tabula Sapiens Consortium. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  211. XuFeng, R. et al. ADAR1 is required for hematopoietic progenitor cell survival via RNA editing. Proc. Natl Acad. Sci. USA 106, 17763–17768 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Shevchenko, G. & Morris, K. V. All I’s on the RADAR: role of ADAR in gene regulation. FEBS Lett. 592, 2860–2873 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Xiang, J. F. et al. N6-Methyladenosines modulate A-to-I RNA editing. Mol. Cell 69, 126–135.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Lee, H. et al. Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation. Nat. Cell Biol. 21, 700–709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Li, Z. et al. Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res. 28, 904–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Yin, R. et al. Differential m6A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function. Cell Stem Cell 29, 149–159.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  218. Cheng, Y. et al. m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Rep. 28, 1703–1716.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Yao, Q. J. et al. Mettl3–Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Res. 28, 952–954 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Cai, C. et al. c-Myc regulates neural stem cell quiescence and activation by coordinating the cell cycle and mitochondrial remodeling. Signal. Transduct. Target. Ther. 6, 306 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sheng, Y. et al. Role of c-Myc haploinsufficiency in the maintenance of HSCs in mice. Blood 137, 610–623 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Liang, Y. et al. METTL3-mediated m6A methylation regulates muscle stem cells and muscle regeneration by Notch signaling pathway. Stem Cell Int. 2021, 9955691 (2021).

    Google Scholar 

  223. Yoon, K. J. et al. Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell 171, 877–889.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Blanco, S. et al. The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate. PLoS Genet. 7, e1002403 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Shi, Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat. Rev. Mol. Cell Biol. 18, 655–670 (2017).

    Article  CAS  PubMed  Google Scholar 

  226. Olivieri, J. E. et al. RNA splicing programs define tissue compartments and cell types at single cell resolution. Elife 10, e70692 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Farina, N. H. et al. A role for RNA post-transcriptional regulation in satellite cell activation. Skelet. Muscle 2, 21 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Bowman, T. V. et al. Differential mRNA processing in hematopoietic stem cells. Stem Cell 24, 662–670 (2006).

    Article  CAS  Google Scholar 

  229. Chen, L. et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science 345, 1251033 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Dominici, C. & Richard, S. Muscle stem cell polarity requires QKI-mediated alternative splicing of integrin alpha-7 (Itga7). Life Sci. Alliance 5, e202101192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tan, D. Q. et al. PRMT5 Modulates splicing for genome integrity and preserves proteostasis of hematopoietic stem cells. Cell Rep. 26, 2316–2328.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Xiao, N. et al. Ott1 (Rbm15) regulates thrombopoietin response in hematopoietic stem cells through alternative splicing of c-Mpl. Blood 125, 941–948 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Yue, L., Wan, R., Luan, S., Zeng, W. & Cheung, T. H. Dek modulates global intron retention during muscle stem cells quiescence exit. Dev. Cell 53, 661–676 (2020).

    Article  CAS  PubMed  Google Scholar 

  235. Goldstein, O. et al. Mapping whole-transcriptome splicing in mouse hematopoietic stem cells. Stem Cell Rep. 8, 163–176 (2017).

    Article  CAS  Google Scholar 

  236. Chen, Z. et al. Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis. J. Exp. Med. 218, e20201974 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wickramasinghe, V. O. & Laskey, R. A. Control of mammalian gene expression by selective mRNA export. Nat. Rev. Mol. Cell Biol. 16, 431–442 (2015).

    Article  CAS  PubMed  Google Scholar 

  238. Mancini, A. et al. THOC5/FMIP, an mRNA export TREX complex protein, is essential for hematopoietic primitive cell survival in vivo. BMC Biol. 8, 1 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Katz, S. et al. A nuclear role for miR-9 and Argonaute proteins in balancing quiescent and activated neural stem cell states. Cell Rep. 17, 1383–1398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Treiber, T., Treiber, N. & Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 20, 5–20 (2019).

    Article  CAS  PubMed  Google Scholar 

  241. Guo, S. et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc. Natl Acad. Sci. USA 107, 14229–14234 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Cheung, T. H. et al. Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482, 524–528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Baghdadi, M. B. et al. Notch-induced miR-708 antagonizes satellite cell migration and maintains quiescence. Cell Stem Cell 23, 859–868.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  244. Sato, T., Yamamoto, T. & Sehara-Fujisawa, A. miR-195/497 induce postnatal quiescence of skeletal muscle stem cells. Nat. Commun. 5, 4597 (2014).

    Article  CAS  PubMed  Google Scholar 

  245. Hu, M. et al. MicroRNA-21 maintains hematopoietic stem cell homeostasis through sustaining the NF-κB signaling pathway in mice. Haematologica 106, 412–423 (2021).

    CAS  PubMed  Google Scholar 

  246. Xu, Y. et al. MicroRNAs are indispensable for the proliferation and differentiation of adult neural progenitor cells in mice. Biochem. Biophys. Res. Commun. 530, 209–214 (2020).

    Article  CAS  PubMed  Google Scholar 

  247. Andl, T. et al. The miRNA-processing enzyme Dicer is essential for the morphogenesis and maintenance of hair follicles. Curr. Biol. 16, 1041–1049 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Vishlaghi, N. & Lisse, T. S. Dicer- and bulge stem cell-dependent microRNAs during induced anagen hair follicle development. Front. Cell Dev. Biol. 8, 338 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Lepko, T. et al. Choroid plexus‐derived miR‐204 regulates the number of quiescent neural stem cells in the adult brain. EMBO J. 38, e100481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Ge, M. et al. miR-29a/b1 inhibits hair follicle stem cell lineage progression by spatiotemporally suppressing WNT and BMP signaling. Cell Rep. 29, 2489–2504.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  251. Hawkshaw, N. J., Hardman, J. A., Alam, M., Jimenez, F. & Paus, R. Deciphering the molecular morphology of the human hair cycle: Wnt signalling during the telogen–anagen transformation. Br. J. Dermatol. 182, 1184–1193 (2020).

    Article  CAS  PubMed  Google Scholar 

  252. Brack, A. S., Conboy, I. M., Conboy, M. J., Shen, J. & Rando, T. A. A temporal switch from Notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2, 50–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  253. Maltzahn, J. Von, Bentzinger, C. F. & Rudnicki, M. A. Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat. Cell. Biol. 14, 186–191 (2011).

    Article  Google Scholar 

  254. Fleming, H. E. et al. Wnt signaling in the Niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Mehta, A. et al. The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression. Immunity 42, 1021–1032 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Gopinath, S. D., Webb, A. E., Brunet, A. & Rando, T. A. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Rep. 2, 414–426 (2014).

    Article  CAS  Google Scholar 

  257. Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  258. Hu, W. et al. miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood 125, 2206–2216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Song, S. J. et al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 13, 87–101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kaplan, I. M. et al. Deletion of tristetraprolin caused spontaneous reactive granulopoiesis by a non–cell-autonomous mechanism without disturbing long-term hematopoietic stem cell quiescence. J. Immunol. 186, 2826–2834 (2011).

    Article  CAS  PubMed  Google Scholar 

  261. Chenette, D. M. et al. Targeted mRNA decay by RNA binding protein AUF1 regulates adult muscle stem cell fate, promoting skeletal muscle integrity. Cell Rep. 16, 1379–1390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Guallar, D. & Wang, J. RNA-binding proteins in pluripotency, differentiation, and reprogramming. Front. Biol. 9, 389–409 (2014).

    Article  CAS  Google Scholar 

  263. Ratti, A. et al. A role for the ELAV RNA-binding proteins in neural stem cells: stabilization of Msi1 mRNA. J. Cell Sci. 119, 1442–1452 (2006).

    Article  CAS  PubMed  Google Scholar 

  264. Perrone-Bizzozero, N. & Bolognani, F. Role of HuD and other RNA-binding proteins in neural development and plasticity. J. Neurosci. Res. 68, 121–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  265. Van Treeck, B. & Parker, R. Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies. Cell 174, 791–802 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Di Stefano, B. et al. The RNA helicase DDX6 controls cellular plasticity by modulating P-body homeostasis. Cell Stem Cell 25, 622–638.e13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Díaz-Muñoz, M. D. & Turner, M. Uncovering the role of RNA-binding proteins in gene expression in the immune system. Front. Immunol. 9, 1094 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Fujita, R. et al. Fragile X mental retardation protein regulates skeletal muscle stem cell activity by regulating the stability of Myf5 mRNA. Skelet. Muscle 7, 18 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Roy, N. et al. mRNP granule proteins Fmrp and Dcp1a differentially regulate mRNP complexes to contribute to control of muscle stem cell quiescence and activation. Skelet. Muscle 11, 18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Luo, Y. et al. Fragile X mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet. 6, e1000898 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Kato, Y. et al. ELAVL2‐directed RNA regulatory network drives the formation of quiescent primordial follicles. EMBO Rep. 20, e48251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Sharifi, S., da Costa, H. F. R. & Bierhoff, H. The circuitry between ribosome biogenesis and translation in stem cell function and ageing. Mech. Ageing Dev. 189, 111282 (2020).

    Article  CAS  PubMed  Google Scholar 

  273. Zismanov, V. et al. Phosphorylation of eIF2α is a translational control mechanism regulating muscle stem cell quiescence and self-renewal. Cell Stem Cell 18, 79–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  274. Blanco, S. et al. Stem cell function and stress response are controlled by protein synthesis. Nature 534, 335–340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Jarzebowski, L. et al. Mouse adult hematopoietic stem cells actively synthesize ribosomal RNA. RNA 24, 1803–1812 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Gulati, G. S. et al. Neogenin-1 distinguishes between myeloid-biased and balanced Hoxb5+ mouse long-term hematopoietic stem cells. Proc. Natl Acad. Sci. USA 116, 25115–25125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Gayraud-Morel, B., Le Bouteiller, M., Commere, P. H., Cohen-Tannoudji, M. & Tajbakhsh, S. Notchless defines a stage-specific requirement for ribosome biogenesis during lineage progression in adult skeletal myogenesis. Development 145, dev162636 (2018).

    Article  PubMed  Google Scholar 

  278. Chen, X. et al. Translational control by DHX36 binding to 5′UTR G-quadruplex is essential for muscle stem-cell regenerative functions. Nat. Commun. 12, 5043 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Lai, J. C. et al. The DEAH-box helicase RHAU is an essential gene and critical for mouse hematopoiesis. Blood 119, 4291–4300 (2012).

    Article  CAS  PubMed  Google Scholar 

  280. Le Bouteiller, M. et al. Notchless-dependent ribosome synthesis is required for the maintenance of adult hematopoietic stem cells. J. Exp. Med. 210, 2351–2369 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Cai, X. et al. Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell 17, 165–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Fujita, R. et al. Satellite cell expansion is mediated by P-eIF2α-dependent Tacc3 translation. Development 148, dev194480 (2021).

    CAS  PubMed  Google Scholar 

  283. Zeng, W. et al. CPEB1 directs muscle stem cell activation by reprogramming the translational landscape. Nat. Commun. 13, 947 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Das, S., Vera, M., Gandin, V., Singer, R. H. & Tutucci, E. Intracellular mRNA transport and localized translation. Nat. Rev. Mol. Cell Biol. 22, 483–504 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Kwon, O. S. et al. Exon junction complex dependent mRNA localization is linked to centrosome organization during ciliogenesis. Nat. Commun. 12, 1351 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Kiriakidou, M. et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129, 1141–1151 (2007).

    Article  CAS  PubMed  Google Scholar 

  287. Lu, K., Nakagawa, M. M., Thummar, K. & Rathinam, C. V. Slicer endonuclease Argonaute 2 is a negative regulator of hematopoietic stem cell quiescence. Stem Cells 34, 1343–1353 (2016).

    Article  CAS  PubMed  Google Scholar 

  288. Zhou, Y. et al. Autocrine Mfge8 signaling prevents developmental exhaustion of the adult neural stem cell pool. Cell Stem Cell 23, 444–452.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Signer, R. A. J. et al. The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs. Genes Dev. 30, 1698–1703 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Goncalves, K. A. et al. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell 166, 894–906 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Hidalgo San Jose, L. et al. Modest declines in proteome quality impair hematopoietic stem cell self-renewal. Cell Rep. 30, 69–80.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  292. Kitajima, Y. et al. The ubiquitin-proteasome system is indispensable for the maintenance of muscle stem cells. Stem Cell Rep. 11, 1523–1538 (2018).

    Article  CAS  Google Scholar 

  293. King, B. et al. The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells. Nat. Immunol. 17, 1312–1321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Thompson, B. J. et al. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J. Exp. Med. 205, 1395–1408 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Wei, Q. et al. MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells. Nat. Commun. 12, 2522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Blomfield, I. M. et al. Id4 promotes the elimination of the pro-activation factor ascl1 to maintain quiescence of adult hippocampal stem cells. Elife 8, e48561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Kobayashi, T. et al. Enhanced lysosomal degradation maintains the quiescent state of neural stem cells. Nat. Commun. 10, 5446 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Cochard, L. M. et al. Manipulation of EGFR-induced signaling for the recruitment of quiescent neural stem cells in the adult mouse forebrain. Front. Neurosci. 15, 621076 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Liu, L. et al. ER associated degradation preserves hematopoietic stem cell quiescence and self- renewal by restricting mTOR activity. Blood 136, 2975–2986 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Li, G. et al. SIRT 7 activates quiescent hair follicle stem cells to ensure hair growth in mice. EMBO J. 39, e104365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Dong, S. et al. Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature 591, 117–123 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Ono, Y. et al. Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle. J. Cell Sci. 125, 1309–1317 (2012).

    Article  CAS  PubMed  Google Scholar 

  303. Singh, S. K. et al. Id1 Ablation protects hematopoietic stem cells from stress-induced exhaustion and aging. Cell Stem Cell 23, 252–265.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Morrow, C. S. et al. Vimentin coordinates protein turnover at the aggresome during neural stem cell quiescence exit. Cell Stem Cell 26, 558–568.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Wang, X. et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat. Commun. 8, 14091 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Servián‐Morilla, E. et al. A POGLUT 1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Mol. Med. 8, 1289–1309 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Wang, W. et al. Notch receptor-ligand engagement maintains hematopoietic stem cell quiescence and niche. Stem Cells 33, 2280–2293 (2015).

    Article  CAS  PubMed  Google Scholar 

  308. White, C. W. et al. Age-related loss of neural stem cell O-GlcNAc promotes a glial fate switch through STAT3 activation. Proc. Natl Acad. Sci. USA 117, 22214–22224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Bonitto, K., Sarathy, K., Atai, K., Mitra, M. & Coller, H. A. Is there a histone code for cellular quiescence? Front. Cell Dev. Biol. 9, 739780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  310. Sincennes, M.-C. et al. Acetylation of PAX7 controls muscle stem cell self-renewal and differentiation potential in mice. Nat. Commun. 12, 3253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Richter, J. D. & Lasko, P. Translational control in oocyte development. Cold Spring Harb. Perspect. Biol. 3, a002758 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Wang, S. et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell 180, 585–600.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  313. Luong, X. G., Daldello, E. M., Rajkovic, G., Yang, C. R. & Conti, M. Genome-wide analysis reveals a switch in the translational program upon oocyte meiotic resumption. Nucleic Acids Res. 48, 3257–3276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Clarke, H. J. Post-transcriptional control of gene expression during mouse oogenesis. Results Probl. Cell Differ. 55, 1–21 (2012).

    Article  CAS  PubMed  Google Scholar 

  315. Chousal, J. et al. Chromatin modification and global transcriptional silencing in the oocyte mediated by the mRNA decay activator ZFP36L2. Dev. Cell 44, 392–402.e7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  316. Pérez-Sanz, J. et al. Increased number of multi-oocyte follicles (MOFs) in juvenile p27Kip1 mutant mice: potential role of granulosa cells. Hum. Reprod. 28, 1023–1030 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Yang, Q. E., Nagaoka, S. I., Gwost, I., Hunt, P. A. & Oatley, J. M. Inactivation of retinoblastoma protein (Rb1) in the oocyte: evidence that dysregulated follicle growth drives ovarian teratoma formation in mice. PLoS Genet. 11, e1005355 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  318. Adhikari, D. et al. Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Hum. Mol. Genet. 21, 2476–2484 (2012).

    Article  CAS  PubMed  Google Scholar 

  319. Reyes, J. M. & Ross, P. J. Cytoplasmic polyadenylation in mammalian oocyte maturation. Wiley Interdiscip. Rev. RNA 7, 71–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  320. Yang, Y. et al. Maternal mRNAs with distinct 3’ UTRs define the temporal pattern of Ccnb1 synthesis during mouse oocyte meiotic maturation. Genes Dev. 31, 1302–1307 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Freimer, J. W., Krishnakumar, R., Cook, M. S. & Blelloch, R. Expression of alternative Ago2 isoform associated with loss of microRNA-driven translational repression in mouse oocytes. Curr. Biol. 28, 296–302.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Ivanova, I. et al. The RNA m6A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol. Cell 67, 1059–1067.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Zhao, B. S. et al. M6 A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542, 475–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Cheng, S. et al. Mammalian oocytes store mRNAs in a mitochondria-associated membraneless compartment. Science 378, eabq4835 (2022).

    Article  CAS  PubMed  Google Scholar 

  325. Than-Trong, E. et al. Neural stem cell quiescence and stemness are molecularly distinct outputs of the notch3 signalling cascade in the vertebrate adult brain. Development 145, dev161034 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  326. Sistigu, A., Musella, M., Galassi, C., Vitale, I. & De Maria, R. Tuning cancer fate: tumor microenvironment’s role in cancer stem cell quiescence and reawakening. Front. Immunol. 11, 2166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Basu, S., Dong, Y., Kumar, R., Jeter, C. & Tang, D. G. Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Semin. Cancer Biol. 78, 90–103 (2022).

    Article  CAS  PubMed  Google Scholar 

  328. Bowling, S. et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single. Cell 181, 1410–1422.e27 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Machado, L. et al. In situ fixation redefines quiescence and early activation of skeletal muscle stem cell. Cell Rep. 21, 1982–1993 (2017).

    Article  CAS  PubMed  Google Scholar 

  330. Jia, W. et al. Indispensable role of galectin-3 in promoting quiescence of hematopoietic stem cells. Nat. Commun. 12, 2118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Martynoga, B. et al. Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes Dev. 27, 1769–1786 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Mira, H. et al. Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 7, 78–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  333. Genander, M. et al. BMP signaling and its pSMADS1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell 15, 619–633 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Choi, S. et al. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature 592, 428–432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Arjona, M. et al. Tubastatin A maintains adult skeletal muscle stem cells in a quiescent state ex vivo and improves their engraftment ability in vivo. Stem Cell Rep. 17, 82–95 (2022).

    Article  CAS  Google Scholar 

  336. Cao, Y. et al. Dynamic effects of Fto in regulating the proliferation and differentiation of adult neural stem cells of mice. Hum. Mol. Genet. 29, 727–735 (2020).

    Article  CAS  PubMed  Google Scholar 

  337. Li, L. et al. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum. Mol. Genet. 26, 2398–2411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Renders, S. et al. Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1. Nat. Commun. 12, 608 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Kiel, M. J. et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449, 238–242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Nakamura-Ishizu, A., Takizawa, H. & Suda, T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 141, 4656–4666 (2014).

    Article  CAS  PubMed  Google Scholar 

  341. Gattazzo, F., Laurent, B., Relaix, F., Rouard, H. & Didier, N. Distinct phases of postnatal skeletal muscle growth govern the progressive establishment of muscle stem cell quiescence. Stem Cell Rep. 15, 597–611 (2020).

    Article  CAS  Google Scholar 

  342. Murphy, M. M., Lawson, J. A., Mathew, S. J., Hutcheson, D. A. & Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138, 3625–3637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Lepper, C., Partridge, T. A. & Fan, C.-M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138, 3639–3646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Sambasivan, R. et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138, 3647–3656 (2011).

    Article  CAS  PubMed  Google Scholar 

  345. Keefe, A. C. et al. Muscle stem cells contribute to myofibres in sedentary adult mice. Nat. Commun. 6, 7087 (2015).

    Article  CAS  PubMed  Google Scholar 

  346. Pawlikowski, B., Pulliam, C., Betta, N. D., Kardon, G. & Olwin, B. B. Pervasive satellite cell contribution to uninjured adult muscle fibers. Skelet. Muscle 5, 42 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  347. Wosczyna, M. N. et al. Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle. Cell Rep. 27, 2029–2035.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Wosczyna, M. N. & Rando, T. A. A muscle stem cell support group: coordinated cellular responses in muscle regeneration. Dev. Cell 46, 135–143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Joe, A. W. B. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Baser, A., Skabkin, M. & Martin-Villalba, A. Neural stem cell activation and the role of protein synthesis. Brain Plast. 3, 27–41 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  351. Lugert, S. et al. Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6, 445–456 (2010).

    Article  CAS  PubMed  Google Scholar 

  352. Fuchs, E. & Blau, H. M. Tissue stem cells: architects of their niches. Cell Stem Cell 27, 532–556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Wang, E. C. E., Dai, Z., Ferrante, A. W., Drake, C. G. & Christiano, A. M. A subset of TREM2+ dermal macrophages secretes oncostatin M to maintain hair follicle stem cell quiescence and inhibit hair growth. Cell Stem Cell 24, 654–669.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  354. Goodell, M. A. & Rando, T. A. Stem cells and healthy aging. Science 350, 1199–1204 (2015).

    Article  CAS  PubMed  Google Scholar 

  355. Brunet, A. et al. Ageing and rejuvenation of tissue stem cells and their niches. Nat. Rev. Mol. Cell Biol. 24, 45–62 (2023).

    Article  CAS  PubMed  Google Scholar 

  356. Katsimpardi, L. & Lledo, P. M. Regulation of neurogenesis in the adult and aging brain. Curr. Opin. Neurobiol. 53, 131–138 (2018).

    Article  CAS  PubMed  Google Scholar 

  357. Ji, J. et al. Aging in hair follicle stem cells and niche microenvironment. J. Dermatol. 44, 1097–1104 (2017).

    Article  PubMed  Google Scholar 

  358. Luinenburg, D. G. & de Haan, G. MicroRNAs in hematopoietic stem cell aging. Mech. Ageing Dev. 189, 111281 (2020).

    Article  CAS  PubMed  Google Scholar 

  359. Liu, L. & Rando, T. A. Manifestations and mechanisms of stem cell aging. J. Cell Biol. 193, 257–266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Kalamakis, G. et al. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell 176, 1407–1419.e14 (2019).

    Article  CAS  PubMed  Google Scholar 

  361. Wang, L., Chen, M., Fu, H., Ni, T. & Wei, G. Tempo-spatial alternative polyadenylation analysis reveals that 3′ UTR lengthening of Mdm2 regulates p53 expression and cellular senescence in aged rat testis. Biochem. Biophys. Res. Commun. 523, 1046–1052 (2020).

    Article  CAS  PubMed  Google Scholar 

  362. Porpiglia, E. et al. Elevated CD47 is a hallmark of dysfunctional aged muscle stem cells that can be targeted to augment regeneration. Cell Stem Cell 29, 1653–1668.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  363. Moore, D. L., Pilz, G. A., Araúzo-Bravo, M. J., Barral, Y. & Jessberger, S. A mechanism for the segregation of age in mammalian neural stem cells. Science 349, 1334–1338 (2015).

    Article  CAS  PubMed  Google Scholar 

  364. Matsumura, H. et al. Stem cells: hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395 (2016).

    Article  PubMed  Google Scholar 

  365. Ishikawa, Y. et al. Opposing functions of Fbxw7 in keratinocyte growth, differentiation and skin tumorigenesis mediated through negative regulation of c-Myc and Notch. Oncogene 32, 1921–1932 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Novo NordiskFonden Start Package grant 0071116 (A.D.M.) and National Institutes of Health grants P01 AG036695, R01 AG068667, and R01 AR073248 (T.A.R.).

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote the manuscript.

Corresponding authors

Correspondence to Antoine de Morree or Thomas A. Rando.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Francois Guillemot and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Adult stem cells

Rare populations of cells that are found in the body throughout most of postnatal life and that give rise to a limited number of mature cell types that build the tissue in which they reside.

ATR

A serine/threonine-protein kinase that senses persistent single-stranded DNA and activates a DNA damage checkpoint, leading to cell cycle arrest.

Autologous stem cell transplantation therapies

Procedures in which stem cells are isolated from a person and placed back following expansion and/or modification such as gene correction.

Bulge

Morphologically distinct area in the hair follicle in between the opening of a sebaceous gland and the attachment site of the arrector pili muscle that functions as the hair follicle stem cell niche.

Cancer stem cells

Cancer cells with stem cell properties such as self-renewal; some cancer stem cells can adopt a quiescent state.

Embryonic stem cells

Cells derived from the blastocyst of the embryo and able to form all tissue lineages.

Endoplasmic reticulum-associated degradation

A pathway that targets misfolded proteins in the endoplasmic reticulum for ubiquitination and proteasomal degradation.

Exon-junction complex

Protein complex that forms on a pre-mRNA strand at the junction of two exons immediately after splicing.

Germ line stem cells

Cells that can generate the haploid gametes.

Induced pluripotent stem cells

Cells created from somatic cells through the overexpression of specific transcription factors, rendering them immortal and able to form all tissue lineages.

Non-homologous end joining

A mechanism of DNA double-strand break repair without the need for a homologous template.

Processing bodies

Cytoplasmic ribonucleoprotein granules primarily composed of translationally repressed mRNAs.

RNA granules

Non-membrane-bound organelles composed of RNA and protein.

Stem cell activation

The process by which a quiescent stem cell exits the quiescent state and enters the cell cycle.

Trithorax group

A family of proteins that modify or remodel histones to activate genes and keep them active.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article