Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signalling mechanisms and cellular functions of SUMO

Abstract

Sumoylation is an essential post-translational modification that is catalysed by a small number of modifying enzymes but regulates thousands of target proteins in a dynamic manner. Small ubiquitin-like modifiers (SUMOs) can be attached to target proteins as one or more monomers or in the form of polymers of different types. Non-covalent readers recognize SUMO-modified proteins via SUMO interaction motifs. SUMO simultaneously modifies groups of functionally related proteins to regulate predominantly nuclear processes, including gene expression, the DNA damage response, RNA processing, cell cycle progression and proteostasis. Recent progress has increased our understanding of the cellular and pathophysiological roles of SUMO modifications, extending their functions to the regulation of immunity, pluripotency and nuclear body assembly in response to oxidative stress, which partly occurs through the recently characterized mechanism of liquid–liquid phase separation. Such progress in understanding the roles and regulation of sumoylation opens new avenues for the targeting of SUMO to treat disease, and indeed the first drug blocking sumoylation is currently under investigation in clinical trials as a possible anticancer agent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The sumoylation cycle.
Fig. 2: Functional group modification, protein clustering and phase separation.
Fig. 3: Post-translational modification crosstalk.
Fig. 4: Roles of SUMO in nuclear processes.
Fig. 5: SUMO in immunity and the maintenance of pluripotency.

Similar content being viewed by others

References

  1. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Matunis, M. J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Hendriks, I. A. & Vertegaal, A. C. A comprehensive compilation of SUMO proteomics. Nat. Rev. Mol. Cell Biol. 17, 581–595 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Lamoliatte, F., McManus, F. P., Maarifi, G., Chelbi-Alix, M. K. & Thibault, P. Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nat. Commun. 8, 14109 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, C. et al. Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility. Nat. Commun. 11, 834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kohler, J. B. et al. Targeting of SUMO substrates to a Cdc48-Ufd1-Npl4 segregase and STUbL pathway in fission yeast. Nat. Commun. 6, 8827 (2015).

    Article  PubMed  Google Scholar 

  7. Lumpkin, R. J. et al. Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Nat. Commun. 8, 1171 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hendriks, I. A., D’Souza, R. C., Chang, J. G., Mann, M. & Vertegaal, A. C. System-wide identification of wild-type SUMO-2 conjugation sites. Nat. Commun. 6, 7289 (2015).

    Article  PubMed  Google Scholar 

  9. Hendriks, I. A. et al. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat. Struct. Mol. Biol. 21, 927–936 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hendriks, I. A. et al. Site-specific characterization of endogenous SUMOylation across species and organs. Nat. Commun. 9, 2456 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hendriks, I. A. et al. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat. Struct. Mol. Biol. 24, 325–336 (2017). Hendriks et al. uncover the complexity of the sumoylated proteome and frequent crosstalk between sumoylation and phosphorylation.

    Article  CAS  PubMed  Google Scholar 

  12. Tammsalu, T. et al. Proteome-wide identification of SUMO2 modification sites. Sci. Signal. 7, rs2 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Teramura, H. et al. Characterization of novel SUMO family genes in the rice genome. Genes Genet. Syst. 96, 25–32 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Kurepa, J. et al. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J. Biol. Chem. 278, 6862–6872 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Liang, Y. C. et al. SUMO5, a novel poly-SUMO isoform, regulates PML nuclear bodies. Sci. Rep. 6, 26509 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Su, H. L. & Li, S. S. Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene 296, 65–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, L. et al. SUMO2 is essential while SUMO3 is dispensable for mouse embryonic development. EMBO Rep. 15, 878–885 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Evdokimov, E., Sharma, P., Lockett, S. J., Lualdi, M. & Kuehn, M. R. Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. J. Cell Sci. 121, 4106–4113 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, F. P. et al. Sumo-1 function is dispensable in normal mouse development. Mol. Cell Biol. 28, 5381–5390 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Owerbach, D., McKay, E. M., Yeh, E. T., Gabbay, K. H. & Bohren, K. M. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem. Biophys. Res. Commun. 337, 517–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Nacerddine, K. et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9, 769–779 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kunz, K., Piller, T. & Muller, S. SUMO-specific proteases and isopeptidases of the SENP family at a glance. J. Cell Sci. https://doi.org/10.1242/jcs.211904 (2018).

    Article  PubMed  Google Scholar 

  23. Odeh, H. M., Coyaud, E., Raught, B. & Matunis, M. J. The SUMO-specific isopeptidase SENP2 is targeted to intracellular membranes via a predicted N-terminal amphipathic alpha-helix. Mol. Biol. Cell 29, 1878–1890 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karami, S. et al. Novel SUMO-protease SENP7S regulates beta-catenin signaling and mammary epithelial cell transformation. Sci. Rep. 7, 46477 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eisenhardt, N. et al. A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly. Nat. Struct. Mol. Biol. 22, 959–967 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez-Prieto, R. et al. Global non-covalent SUMO interaction networks reveal SUMO-dependent stabilization of the non-homologous end joining complex. Cell Rep. 34, 108691 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P. & Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Nagaraj, N. et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 7, 548 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cappadocia, L. & Lima, C. D. Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem. Rev. 118, 889–918 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Pichler, A., Fatouros, C., Lee, H. & Eisenhardt, N. SUMO conjugation - a mechanistic view. Biomol. Concepts 8, 13–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Wagner, K. et al. The SUMO isopeptidase SENP6 functions as a rheostat of chromatin residency in genome maintenance and chromosome dynamics. Cell Rep. 29, 480–494 e485 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Palvimo, J. J. PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription. Biochem. Soc. Trans. 35, 1405–1408 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez, M. S., Dargemont, C. & Hay, R. T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654–12659 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Matic, I. et al. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol. Cell 39, 641–652 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. & Lima, C. D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Streich, F. C. Jr. & Lima, C. D. Capturing a substrate in an activated RING E3/E2-SUMO complex. Nature 536, 304–308 (2016). In this study, the SUMO E3 ligase Siz1 is shown to force-feed K164 of PCNA in the E2 active site to mediate preferential sumoylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hickey, C. M., Wilson, N. R. & Hochstrasser, M. Function and regulation of SUMO proteases. Nat. Rev. Mol. Cell Biol. 13, 755–766 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng, J., Kang, X., Zhang, S. & Yeh, E. T. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131, 584–595 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang, X. et al. SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol. Cell 38, 191–201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, J. et al. Desumoylase SENP6 maintains osteochondroprogenitor homeostasis by suppressing the p53 pathway. Nat. Commun. 9, 143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shin, E. J. et al. DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Rep. 13, 339–346 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schulz, S. et al. Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Rep. 13, 930–938 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hutten, S., Chachami, G., Winter, U., Melchior, F. & Lamond, A. I. A role for the Cajal-body-associated SUMO isopeptidase USPL1 in snRNA transcription mediated by RNA polymerase II. J. Cell Sci. 127, 1065–1078 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tatham, M. H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Swatek, K. N. et al. Insights into ubiquitin chain architecture using Ub-clipping. Nature 572, 533–537 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kulathu, Y. & Komander, D. Atypical ubiquitylation- the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13, 508–523 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Jentsch, S. & Psakhye, I. Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu. Rev. Genet. 47, 167–186 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Psakhye, I. & Jentsch, S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151, 807–820 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Garcia-Rodriguez, N., Wong, R. P. & Ulrich, H. D. Functions of Ubiquitin and SUMO in DNA replication and replication stress. Front. Genet. 7, 87 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dhingra, N., Wei, L. & Zhao, X. Replication protein A (RPA) sumoylation positively influences the DNA damage checkpoint response in yeast. J. Biol. Chem. 294, 2690–2699 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Cappadocia, L., Kochanczyk, T. & Lima, C. D. DNA asymmetry promotes SUMO modification of the single-stranded DNA-binding protein RPA. EMBO J. 40, e103787, https://doi.org/10.15252/embj.2019103787 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cappadocia, L., Pichler, A. & Lima, C. D. Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat. Struct. Mol. Biol. 22, 968–975 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Danielsen, J. R. et al. DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding zinc finger. J. Cell Biol. 197, 179–187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Parker, J. L. & Ulrich, H. D. SIM-dependent enhancement of substrate-specific SUMOylation by a ubiquitin ligase in vitro. Biochem. J. 457, 435–440 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016). This study reveals how SUMO polymers and SIM polymers form substructures via phase separation, providing a mechanistic explanation for the assembly of nuclear bodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cuijpers, S. A. G. & Vertegaal, A. C. O. Guiding mitotic progression by crosstalk between post-translational modifications. Trends Biochem. Sci. 43, 251–268 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Vaughan, R. M., Kupai, A. & Rothbart, S. B. Chromatin regulation through ubiquitin and ubiquitin-like histone modifications. Trends Biochem. Sci. 46, 258–269 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Perry, J. J., Tainer, J. A. & Boddy, M. N. A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem. Sci. 33, 201–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Hay, R. T. Decoding the SUMO signal. Biochem. Soc. Trans. 41, 463–473 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Lallemand-Breitenbach, V. et al. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 10, 547–555 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Tatham, M. H. et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol. 10, 538–546 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Akimov, V. et al. UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat. Struct. Mol. Biol. 25, 631–640 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Sriramachandran, A. M. et al. Arkadia/RNF111 is a SUMO-targeted ubiquitin ligase with preference for substrates marked with SUMO1-capped SUMO2/3 chain. Nat. Commun. 10, 3678 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kumar, R., Gonzalez-Prieto, R., Xiao, Z., Verlaan-de Vries, M. & Vertegaal, A. C. O. The STUbL RNF4 regulates protein group SUMOylation by targeting the SUMO conjugation machinery. Nat. Commun. 8, 1809 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Prudden, J. et al. SUMO-targeted ubiquitin ligases in genome stability. EMBO J. 26, 4089–4101 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yin, Y. et al. SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. Genes Dev. 26, 1196–1208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Galanty, Y., Belotserkovskaya, R., Coates, J. & Jackson, S. P. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev. 26, 1179–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Horigome, C. et al. PolySUMOylation by Siz2 and Mms21 triggers relocation of DNA breaks to nuclear pores through the Slx5/Slx8 STUbL. Genes Dev. 30, 931–945 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Churikov, D. et al. SUMO-dependent relocalization of eroded telomeres to nuclear pore complexes controls telomere recombination. Cell Rep. 15, 1242–1253 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Lecona, E. et al. USP7 is a SUMO deubiquitinase essential for DNA replication. Nat. Struct. Mol. Biol. 23, 270–277 (2016). Lecona et al. identify a STUbP which maintains a SUMO-rich, ubiquitin-poor chromatin state required for replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hendriks, I. A., Schimmel, J., Eifler, K., Olsen, J. V. & Vertegaal, A. C. O. Ubiquitin-specific protease 11 (USP11) deubiquitinates hybrid small ubiquitin-like modifier (SUMO)-ubiquitin chains to counteract RING finger protein 4 (RNF4). J. Biol. Chem. 290, 15526–15537 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pfeiffer, A. et al. Ataxin-3 consolidates the MDC1-dependent DNA double-strand break response by counteracting the SUMO-targeted ubiquitin ligase RNF4. EMBO J. 36, 1066–1083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin, C. H., Liu, S. Y. & Lee, E. H. SUMO modification of Akt regulates global SUMOylation and substrate SUMOylation specificity through Akt phosphorylation of Ubc9 and SUMO1. Oncogene 35, 595–607 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Hietakangas, V. et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol. Cell Biol. 23, 2953–2968 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hietakangas, V. et al. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl Acad. Sci. USA 103, 45–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Mohideen, F. et al. A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Nat. Struct. Mol. Biol. 16, 945–952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stehmeier, P. & Muller, S. Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol. Cell 33, 400–409 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Aichem, A. et al. The ubiquitin-like modifier FAT10 interferes with SUMO activation. Nat. Commun. 10, 4452 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wei, B. et al. Mitotic phosphorylation of SENP3 regulates DeSUMOylation of chromosome-associated proteins and chromosome stability. Cancer Res. 78, 2171–2178 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Liebelt, F. & Vertegaal, A. C. Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am. J. Physiol. Cell Physiol. 311, C284–C296 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Golebiowski, F. et al. System-wide changes to SUMO modifications in response to heat shock. Sci. Signal. 2, ra24 (2009).

    Article  PubMed  Google Scholar 

  87. Liebelt, F. et al. SUMOylation and the HSF1-regulated chaperone network converge to promote proteostasis in response to heat shock. Cell Rep. 26, 236–249 e234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Keiten-Schmitz, J. et al. The nuclear SUMO-targeted ubiquitin quality control network regulates the dynamics of cytoplasmic stress granules. Mol. Cell 79, 54–67 e57 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Marmor-Kollet, H. et al. Spatiotemporal proteomic analysis of stress granule disassembly using APEX reveals regulation by SUMOylation and links to ALS pathogenesis. Mol. Cell 80, 876–891 e876 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, Y. S., Keyser, S. G. & Schneekloth, J. S. Jr Synthesis of 2′,3′,4′-trihydroxyflavone (2-D08), an inhibitor of protein sumoylation. Bioorg. Med. Chem. Lett. 24, 1094–1097 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fujino, N., Kubo, H. & Maciewicz, R. A. Phenotypic screening identifies Axl kinase as a negative regulator of an alveolar epithelial cell phenotype. Lab. Invest. 97, 1047–1062 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Hay, R. T. Role of ubiquitin-like proteins in transcriptional regulation. Ernst Scher. Res. Found. Workshop https://doi.org/10.1007/3-540-37633-x_10 (2006).

    Article  Google Scholar 

  93. Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455–6461 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schimmel, J. et al. Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. Mol. Cell 53, 1053–1066 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Ninova, M. et al. The SUMO ligase Su(var)2-10 controls hetero- and euchromatic gene expression via establishing H3K9 trimethylation and negative feedback regulation. Mol. Cell 77, 571–585 e574 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Ivanov, A. V. et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell 28, 823–837 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Paakinaho, V. et al. SUMOylation regulates the protein network and chromatin accessibility at glucocorticoid receptor-binding sites. Nucleic Acids Res. 49, 1951–1971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lin, X. et al. Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol. Cell 11, 1389–1396 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Chakrabarti, S. R. & Nucifora, G. The leukemia-associated gene TEL encodes a transcription repressor which associates with SMRT and mSin3A. Biochem. Biophys. Res. Commun. 264, 871–877 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Lin, D. Y. et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24, 341–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Ryu, H. Y., Zhao, D., Li, J., Su, D. & Hochstrasser, M. Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Res. 48, 12151–12168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rawat, P. et al. Stress-induced nuclear condensation of NELF drives transcriptional downregulation. Mol. Cell 81, 1013–1026 e1011 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ninova, M. et al. Su(var)2-10 and the SUMO pathway link piRNA-guided target recognition to chromatin silencing. Mol. Cell 77, 556–570 e556 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Kim, H. et al. PIE-1 SUMOylation promotes germline fates and piRNA-dependent silencing in C. elegans. Elife https://doi.org/10.7554/eLife.63300 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kim, H. et al. HDAC1 SUMOylation promotes Argonaute-directed transcriptional silencing in C. elegans. Elife https://doi.org/10.7554/eLife.63299 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chen, P. et al. piRNA-mediated gene regulation and adaptation to sex-specific transposon expression in D. melanogaster male germline. Genes Dev. 35, 914–935 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Neyret-Kahn, H. et al. Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation. Genome Res. 23, 1563–1579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schwertman, P., Bekker-Jensen, S. & Mailand, N. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat. Rev. Mol. Cell Biol. 17, 379–394 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Dantuma, N. P. & van Attikum, H. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. EMBO J. 35, 6–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Dingler, F. A. et al. Two aldehyde clearance systems are essential to prevent lethal formaldehyde accumulation in mice and humans. Mol. Cell 80, 996–1012 e1019 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stingele, J., Schwarz, M. S., Bloemeke, N., Wolf, P. G. & Jentsch, S. A DNA-dependent protease involved in DNA-protein crosslink repair. Cell 158, 327–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Borgermann, N. et al. SUMOylation promotes protective responses to DNA-protein crosslinks. EMBO J. https://doi.org/10.15252/embj.2019101496 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schellenberg, M. J. et al. ZATT (ZNF451)-mediated resolution of topoisomerase 2 DNA-protein cross-links. Science 357, 1412–1416 (2017). Schellenberg et al. report that sumoylation plays an important role in the repair of DPCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tian, T. et al. The ZATT-TOP2A-PICH axis drives extensive replication fork reversal to promote genome stability. Mol. Cell 81, 198–211 e196 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Fielden, J. et al. TEX264 coordinates p97- and SPRTN-mediated resolution of topoisomerase 1-DNA adducts. Nat. Commun. 11, 1274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sun, Y. et al. A conserved SUMO pathway repairs topoisomerase DNA-protein cross-links by engaging ubiquitin-mediated proteasomal degradation. Sci. Adv. https://doi.org/10.1126/sciadv.aba6290 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Liu, J. C. Y. et al. Mechanism and function of DNA replication-independent DNA-protein crosslink repair via the SUMO-RNF4 pathway. EMBO J. 40, e107413 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pozzi, B. et al. SUMO conjugation to spliceosomal proteins is required for efficient pre-mRNA splicing. Nucleic Acids Res. 45, 6729–6745 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vethantham, V., Rao, N. & Manley, J. L. Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Genes Dev. 22, 499–511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Du, Y. et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res. 46, 5195–5208 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Raman, N., Weir, E. & Muller, S. The AAA ATPase MDN1 acts as a SUMO-targeted regulator in mammalian pre-ribosome remodeling. Mol. Cell 64, 607–615 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Haindl, M., Harasim, T., Eick, D. & Muller, S. The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep. 9, 273–279 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Finkbeiner, E., Haindl, M. & Muller, S. The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex. EMBO J. 30, 1067–1078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rao, H. B. et al. A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science 355, 403–407 (2017). This article describes crosstalk between sumoylation and the ubiquitin–proteasome system as being required for meiosis.

    Article  PubMed  Google Scholar 

  125. He, W. et al. SUMO fosters assembly and functionality of the MutSgamma complex to facilitate meiotic crossing over. Dev. Cell 56, 2073–2088 e2073 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Qiao, H. et al. Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat. Genet. 46, 194–199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Divekar, N. S., Davis-Roca, A. C., Zhang, L., Dernburg, A. F. & Wignall, S. M. A degron-based strategy reveals new insights into Aurora B function in C. elegans. PLoS Genet. 17, e1009567 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pelisch, F. et al. A SUMO-dependent protein network regulates chromosome congression during oocyte meiosis. Mol. Cell 65, 66–77 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lallemand-Breitenbach, V. & de The, H. PML nuclear bodies: from architecture to function. Curr. Opin. Cell Biol. 52, 154–161 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Weis, K. et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 76, 345–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. de The, H. et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    Article  PubMed  Google Scholar 

  132. Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lallemand-Breitenbach, V. et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J. Exp. Med. 193, 1361–1371 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lang, M. et al. Three-dimensional organization of promyelocytic leukemia nuclear bodies. J. Cell Sci. 123, 392–400 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Chung, I., Osterwald, S., Deeg, K. I. & Rippe, K. PML body meets telomere: the beginning of an ALTernate ending? Nucleus 3, 263–275 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhang, J. M., Genois, M. M., Ouyang, J., Lan, L. & Zou, L. Alternative lengthening of telomeres is a self-perpetuating process in ALT-associated PML bodies. Mol. Cell 81, 1027–1042 e1024 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Min, J., Wright, W. E. & Shay, J. W. Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Genes Dev. 33, 814–827 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–251 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Seufert, W., Futcher, B. & Jentsch, S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373, 78–81 (1995).

    Article  CAS  PubMed  Google Scholar 

  140. Hayashi, T. et al. Ubc9 is essential for viability of higher eukaryotic cells. Exp. Cell Res. 280, 212–221 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Cuijpers, S. A. G. et al. Chromokinesin KIF4A teams up with stathmin 1 to regulate abscission in a SUMO-dependent manner. J. Cell Sci. https://doi.org/10.1242/jcs.248591 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhang, X. D. et al. SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol. Cell 29, 729–741 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gonzalez-Prieto, R., Cuijpers, S. A., Kumar, R., Hendriks, I. A. & Vertegaal, A. C. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle 14, 1859–1872 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sabo, A., Doni, M. & Amati, B. SUMOylation of Myc-family proteins. PLoS ONE 9, e91072 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sun, X. X. et al. SUMO protease SENP1 deSUMOylates and stabilizes c-Myc. Proc. Natl Acad. Sci. USA 115, 10983–10988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wen, D., Wu, J., Wang, L. & Fu, Z. SUMOylation promotes nuclear import and stabilization of polo-like Kinase 1 to support its mitotic function. Cell Rep. 21, 2147–2159 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Perez de Castro, I. et al. A SUMOylation motif in aurora-A: implications for spindle dynamics and oncogenesis. Front. Oncol. 1, 50 (2011).

    PubMed  PubMed Central  Google Scholar 

  148. Fernandez-Miranda, G. et al. SUMOylation modulates the function of aurora-B kinase. J. Cell Sci. 123, 2823–2833 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ban, R., Nishida, T. & Urano, T. Mitotic kinase aurora-B is regulated by SUMO-2/3 conjugation/deconjugation during mitosis. Genes Cell 16, 652–669 (2011).

    Article  CAS  Google Scholar 

  150. Pelisch, F. et al. Dynamic SUMO modification regulates mitotic chromosome assembly and cell cycle progression in Caenorhabditis elegans. Nat. Commun. 5, 5485 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Lee, C. C., Li, B., Yu, H. & Matunis, M. J. Sumoylation promotes optimal APC/C activation and timely anaphase. Elife https://doi.org/10.7554/eLife.29539 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Eifler, K. et al. SUMO targets the APC/C to regulate transition from metaphase to anaphase. Nat. Commun. 9, 1119 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Yatskevich, S. et al. Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation. Cell Rep. 34, 108929 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Su, X. B. et al. SUMOylation stabilizes sister kinetochore biorientation to allow timely anaphase. J. Cell Biol. https://doi.org/10.1083/jcb.202005130 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hahn, W. C. et al. An expanded universe of cancer targets. Cell 184, 1142–1155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jansen, N. S. & Vertegaal, A. C. O. A chain of events: regulating target proteins by SUMO polymers. Trends Biochem. Sci. 46, 113–123 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Liebelt, F. et al. The poly-SUMO2/3 protease SENP6 enables assembly of the constitutive centromere-associated network by group deSUMOylation. Nat. Commun. 10, 3987 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Fu, H. et al. SENP6-mediated M18BP1 deSUMOylation regulates CENP-A centromeric localization. Cell Res. 29, 254–257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mitra, S. et al. Genetic screening identifies a SUMO protease dynamically maintaining centromeric chromatin. Nat. Commun. 11, 501 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Decque, A. et al. Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing. Nat. Immunol. 17, 140–149 (2016). Decque et al. reveal that sumoylation acts as a repressor of antiviral immunity and inflammation by blocking gene expression of type I interferon.

    Article  CAS  PubMed  Google Scholar 

  161. Hannoun, Z., Maarifi, G. & Chelbi-Alix, M. K. The implication of SUMO in intrinsic and innate immunity. Cytokine Growth Factor. Rev. 29, 3–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Hu, Z. et al. SENP3 senses oxidative stress to facilitate STING-dependent dendritic cell antitumor function. Mol. Cell 81, 940–952 e945 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Cui, Y. et al. SENP7 potentiates cGAS activation by relieving SUMO-mediated inhibition of cytosolic DNA sensing. PLoS Pathog. 13, e1006156 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hopfner, K. P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Ding, X. et al. Protein SUMOylation is required for regulatory T cell expansion and function. Cell Rep. 16, 1055–1066 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Hu, M. M., Liao, C. Y., Yang, Q., Xie, X. Q. & Shu, H. B. Innate immunity to RNA virus is regulated by temporal and reversible sumoylation of RIG-I and MDA5. J. Exp. Med. 214, 973–989 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hua, G., Ganti, K. P. & Chambon, P. Glucocorticoid-induced tethered transrepression requires SUMOylation of GR and formation of a SUMO-SMRT/NCoR1-HDAC3 repressing complex. Proc. Natl Acad. Sci. USA 113, E635–E643 (2016).

    CAS  PubMed  Google Scholar 

  168. Hua, G., Paulen, L. & Chambon, P. GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression. Proc. Natl Acad. Sci. USA 113, E626–E634 (2016).

    CAS  PubMed  Google Scholar 

  169. Tian, S., Poukka, H., Palvimo, J. J. & Janne, O. A. Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem. J. 367, 907–911 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Barry, R. et al. SUMO-mediated regulation of NLRP3 modulates inflammasome activity. Nat. Commun. 9, 3001 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Kroonen, J. S. & Vertegaal, A. C. O. Targeting SUMO signaling to wrestle cancer. Trends Cancer 7, 496–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 6, 38 (2020).

    Article  PubMed  Google Scholar 

  173. Theurillat, I. et al. Extensive SUMO modification of repressive chromatin factors distinguishes pluripotent from somatic cells. Cell Rep. 32, 108146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cossec, J. C. et al. SUMO safeguards somatic and pluripotent cell identities by enforcing distinct chromatin states. Cell Stem Cell 23, 742–757 e748 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Yan, Y. L. et al. DPPA2/4 and SUMO E3 ligase PIAS4 opposingly regulate zygotic transcriptional program. PLoS Biol. 17, e3000324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Borkent, M. et al. A serial shRNA screen for roadblocks to reprogramming identifies the protein modifier SUMO2. Stem Cell Rep. 6, 704–716 (2016).

    Article  CAS  Google Scholar 

  177. Seeler, J. S. & Dejean, A. SUMO and the robustness of cancer. Nat. Rev. Cancer 17, 184–197 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Du, L. et al. Role of SUMO activating enzyme in cancer stem cell maintenance and self-renewal. Nat. Commun. 7, 12326 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Eifler, K. & Vertegaal, A. C. O. SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem. Sci. 40, 779–793 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kessler, J. D. et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335, 348–353 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Yu, B. et al. Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9. Proc. Natl Acad. Sci. USA 112, E1724–E1733 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hoellein, A. et al. Myc-induced SUMOylation is a therapeutic vulnerability for B-cell lymphoma. Blood 124, 2081–2090 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lightcap, E. S. et al. A small-molecule SUMOylation inhibitor activates antitumor immune responses and potentiates immune therapies in preclinical models. Sci. Transl. Med. 13, eaba7791 (2021). Lightcap et al. demonstrate the potential of sumoylation inhibition to reduce tumour growth in mice by activating interferon signalling.

    Article  CAS  PubMed  Google Scholar 

  184. Kumar, S. et al. Targeting pancreatic cancer by TAK-981: a SUMOylation inhibitor that activates the immune system and blocks cancer cell cycle progression in a preclinical model. Gut https://doi.org/10.1136/gutjnl-2021-324834 (2022). Kumar et al. demonstrate the potential of sumoylation inhibition to reduce tumour growth in mice by activating interferon signalling.

    Article  PubMed  Google Scholar 

  185. Filippopoulou, C., Simos, G. & Chachami, G. The role of sumoylation in the response to hypoxia: an overview. Cells https://doi.org/10.3390/cells9112359 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. van Hagen, M., Overmeer, R. M., Abolvardi, S. S. & Vertegaal, A. C. RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated hypoxia-inducible factor-2alpha. Nucleic Acids Res. 38, 1922–1931 (2010).

    Article  PubMed  Google Scholar 

  187. Cui, C. P. et al. SENP1 promotes hypoxia-induced cancer stemness by HIF-1alpha deSUMOylation and SENP1/HIF-1alpha positive feedback loop. Gut 66, 2149–2159 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Shangguan, X. et al. SUMOylation controls the binding of hexokinase 2 to mitochondria and protects against prostate cancer tumorigenesis. Nat. Commun. 12, 1812 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Langston, S. P. et al. Discovery of TAK-981, a first-in-class inhibitor of SUMO-activating enzyme for the treatment of cancer. J. Med. Chem. 64, 2501–2520 (2021). Langston et al. present a highly potent and specific SUMO E1 inhibitor that is currently under investigation in phase I clinical trials.

    Article  CAS  PubMed  Google Scholar 

  190. Correa-Vazquez, J. F. et al. The Sumo proteome of proliferating and neuronal-differentiating cells reveals Utf1 among key Sumo targets involved in neurogenesis. Cell Death Dis. 12, 305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Tirard, M. et al. In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice. Proc. Natl Acad. Sci. USA 109, 21122–21127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ochaba, J. et al. PIAS1 regulates mutant huntingtin accumulation and Huntington’s disease-associated phenotypes in vivo. Neuron 90, 507–520 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Steffan, J. S. et al. SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304, 100–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. Guo, L. et al. A cellular system that degrades misfolded proteins and protects against neurodegeneration. Mol. Cell 55, 15–30 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Marinello, M. et al. SUMOylation by SUMO2 is implicated in the degradation of misfolded ataxin-7 via RNF4 in SCA7 models. Dis. Model Mech. https://doi.org/10.1242/dmm.036145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Bernstock, J. D. et al. SUMOylation in brain ischemia: patterns, targets, and translational implications. J. Cereb. Blood Flow. Metab. 38, 5–16 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Yang, W., Sheng, H., Warner, D. S. & Paschen, W. Transient global cerebral ischemia induces a massive increase in protein sumoylation. J. Cereb. Blood Flow. Metab. 28, 269–279 (2008).

    Article  PubMed  Google Scholar 

  198. Tai, D. J. et al. MeCP2 SUMOylation rescues Mecp2-mutant-induced behavioural deficits in a mouse model of Rett syndrome. Nat. Commun. 7, 10552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gupta, M. K. et al. UBC9-mediated sumoylation favorably impacts cardiac function in compromised hearts. Circ. Res. 118, 1894–1905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Gupta, M. K. et al. Sumo E2 enzyme UBC9 is required for efficient protein quality control in cardiomyocytes. Circ. Res. 115, 721–729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Dehnavi, S. et al. The role of protein SUMOylation in the pathogenesis of atherosclerosis. J. Clin. Med. https://doi.org/10.3390/jcm8111856 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Cai, Z. et al. Ablation of adenosine monophosphate-activated protein kinase alpha1 in vascular smooth muscle cells promotes diet-induced atherosclerotic calcification in vivo. Circ. Res. 119, 422–433 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Bondalapati, S., Eid, E., Mali, S. M., Wolberger, C. & Brik, A. Total chemical synthesis of SUMO-2-Lys63-linked diubiquitin hybrid chains assisted by removable solubilizing tags. Chem. Sci. 8, 4027–4034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mulder, M. P. C. et al. Total chemical synthesis of SUMO and SUMO-based probes for profiling the activity of SUMO-specific proteases. Angew. Chem. Int. Ed. 57, 8958–8962 (2018).

    Article  CAS  Google Scholar 

  205. Weller, C. E. et al. Aromatic thiol-mediated cleavage of N-O bonds enables chemical ubiquitylation of folded proteins. Nat. Commun. 7, 12979 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Vertegaal, A. C. Uncovering ubiquitin and ubiquitin-like signaling networks. Chem. Rev. 111, 7923–7940 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Fukuda, I. et al. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem. Biol. 16, 133–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  208. He, X. et al. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor. Nat. Chem. Biol. 13, 1164–1171 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Biederstadt, A. et al. SUMO pathway inhibition targets an aggressive pancreatic cancer subtype. Gut 69, 1472–1482 (2020).

    Article  PubMed  Google Scholar 

  210. Lv, Z. et al. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat. Commun. 9, 5145 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Benoit, Y. D. et al. Targeting SUMOylation dependency in human cancer stem cells through a unique SAE2 motif revealed by chemical genomics. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2021.04.014 (2021).

    Article  PubMed  Google Scholar 

  212. Tahk, S. et al. Control of specificity and magnitude of NF-kappa B and STAT1-mediated gene activation through PIASy and PIAS1 cooperation. Proc. Natl Acad. Sci. USA 104, 11643–11648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lopez, I. et al. An unanticipated tumor-suppressive role of the SUMO pathway in the intestine unveiled by Ubc9 haploinsufficiency. Oncogene 39, 6692–6703 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Orosa-Puente, B. et al. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science 362, 1407–1410 (2018). This article describes how sumoylation enables plants to regulate branching of roots towards water by regulating the auxin response.

    Article  CAS  PubMed  Google Scholar 

  215. Rytz, T. C. et al. SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress. Plant Cell 30, 1077–1099 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Augustine, R. C., York, S. L., Rytz, T. C. & Vierstra, R. D. Defining the SUMO system in maize: SUMOylation is up-regulated during endosperm development and rapidly induced by stress. Plant. Physiol. 171, 2191–2210 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Crozet, P. et al. SUMOylation represses SnRK1 signaling in Arabidopsis. Plant J. 85, 120–133 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lin, X. L. et al. An Arabidopsis SUMO E3 ligase, SIZ1, negatively regulates photomorphogenesis by promoting COP1 activity. PLoS Genet. 12, e1006016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Cheng, X. et al. Sumoylation of Turnip mosaic virus RNA polymerase promotes viral infection by counteracting the host NPR1-mediated immune response. Plant Cell 29, 508–525 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author apologizes to researchers whose contributions were not cited here owing to space constraints. The author gratefully acknowledges the reviewers for their constructive criticism and F. Trulsson for assisting with Fig. 1b,c. Work in the author’s laboratory is supported by the European Research Council (ERC), the Netherlands Organization for Scientific Research (NWO) and the Dutch Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred C. O. Vertegaal.

Ethics declarations

Competing interests

The author receives funding from Millennium-Takeda for research on the SUMO E1 inhibitor TAK981.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Niels Mailand and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

RAN

A GTPase involved in nucleocytoplasmic transport of proteins and RNAs.

Pluripotency

Ability of stem cells to differentiate into any cell type required to form an organism.

Liquid–liquid phase separation

(LLPS). Biophysical process of tightly interacting proteins enabling the formation of small cellular domains that are separated from their surrounding environment to enhance biochemical reactions.

Pseudogenes

Segments of DNA that resemble a gene but lack critical elements and are therefore not expressed.

ZNF451

E4 enzyme that generates small ubiquitin-like modifier (SUMO) polymers.

E4 elongase

Enzyme that generates small ubiquitin-like modifier (SUMO) polymers.

Nuclear bodies

Membraneless nuclear substructure, assembled by liquid–liquid phase separation.

SP-RING

Siz/PIAS-RING domain present in Siz/PIAS SUMO E3 ligases catalyzing sumoylation of target proteins. This domain is a hybrid between RING and U-box domains as it contains a single zinc coordination site.

Helicase

Motor protein that separates two hybridized nucleic acid strands.

PML nuclear bodies

Dynamic nuclear bodies that contain promyelocytic leukaemia protein (PML) as a marker. These small nuclear substructures are assembled by phase separation.

Top-down mass spectrometry

Mass spectrometry method for analysis of intact proteins.

DNA–protein crosslinks

(DPCs). Crosslinks between DNA and a protein that constitute a replication-blocking lesion.

Topoisomerase 2

(TOP2). Decatenating enzyme that adjusts the topology of DNA by producing a double-strand break in DNA to manage tangles and supercoils, and subsequently religating the broken DNA molecule.

N 6-Adenosine methyltransferase complex

An enzyme that methylates adenosine at the N6 position in eukaryotic mRNAs, forming N6-methyladenosine.

Chromosome congression

Alignment of chromosomes at the spindle equator, at equal distances from both spindle poles.

Retinoic acid

A derivative of vitamin A that regulates cell growth, cell differentiation and organogenesis.

Alternative lengthening of telomeres

(ALT). A process that enables cells to maintain telomere length independently of the enzyme telomerase.

Innate immunity

The first line of defence against invading pathogens, which contrasts with the adaptive immune system, which is the second line of defence.

Dendritic cells

Cells that present antigens to the adaptive immune system to stimulate acquired immunity.

Cancer stem cells

A subpopulation of cancer cells which are capable of self-renewal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vertegaal, A.C.O. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol 23, 715–731 (2022). https://doi.org/10.1038/s41580-022-00500-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00500-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing