Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The lipotype hypothesis

Subjects

Multicellular organisms consist of different cell types that emerge in response to instructive signals. New evidence suggests that lipid composition modulates cell response to signalling cues. Here we propose that cell variability in lipid composition assists the divergence of differentiation trajectories, leading to the establishment of several cell identities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The lipotype hypothesis.

References

  1. Kramer, B. A., Sarabia Del Castillo, J. & Pelkmans, L. Multimodal perception links cellular state to decision-making in single cells. Science 377, 642–648 (2022).

    Article  CAS  Google Scholar 

  2. Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    Article  CAS  Google Scholar 

  3. Levental, I. & Lyman, E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-022-00524-4 (2022).

    Article  Google Scholar 

  4. D’Angelo, G., Capasso, S., Sticco, L. & Russo, D. Glycosphingolipids: synthesis and functions. FEBS J. 280, 6338–6353 (2013).

    Article  Google Scholar 

  5. Rappez, L. et al. SpaceM reveals metabolic states of single cells. Nat. Methods 18, 799–805 (2021).

    Article  CAS  Google Scholar 

  6. Capolupo, L. et al. Sphingolipids control dermal fibroblast heterogeneity. Science 376, eabh1623 (2022).

    Article  CAS  Google Scholar 

  7. Bhaduri, A., Neumann, E. K., Kriegstein, A. R. & Sweedler, J. V. Identification of lipid heterogeneity and diversity in the developing human brain. JACS Au. 1, 2261–2270 (2021).

    Article  CAS  Google Scholar 

  8. Bien, T., Koerfer, K., Schwenzfeier, J., Dreisewerd, K. & Soltwisch, J. Mass spectrometry imaging to explore molecular heterogeneity in cell culture. Proc. Natl Acad. Sci. USA 119, e2114365119 (2022).

    Article  CAS  Google Scholar 

  9. Frechin, M. et al. Cell-intrinsic adaptation of lipid composition to local crowding drives social behaviour. Nature 523, 88–91 (2015).

    Article  CAS  Google Scholar 

  10. Russo, D. et al. Glycosphingolipid metabolic reprogramming drives neural differentiation. EMBO J. 37, e97674 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Gönczy for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giovanni D’Angelo or Gioele La Manno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Angelo, G., La Manno, G. The lipotype hypothesis. Nat Rev Mol Cell Biol 24, 1–2 (2023). https://doi.org/10.1038/s41580-022-00556-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00556-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing