Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems

Abstract

RNA silencing is a well-established antiviral immunity system in plants, in which small RNAs guide Argonaute proteins to targets in viral RNA or DNA, resulting in virus repression. Virus-encoded suppressors of silencing counteract this defence system. In this Review, we discuss recent findings about antiviral RNA silencing, including the movement of RNA through plasmodesmata and the differentiation between plant self and viral RNAs. We also discuss the emerging role of RNA silencing in plant immunity against non-viral pathogens. This immunity is mediated by transkingdom movement of RNA into and out of the infected plant cells in vesicles or as extracellular nucleoproteins and, like antiviral immunity, is influenced by the silencing suppressors encoded in the pathogens’ genomes. Another effect of RNA silencing on general immunity involves host-encoded small RNAs, including microRNAs, that regulate NOD-like receptors and defence signalling pathways in the innate immunity system of plants. These RNA silencing pathways form a network of processes with both positive and negative effects on the immune systems of plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The various antiviral RNA silencing pathways.
Fig. 2: Modes of action of viral suppressors of RNA silencing.
Fig. 3: Strategies for attaining RNA silencing specificity towards viral RNA.
Fig. 4: Small RNA movement in symbiotic (pathogenic or mutualistic) interactions.
Fig. 5: Layers of defence in plants.
Fig. 6: RNA silencing integrates different layers of the plant immune system.

Similar content being viewed by others

References

  1. Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ding, S. W. RNA-based antiviral immunity. Nat. Rev. Immunol. 10, 632–644 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Csorba, T., Kontra, L. & Burgyán, J. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480, 85–103 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Valli, A. A., Gallo, A., Rodamilans, B., López-Moya, J. J. & García, J. A. The HCPro from the Potyviridae family: an enviable multitasking helper component that every virus would like to have. Mol. Plant. Pathol. 19, 744–763 (2018).

    Article  PubMed  Google Scholar 

  5. Gaffar, F. Y. & Koch, A. Catch me if you can! RNA silencing-based improvement of antiviral plant immunity. Viruses 11, 673 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  6. Maillard, P. V., Veen, A. G., van der, Poirier, E. Z. & e.Sousa, C. R. Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J. 38, e100941 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonning, B. C. & Saleh, M. C. The interplay between viruses and RNAi pathways in insects. Annu. Rev. Entomol. 66, 61–79 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, C. H. & Carroll, B. J. Evolution and diversification of small RNA pathways in flowering plants. Plant. Cell Physiol. 59, 2169–2187 (2018).

    CAS  PubMed  Google Scholar 

  9. Borges, F. & Martienssen, R. A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16, 727–741 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anderson, J. P. et al. Plants versus pathogens: an evolutionary arms race. Funct. plant. Biol. 37, 499 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cui, J., You, C. & Chen, X. The evolution of microRNAs in plants. Curr. Opin. Plant. Biol. 35, 61–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Margis, R. et al. The evolution and diversification of Dicers in plants. Febs Lett. 580, 2442–2450 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, H. et al. Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature 581, 89–93 (2020). This study shows that 22-nucleotide sRNAs trigger amplification of silencing, and provides evidence for an effect on translation regulation.

    Article  CAS  PubMed  Google Scholar 

  14. Cuperus, J. T. et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat. Struct. Mol. Biol. 17, 997–1003 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, H.-M. et al. 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc. Natl Acad. Sci. USA 107, 15269–15274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. MacLean, D. et al. Evidence for large complex networks of plant short silencing RNAs. PLoS ONE 5, e9901 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Iwakawa, H. O. et al. Ribosome stalling caused by the Argonaute-microRNA-SGS3 complex regulates the production of secondary siRNAs in plants. Cell Rep. 35, 109300 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Z. et al. A novel DCL2-dependent miRNA pathway in tomato affects susceptibility to RNA viruses. Genes Dev. 32, 1155–1160 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, T. et al. Tomato DCL2b is required for the biosynthesis of 22-nt small RNAs, the resulting secondary siRNAs, and the host defense against ToMV. Hortic. Res. 5, 62 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parent, J. S., Bouteiller, N., Elmayan, T. & Vaucheret, H. Respective contributions of Arabidopsis DCL2 and DCL4 to RNA silencing. Plant. J. 81, 223–232 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Bouché, N., Lauressergues, D., Gasciolli, V. & Vaucheret, H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J. 25, 3347–3356 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Blevins, T. et al. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 34, 6233–6246 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carbonell, A. & Carrington, J. C. Antiviral roles of plant ARGONAUTES. Curr. Opin. Plant. Biol. 27, 111–117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Willmann, M. R. et al. The functions of RNA-dependent RNA polymerases in Arabidopsis. Arabidopsis Book. 9, e0146 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Coursey, T., Regedanz, E. & Bisaro, D. M. Arabidopsis RNA polymerase V mediates enhanced compaction and silencing of geminivirus and transposon chromatin during host recovery from infection. J. Virol. 92, 1–18 (2018).

    Article  Google Scholar 

  26. Marí-Ordóñez, A. et al. Reconstructing de novo silencing of an active plant retrotransposon. Nat. Genet. 45, 1029–1039 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. Huang, L. F. et al. An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat. Struct. Mol. Biol. 16, 91–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Ream, T. S. et al. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol. Cell 33, 192–203 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Ye, R. et al. A Dicer-independent route for biogenesis of siRNAs that direct DNA methylation in Arabidopsis. Mol. Cell 61, 222–235 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, D.-L. et al. Dicer-independent RNA-directed DNA methylation in Arabidopsis. Cell Res. 26, 66–82 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Matzke, M. A. & Mosher, R. A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15, 394–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Johnson, L. M. et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507, 124–128 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, Z. W. et al. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. PLoS Genet. 10, e1003948 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Johnson, L. M., Law, J. A., Khattar, A., Henderson, I. R. & Jacobsen, S. E. SRA-domain proteins required for DRM2-mediated de novo DNA methylation. PLoS Genet. 4, e1000280 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ding, S.-W. & Voinnet, O. Antiviral immunity directed by small RNAs. Cell 130, 413–426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, L. et al. A virus-encoded protein suppresses methylation of the viral genome through its interaction with ago4 in the cajal body. eLife 9, e55542 (2020). Previous evidence implicated RdDM in virus defence and Cajal bodies in RdDM. This article links the two through an interaction of a VSR (V2 of tomato yellow leaf curl virus) with AGO4 in the Cajal body.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Raja, P., Sanville, B. C., Buchmann, R. C. & Bisaro, D. M. Viral genome methylation as an epigenetic defense against geminiviruses. J. Virol. 82, 8997–9007 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rosas-Diaz, T. et al. A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proc. Natl Acad. Sci. USA 115, 1388–1393 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garnelo Gόmez, B. et al. The viral silencing suppressor P19 interacts with the receptor-like kinases BAM1 and BAM2 and suppresses the cell-to-cell movement of RNA silencing independently of its ability to bind sRNA. N. Phytol. 229, 1840–1843 (2021).

    Article  CAS  Google Scholar 

  40. Anandalakshmi, R. et al. A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290, 142–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Li, F., Huang, C., Li, Z. & Zhou, X. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog. 10, 11–14 (2014).

    Article  CAS  Google Scholar 

  42. Yong Chung, H., Lacatus, G. & Sunter, G. Geminivirus AL2 protein induces expression of, and interacts with, a calmodulin-like gene, an endogenous regulator of gene silencing. Virology 460–461, 108–118 (2014).

    Article  PubMed  CAS  Google Scholar 

  43. Shamandi, N. et al. Plants encode a general siRNA suppressor that is induced and suppressed by viruses. PLoS Biol. 13, e1002326 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liu, L. & Chen, X. RNA quality control as a key to suppressing RNA silencing of endogenous genes in plants. Mol. Plant. 9, 826–836 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Heinlein, M. Plant virus replication and movement. Virology 479–480, 657–671 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Bologna, N. G. et al. Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Mol. Cell 69, 709–719 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Ye, R. et al. Cytoplasmic assembly and selective nuclear import of Arabidopsis ARGONAUTE4/siRNA complexes. Mol. Cell 46, 859–870 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Fang, Y. & Spector, D. L. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17, 818–823 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brosseau, C. & Moffett, P. Functional and genetic analysis identify a role for Arabidopsis ARGONAUTE5 in antiviral RNA silencing. Plant. Cell 27, 1742–1754 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng, X., Fahlgren, N., Abbasi, A., Berry, J. C. & Carrington, J. C. Antiviral ARGONAUTEs against turnip crinkle virus revealed by image-based trait analysis. Plant. Physiol. 180, 1418–1435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M. & Dougherty, W. G. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant. Cell 5, 1749–1759 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bond, D. M. & Baulcombe, D. C. Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 112, 917–922 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sigman, M. J. et al. An siRNA-guided Argonaute protein directs RNA polymerase V to initiate DNA methylation. Nat. Plants 7, 1461–1474 (2021). Initial establishment of DNA methylation is the least understood stage in RdDM. This article provides important evidence that an AGO protein binds to the target DNA and recruits Pol V.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCue, A. D. et al. ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. EMBO J. 33, 2737–2881 (2014).

    CAS  Google Scholar 

  55. Melnyk, C. W., Molnar, A. & Baulcombe, D. C. Intercellular and systemic movement of RNA silencing signals. EMBO J. 30, 3553–3563 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwach, F., Vaistij, F. E., Jones, L. & Baulcombe, D. C. An RNA-dependent RNA-polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant. Physiol. 138, 1842–1852 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Havelda, Z., Hornyik, C., Crescenzi, A. & Burgyan, J. In situ characterization of Cymbidium Ringspot Tombusvirus infection-induced posttranscriptional gene silencing in Nicotiana benthamiana. J. Virol. 77, 6082–6086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kørner, C. J. et al. Crosstalk between PTGS and TGS pathways in natural antiviral immunity and disease recovery. Nat. Plants 4, 157–164 (2018).

    Article  PubMed  CAS  Google Scholar 

  59. Devers, E. A. et al. Movement and differential consumption of short interfering RNA duplexes underlie mobile RNA interference. Nat. Plants 6, 789–799 (2020). This article provides clear evidence that mobile silencing is mediated by AGO-free sRNA duplexes that become bound by AGO proteins in the recipient cell.

    Article  CAS  PubMed  Google Scholar 

  60. Sena, G., Jung, J. W. & Benfey, P. N. A broad competence to respond to SHORT ROOT revealed by tissue-specific ectopic expression. Development 131, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Wafula, E. et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553, 82–85 (2018).

    Article  PubMed  CAS  Google Scholar 

  62. Liu, L. & Chen, X. Intercellular and systemic trafficking of RNAs in plants. Nat. Plants 4, 869–878 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Voinnet, O., Vain, P., Angell, S. & Baulcombe, D. C. Systemic spread of sequence-specific transgene RNA degradation is initiated by localised introduction of ectopic promoterless DNA. Cell 95, 177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Vatén, A. et al. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21, 1144–1155 (2011).

    Article  PubMed  CAS  Google Scholar 

  65. Liu, J., Zhang, L. & Yan, D. Plasmodesmata-involved battle against pathogens and potential strategies for strengthening hosts. Front. Plant. Sci. 12, 644870 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pyott, D. E. & Molnar, A. Going mobile: non-cell-autonomous small RNAs shape the genetic landscape of plants. Plant. Biotechnol. J. 13, 306–318 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Smith, N. A., Eamens, A. L. & Wang, M. B. Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog. 7, 1–9 (2011).

    Article  CAS  Google Scholar 

  68. Shimura, H. et al. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog. 7, e1002021 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Adkar-Purushothama, C. R. et al. Small RNA derived from the virulence modulating region of the potato spindle tuber viroid silences callose synthase genes of tomato plants. Plant. Cell 27, 2178–2194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cao, M. et al. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 14613–14618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pitzalis, N. et al. Turnip mosaic virus in oilseed rape activates networks of sRNA-mediated interactions between viral and host genomes. Commun. Biol. 3, 1–16 (2020).

    Article  CAS  Google Scholar 

  72. Fei, Y., Nyikó, T. & Molnar, A. Non-perfectly matching small RNAs can induce stable and heritable epigenetic modifications and can be used as molecular markers to trace the origin and fate of silencing RNAs. Nucleic Acids Res. 49, 1900–1913 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang, Y. et al. Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms. PLoS Pathog. 15, 1–22 (2019).

    Article  Google Scholar 

  74. Döring, T. F. & Chittka, L. Visual ecology of aphids — a critical review on the role of colours in host finding. Arthropod Plant Interact. 1, 3–16 (2007).

    Article  Google Scholar 

  75. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Banerjee, S. et al. RNA interference: a novel source of resistance to combat plant parasitic nematodes. Front. Plant. Sci. 8, 1–8 (2017).

    Article  Google Scholar 

  77. Hudzik, C., Hou, Y., Ma, W. & Axtell, M. J. Exchange of small regulatory RNAs between plants and their pests. Plant. Physiol. 182, 51–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Nowara, D. et al. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant. Cell 22, 3130–3141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pliego, C. et al. Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. Mol. Plant Microbe Interact. 26, 633–642 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, H. et al. Functional characterization of calcineurin homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici using a host-induced RNAi system. PLoS ONE 7, 1–8 (2012).

    CAS  Google Scholar 

  81. Koch, A. et al. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species. Proc. Natl Acad. Sci. USA 110, 19324–19329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Panwar, V., McCallum, B. & Bakkeren, G. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Plant Mol. Biol. 81, 595–608 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Ghag, S. B., Shekhawat, U. K. S. & Ganapathi, T. R. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol. J. 12, 541–553 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Andrade, C. M., Tinoco, M. L. P., Rieth, A. F., Maia, F. C. O. & Aragão, F. J. L. Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Pathol. 65, 626–632 (2016).

    Article  CAS  Google Scholar 

  85. Wang, M. et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2, 16151 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, W. et al. Host-induced silencing of Fusarium culmorum genes protects wheat from infection. J. Exp. Bot. 67, 4979–4991 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Govindarajulu, M., Epstein, L., Wroblewski, T. & Michelmore, R. W. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce. Plant Biotechnol. J. 13, 875–883 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Jahan, S. N. et al. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. J. Exp. Bot. 25, 265–288 (2015).

    Google Scholar 

  89. Hou, Y. et al. A phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe 25, 153–165 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Helber, N. et al. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant. Cell 23, 3812–3823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Singla-Rastogi, M. et al. Plant small RNA species direct gene silencing in pathogenic bacteria as well as disease protection. Preprint at bioRxiv https://doi.org/10.1101/863902 (2019).

    Article  Google Scholar 

  92. He, B. et al. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles. Nat. Plants 7, 342–352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cai, Q. et al. Plants send small RNAs in extracellular vesicles to silence virulence genes. Science 360, 1126–1129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, T. et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat. Plants 2, 1–6 (2016).

    Article  Google Scholar 

  95. Navarro, L., Jay, F., Nomura, K., He, S. Y. & Voinnet, O. Suppression of the microRNA pathway by bacterial effector proteins. Science 321, 964–967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vetukuri, R. R., Whisson, S. C. & Grenville-Briggs, L. J. Phytophthora infestans effector Pi14054 is a novel candidate suppressor of host silencing mechanisms. Eur. J. Plant. Pathol. 149, 771–777 (2017).

    Article  CAS  Google Scholar 

  97. Qiao, Y. et al. Oomycete pathogens encode RNA silencing suppressors. Nat. Genet. 45, 1–6 (2013).

    Article  CAS  Google Scholar 

  98. Qiao, Y., Shi, J., Zhai, Y., Hou, Y. & Ma, W. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. Proc. Natl Acad. Sci. USA 15, 5850–5855 (2015).

    Article  CAS  Google Scholar 

  99. Xiong, Q. et al. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana. Mol. Plant-Microbe Interact. 27, 1379–1389 (2014).

    Article  PubMed  CAS  Google Scholar 

  100. Yin, C. et al. A novel fungal effector from Puccinia graminis suppressing RNA silencing and plant defense responses. N. Phytol. 222, 1561–1572 (2019).

    Article  CAS  Google Scholar 

  101. Weiberg, A. et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342, 118–123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, B. et al. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. N. Phytol. 215, 338–350 (2017).

    Article  CAS  Google Scholar 

  103. Jian, J. & Liang, X. One small RNA of Fusarium graminearum targets and silences CEBiP gene in common wheat. Microorganisms 7, 1–12 (2019).

    Article  CAS  Google Scholar 

  104. Dunker, F. et al. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. Elife 9, e56096 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hu, X., Persson Hodén, K., Liao, Z., Åsman, A. & Dixelius, C. Phytophthora infestans Ago1-associated miRNA promotes potato late blight disease. N. Phytol. 233, 443–457 (2022).

    Article  CAS  Google Scholar 

  106. Baldrich, P. et al. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10- to 17-nucleotide “tiny” RNAs. Plant Cell 31, 315–324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ren, B., Wang, X., Duan, J. & Ma, J. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365, 919–922 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Wong-Bajracharya, J. et al. The ectomycorrhizal fungus Pisolithus microcarpus encodes a microRNA involved in cross-kingdom gene silencing during symbiosis. Proc. Natl Acad. Sci. USA 119, e2103527119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cai, Q. et al. Message in a bubble: shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles. Annu. Rev. Plant Biol. 72, 497–524 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rutter, B. D. & Innes, R. W. Growing pains: addressing the pitfalls of plant extracellular vesicle research. N. Phytol. 228, 1505–1510 (2020).

    Article  Google Scholar 

  111. Karimi, H. Z. et al. Arabidopsis apoplastic fluid contains sRNA- and circular RNA-protein complexes that are located outside extracellular vesicles. Plant. Cell https://doi.org/10.1093/plcell/koac043 (2022). This article provides controversial findings leading to the conclusion that transkingdom RNA may be transported outside extracellular vesicles. This extracellular RNA is enriched in N6-methyladenine and associated with GRP7 and AGO2.

    Article  Google Scholar 

  112. Roth, R. et al. Arbuscular cell invasion coincides with extracellular vesicles and membrane tubules. Nat. Plants 5, 204–211 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Ludwig, N. et al. A cell surface-exposed protein complex with an essential virulence function in Ustilago maydis. Nat. Microbiol. 6, 722–730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Laurie, J. D., Linning, R. & Bakkeren, G. Hallmarks of RNA silencing are found in the smut fungus Ustilago hordei but not in its close relative Ustilago maydis. Curr. Genet. 53, 49–58 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Taliansky, M. et al. RNA-based technologies for engineering plant virus resistance. Plants 10, 1–19 (2021).

    Article  CAS  Google Scholar 

  116. Qiao, L. et al. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol. J. 19, 1756–1768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Johnson, N. R., de Pamphilis, C. W. & Axtell, M. J. Compensatory sequence variation between trans-species small RNAs and their target sites. eLife 8, e49750 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rose, L. E., Overdijk, E. J. R. & van Damme, M. Small RNA molecules and their role in plant disease. Eur. J. Plant Pathol. 153, 115–128 (2019).

    Article  CAS  Google Scholar 

  119. Dora, S., Terrett, O. M. & Sánchez-Rodríguez, C. Plant–microbe interactions in the apoplast: communication at the plant cell wall. Plant Cell https://doi.org/10.1093/plcell/koac040 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Serrano, M., Coluccia, F., Torres, M., L’Haridon, F. & Métraux, J. P. The cuticle and plant defense to pathogens. Front. Plant Sci. 5, 1–8 (2014).

    Article  Google Scholar 

  121. Bacete, L., Mélida, H., Miedes, E. & Molina, A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 93, 614–636 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Osbourn, A. E. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8, 1821–1831 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kourelis, J. & Van Der Hoorn, R. A. L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30, 285–299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bentham, A. R. et al. A molecular roadmap to the plant immune system. J. Biol. Chem. 295, 14916–14935 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yuan, M. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105–109 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ngou, B. P. M., Ahn, H. K., Ding, P. & Jones, J. D. G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110–115 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Tian, H. et al. Activation of TIR signalling boosts pattern-triggered immunity. Nature 598, 500–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Hou, S., Liu, Z., Shen, H. & Wu, D. Damage-associated molecular pattern-triggered immunity in plants. Front. Plant Sci. 10, 646 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sacristán, S. & García-Arenal, F. The evolution of virulence and pathogenicity in plant pathogen populations. Mol. Plant Pathol. 9, 369–384 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhou, T. et al. Domains of the cucumber mosaic virus 2b silencing suppressor protein affecting inhibition of salicylic acid-induced resistance and priming of salicylic acid accumulation during infection. J. Gen. Virol. 95, 1408–1413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ji, L. H. & Ding, S. W. The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol. Plant Microbe Interact. 14, 715–724 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Love, A. J. et al. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS ONE 7, e47535 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Glick, E. et al. Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc. Natl Acad. Sci. USA 105, 157 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Wang, Y. et al. A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host Microbe 29, 1393–1406 (2021). This article provides a clear illustration of how VSRs mediate connections between RNA silencing and other defence systems.

    Article  CAS  PubMed  Google Scholar 

  135. Shan, L. et al. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4, 17–27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. He, J. et al. Structural analysis of Phytophthora suppressor of RNA silencing 2 (PSR2) reveals a conserved modular fold contributing to virulence. Proc. Natl Acad. Sci. USA 116, 8054–8059 (2019). This article provides structural information about a suppressor of silencing from the late blight Phytophthora oomycete.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wu, D. et al. Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Res. 27, 402–415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ziebell, H. et al. Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Sci. Rep. 1, 1–7 (2011).

    Article  CAS  Google Scholar 

  139. Malcuit, I. et al. The 25-kDa movement protein of PVX elicits Nb-mediated hypersensitive cell death in potato. Mol. Plant Microbe Interact. 12, 536–543 (1999).

    Article  CAS  Google Scholar 

  140. Voinnet, O., Lederer, C. & Baulcombe, D. C. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103, 157–167 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. de Ronde, D. et al. Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. Mol. Plant Pathol. 15, 185–195 (2014).

    Article  PubMed  CAS  Google Scholar 

  142. Ren, T., Qu, F. & Morris, T. J. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12, 1917–1926 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhai, J. et al. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 25, 2540–2553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shivaprasad, P. V. et al. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24, 859–874 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, J. et al. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLoS Genet. 10, e1004755 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Li, F. et al. MicroRNA regulation of plant innate immune receptors. Proc. Natl Acad. Sci. USA 109, 1790–1795 (2011).

    Article  Google Scholar 

  147. Liu, Y., Teng, C., Xia, R. & Meyers, B. C. PhasiRNAs in plants: their biogenesis, genic sources, and roles in stress responses, development, and reproduction. Plant Cell 32, 3059–3080 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Canto-Pastor, A. et al. Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proc. Natl Acad. Sci. USA 116, 2755–2760 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Deng, Y. et al. A role for small RNA in regulating innate immunity during plant growth. PLoS Pathog. 14, e1006756 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Cui, C. et al. A Brassica miRNA regulates plant growth and immunity through distinct modes of action. Mol. Plant 13, 231–245 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Vaucheret, H., Mallory, A. C. & Bartel, D. P. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol. Cell 22, 129–136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xie, Z., Kasschau, K. D. & Carrington, J. C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol. 13, 784–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Harvey, J. J. W. et al. An antiviral defense role of AGO2 in plants. PLoS ONE 6, e14639 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jiang, N., Meng, J., Cui, J., Sun, G. & Luan, Y. Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans. Hortic. Res. 5, 9 (2018). Canto-Pastor et al. (2019) and Jiang et al. (2018) illustrate how miRNA-mediated targeting of NLRs leads to suppression of basal resistance in uninfected plants, and the potential of pathogen-encoded suppressors of silencing to enhance immunity in infected plants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Boccara, M. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog. 11, e1004814 (2014).

    Article  CAS  Google Scholar 

  156. Nakahara, K. S. et al. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc. Natl Acad. Sci. USA 109, 10113–10118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Navarro, L. et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Katiyar-Agarwal, S. et al. A pathogen-inducible endogenous siRNA in plant immunity. Proc. Natl Acad. Sci. USA 103, 18002–18007 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Campo, S. et al. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. N. Phytol. 199, 212–227 (2013).

    Article  CAS  Google Scholar 

  160. Zhang, X. et al. Arabidopsis argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell 42, 356–366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Li, Y. et al. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol. 152, 2222–2231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yang, Z. et al. Jasmonate signaling enhances RNA silencing and antiviral defense in rice. Cell Host Microbe 28, 89–103 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Wu, J. et al. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife 4, e05733 (2015). This article provides a nice illustration of a complex network of defence systems in plants: RNA silencing is an important effector mechanism and integrator of the different systems.

    Article  PubMed Central  CAS  Google Scholar 

  164. Dowen, R. H. et al. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl Acad. Sci. USA 109, E2183–E2191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yu, A. et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc. Natl Acad. Sci. USA 110, 2389–2394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Akimoto, K. et al. Epigenetic inheritance in rice plants. Ann. Bot. 100, 205–217 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Corrêa, R. L. et al. Viral fitness determines the magnitude of transcriptomic and epigenomic reprograming of defense responses in plants. Mol. Biol. Evol. 37, 1866–1881 (2020).

    Article  PubMed  CAS  Google Scholar 

  168. Jaskiewicz, M., Conrath, U. & Peterhälnsel, C. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 12, 50–55 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Schillheim, B. et al. Sulforaphane modifies histone H3, unpacks chromatin, and primes defense. Plant Physiol. 176, 2395–2405 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Jin, H. et al. Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis. Nucleic Acids Res. 46, 11712–11725 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Halter, T. et al. The Arabidopsis active demethylase ros1 cis-regulates defense genes by erasing DNA methylation at promoter-regulatory regions. eLife 10, e62994 (2021). This article provides new findings showing the importance of active DNA demethylation in PTI and basal resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. López Sánchez, A., Stassen, J. H. M., Furci, L., Smith, L. M. & Ton, J. The role of DNA (de)methylation in immune responsiveness of Arabidopsis. Plant J. 88, 361–374 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Geng, S. et al. DNA methylation dynamics during the interaction of wheat progenitor Aegilops tauschii with the obligate biotrophic fungus Blumeria graminis f. sp. tritici. N. Phytol. 221, 1023–1035 (2019).

    Article  CAS  Google Scholar 

  174. Satgé, C. et al. Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula. Nat. Plants 2, 1–10 (2016).

    Article  CAS  Google Scholar 

  175. Conrath, U., Beckers, G. J. M., Langenbach, C. J. G. & Jaskiewicz, M. R. Priming for enhanced defense. Annu. Rev. Phytopathol. 53, 97–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V. & Ton, J. Next-generation systemic acquired resistance. Plant Physiol. 158, 844–853 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Slaughter, A. et al. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 158, 835–843 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Ando, S. et al. Priming for enhanced ARGONAUTE2 activation accompanies induced resistance to cucumber mosaic virus in Arabidopsis thaliana. Mol. Plant Pathol. 22, 19–30 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Beckers, G. J. M. et al. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21, 944–953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Pick, T., Jaskiewicz, M., Peterhänsel, C. & Conrath, U. Heat shock factor HsfB1 primes gene transcription and systemic acquired resistance in Arabidopsis. Plant Physiol. 159, 52–55 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Baum, S. et al. Isolation of open chromatin identifies regulators of systemic acquired Resistance. Plant Physiol. 181, 817–833 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Furci, L. et al. Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. eLife 8, e40655 (2019). Not directly related to RNA silencing, this study illustrates priming of immunity by prior exposure to a pathogen.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Voinnet, O. RNA silencing as a plant immune system against viruses. Trends Genet. 17, 449–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  184. Tamborski, J. & Krasileva, K. V. Evolution of plant NLRs: from natural history to precise modifications. Annu. Rev. Plant Biol. 71, 355–378 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Zhao, M., Meyers, B. C., Cai, C., Xu, W. & Ma, J. Evolutionary patterns and coevolutionary consequences of MIRNA genes and microRNA targets triggered by multiple mechanisms of genomic duplications in soybean. Plant Cell 27, 546–562 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. González, V. M. V. M., Müller, S., Baulcombe, D. C. & Puigdomènech, P. Evolution of NBS-LRR gene copies among dicot plants and its regulation by members of the miR482/2118 superfamily of miRNAs. Mol. Plant. 8, 329–331 (2015).

    Article  PubMed  CAS  Google Scholar 

  187. Deng, Y. et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962–965 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Karasov, T. L., Chae, E., Herman, J. J. & Bergelson, J. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29, 666–680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kover, P. X. & Schaal, B. A. Genetic variation for disease resistance and tolerance among Arabidopsis thaliana accessions. Proc. Natl Acad. Sci. USA 99, 11270–11274 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Poland, J. A., Balint-Kurti, P. J., Wisser, R. J., Pratt, R. C. & Nelson, R. J. Shades of gray: the world of quantitative disease resistance. Trends Plant Sci. 14, 21–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Mi, S. J. et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Borsani, O., Zhu, J. K., Verslues, P. E., Sunkar, R. & Zhu, J. K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123, 1279–1291 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Allen, E., Xie, Z., Gustafson, A. M. & Carrington, J. C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Borges, F. et al. Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. Nat. Genet. 50, 186–192 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bond, D. M. & Baulcombe, D. C. Small RNAs and heritable epigenetic variation in plants. Trends Cell Biol. 24, 100–107 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Yang, X. et al. Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during Geminivirus-Betasatellite infection. PLoS Pathog. 7, e1002329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hao, L., Wang, H., Sunter, G. & Bisaro, D. M. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. Plant Cell 15, 1034–1048 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Bayne, E. H., Rakitina, D. V., Morozov, S. Y. & Baulcombe, D. C. Cell-to-cell movement of potato Potexvirus X is dependent on suppression of RNA silencing. Plant. J. 44, 471–482 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Chiu, M. H., Chen, I. H., Baulcombe, D. C. & Tsai, C. H. The silencing suppressor P25 of potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. Mol. Plant. Pathol. 11, 641–649 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ research has been supported by European Research Council Advanced Investigator grant ERC-2013-AdG 340642 (Transgressive Inheritance in Plant Breeding and Evolution (TRIBE)), the Royal Society (RP170001), the Balzan Foundation, the Biological Sciences and Biotechnology Research Council (BB/R018529/1) and the Broodbank Fund. S.L.-G. is a Senior Broodbank Research Fellow. D.C.B. is the Royal Society Edward Penley Abraham Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to David C. Baulcombe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Wenbo Ma, Hervé Vaucheret and Arne Weiberg for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Virulence

A quantitative measure of the degree of pathogenicity; it corresponds with the extent to which the pathogen accumulates in the infected host. There is often a correlation between virulence and the severity of disease.

DNA viruses

Viruses affecting plants that have DNA genomes. They are divided in two groups: geminiviruses, whose genome is replicated as DNA, and pararetroviruses, in which replication involves an RNA phase and is performed by reverse transcriptase.

Retrotransposons

Virus-like transposable elements, whose replication involves reverse transcriptase. Retrotransposons are integrated into the plant nuclear genome but have extrachromosomal phases and, unlike retroviruses, do not have an envelope gene.

Plasmodesmata

Membrane channels in which the plasma membranes of adjacent plant cells are fused. These structures span the cell wall and are the conduit for movement between cells of metabolites, macromolecules, viruses and viroids.

Replication intermediates of RNA viruses

Double-stranded RNA molecules, usually of transient existence, formed by a virus-encoded RNA-dependent RNA polymerase as part of the virus replication process.

Satellite RNA

Coding or non-coding RNA that is replicated by RNA polymerases of the helper viruses and that is transmitted between host organisms as part of the helper virus particles. It is not part of the virus genome and has a distinct nucleotide sequence identity.

Autophagy

The processes by which cells degrade and recycle their components, including proteolytic mechanisms that are specifically targeted.

Mycorrhizal

Refers to mutualistic symbioses in which fungi colonize the roots of plants. The plant provides photosynthate-derived nutrients for the fungus and the fungus mobilizes and transports mineral nutrients to the plant.

Target mimic RNA

RNA designed to bind and sequester microRNAs. A target mimic typically has base-pairing mismatches with the microRNA, which prevent Argonaute (AGO) from cleaving the target mimic, thereby permanently inactivating the microRNA.

NOD-like receptors

(NLRs). Cellular receptors of pathogen-derived factors. Direct or indirect interaction of these factors with NLRs results in effector-triggered immunity, most likely by stimulating components of the pathogen-associated molecular pattern-triggered immunity pathway.

Plasmalemma

The lipid-bilayer membrane bounding a cell, inside the cell wall.

Membrane tubules

Paramural tubules of fungal origin associated with mutualistic and pathogenic fungal symbionts of plants. They may be associated with molecular exchanges between the two interacting organisms.

P-loop motif

The phosphate-binding loop or Walker A motif is common in nucleoside triphosphate-binding proteins. It is rich in Gly, with conserved Lys and Ser or Thr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Gomollon, S., Baulcombe, D.C. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Biol 23, 645–662 (2022). https://doi.org/10.1038/s41580-022-00496-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00496-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing