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Single- cell technologies have substantially advanced our 
understanding of heterogeneity and functional diversity 
among individual cells, and bring enormous opportunities 
for biology and precision medicine, especially to study cells 
undergoing rapid differentiation (for example, during drug 
resistance and tumour relapse1), evolving into diverse sub-
populations (for example, immune cells2) or responding 
to external perturbances (for example, during COVID-19  
pathogenesis3). Concurrent with single- cell techno-
logies, deep learning (DL) — a breakthrough in artificial  
intelligence — redefines our capabilities to analyse large-  
scale data by using sophisticated architectures of artificial 
neural networks4. The power of DL has recently been demon-
strated in AlphaFold2’s prediction of protein structures,  
and use of DL is now feasible for single- cell data analyses.

Specifically, autoencoders (AE) have been widely 
employed to capture features and improve signal- to- 
 noise ratios for accurate cell- type clustering, batch 
correction and gene imputation in single- cell studies. 
SAUCIE5 applied AE to a dataset consisting of 11 million 
T cells from 180 dengue patients, identified cluster- based 
signatures of acute dengue infection and stratified 
immune response to dengue. Meanwhile, graph neural 
networks (GNN) in combination with attention mecha-
nisms have made DL models more effective and explain-
able. scGNN is the first GNN model for scRNA- seq 
data to simultaneously perform gene imputation and 
cell clustering; scGNN identified ten neuron clusters 
and cell- type- specific markers in Alzheimer disease6. 
SpaGCN is a GNN model to identify tissue architecture 
from spatially resolved transcriptomics data; SpaGCN 
separated cancer and non- cancer regions of human 
primary pancreatic tumours and identified two marker 
genes distinguishing the cancer region7.

Best practices in developing deep learning  
for single- cell studies
The highly heterogeneous nature of single- cell data can 
be analysed across a wide range of research topics by 
generalizing DL model design and optimization in a 
hypothesis- free manner. External biological knowledge  

or data (for example, phenotypic information or bulk 
omics data) can be incorporated into the model to 
improve predictions as constraints. Single- cell data often 
contain a limited number of benchmark labels and anno-
tations, which could result in model overfitting and 
poor performance. Fortunately, in many cases emerging 
semi- supervised learning (combining a small amount of 
labelled data with a large amount of unlabelled data) and 
self- supervised learning (constructing data representation 
of the unlabelled data by predicting any part or property 
from other parts or properties of the data) can often achieve 
equally insightful results without requiring the extra 
labels. Furthermore, to improve the trustworthiness of DL 
models, especially model generalization in different experi-
mental platforms and conditions, and robustness against 
noises in the data, it is desirable for developers to provide 
the scope of the methodological uses and demonstrate for 
what kinds of data or in what situations DL will work well 
or poorly. In addition, providing some confidence assess-
ments (for example, P- values or z- scores) of prediction  
results can guide users to make biological inferences.

With a wide range of built- in capabilities, a compos-
able DL pipeline can help automate complex and repetitive 
tasks involved in model development. This composability 
allows the appropriate resources to be gathered to ensure 
a tailored system under software control. Composable 
DL can be used by developers to configure easy- to- use 
and white- box models that address various single- cell 
research topics in a customizable fashion without too 
many challenges. Furthermore, it is a good practice to 
provide well- structured source code, hands- on tuto rials 
and clear documentation of protocols, including the 
encompassing format, processing steps, model training, 
code versioning, tutorials to ensure reproducibility, and  
parameter tuning for other developers and general users.

Best practices in applying deep learning  
in single- cell biology
DL users usually find it challenging to decide when and 
how to select DL tools for single- cell data analysis based 
on usability and accuracy. In contrast to Seurat, which 
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has been widely used in single- cell data analysis, DL may 
uncover more intrinsic relations and mechanisms. The 
selection of the best- fit DL model is typically driven by 
a specific goal, for example, whether it is for cell cluster-
ing or cell classification, and whether feature order 
matters or the topological relationship among different 
modalities matters. Other considerations include data 
structure (for example, tabular, sequential, time series or 
graph- structured), data size, and computational expenses 
(multi- task and multimodal learning). Supplementary 
Table 1 provides information and guidelines on main 
functions, core models, and biological interpretations 
of representative DL tools. As DL models for single- cell 
data analysis have not matured, it may be valuable to run 
multiple tools to see how they compare. Furthermore, 
comprehensive single- cell DL benchmarking papers help 
users choose the best model8,9.

Limitations of deep learning in single- cell  
data analysis
Although the existing DL tools have demonstrated 
their capacities in analysing single- cell data in various 
settings, they have not been extensively used by inde-
pendent research groups in their biological studies. 
Supplementary Table 1 only includes case studies of the 
original methodology papers. Although it often takes 
time for new technologies to become established, the 
limitations of current DL methods in single- cell data 
analysis are also barriers. In particular, DL methods 
often require large data and computational resources 
to train; their results may not be robust (performance 
varies owing to data noises, parameter settings and new 
input data); most DL models are black boxes lacking 
expandability; and almost all DL tools need extensive 
computer skills to use. Hence, there is still a gap between 
DL method develop ment and its broad application in 
diverse biological systems. Next, we discuss prospects 
of filling- in this gap.

Prospects of deep learning in single- cell  
data analysis
DL application in single- cell data analyses holds great 
promise for future exploration. For method develop-
ment, a continuous adaptation of the rapidly evolving, 
cutting- edge DL methods has been witnessed. Owing to 
the limited annotated data available in single- cell bio-
logy, there is room for applying active learning (inter-
actively suggesting new data labelling for training the 
model) to build models based on a few training samples. 
Higher adoption of the end- to- end DL frameworks (for 
example, in AlphaFold2) can facilitate a more compre-
hensive and holistic use of the training data to account 
for all input features and relationships. Model- based 
DL is expected to penetrate single- cell biology even 
further. Structure- or topology- aware methods, and 
physics- inspired and biologically informed frameworks 
integrate knowledge into DL models for other applica-
tions; similar applications can be expected in single- cell 
biology. Furthermore, the development of explainable 
DL could support better interpretations of underlying 
biological mechanisms, including causal or regulatory 
relationships, cell- type- specific responses to external 

stimuli, and cell subpopulations that drive diseases or 
phenotypes.

Another trend is lowering the barrier of applying 
DL technologies in single- cell data analyses. We believe 
that developing integrated systems and deploying cloud 
platforms will enable users without programming skills 
to use the single- cell DL tools through web services or 
dockers connected to online resources. In addition,  
a modular framework design, thanks to its flexibility, can 
leverage individual DL models and single- cell know ledge. 
Notably, the establishment of well- defined standards 
for DL- ready data, codes and models are expected to 
attract more developers to develop open- source/access 
DL tools, which in turn can expand in- depth single- cell 
data analyses. These tools can also help train the next 
generation of researchers and clinicians, particularly 
allowing precision medicine to be more deliverable to 
medical practices.

DL- based methods have demonstrated their prowess 
in a broad range of single- cell studies10, such as under-
standing the complexity of brain cell types related to 
perception and complex behaviours, and inferring the 
high diversity of tumour and immune cell populations 
to greatly accelerate the discovery of novel pathogenesis 
and cancer therapeutics. We expect such studies will be 
greatly expanded to provide unique insights, which likely  
would not be achievable without combining single- cell 
data and DL technologies. Another growing area is the 
migration of DL models from predictable and interpret-
able to more actionable, that is, recommendations that 
can directly lead to medical treatment, such as therapeutic  
targets, drug repurposing and drug combinations.
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