Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of transposable elements in the regulation of mammalian transcription

Abstract

Transposable elements (TEs) comprise about half of the mammalian genome. TEs often contain sequences capable of recruiting the host transcription machinery, which they use to express their own products and promote transposition. However, the regulatory sequences carried by TEs may affect host transcription long after the TEs have lost the ability to transpose. Recent advances in genome analysis and engineering have facilitated systematic interrogation of the regulatory activities of TEs. In this Review, we discuss diverse mechanisms by which TEs contribute to transcription regulation. Notably, TEs can donate enhancer and promoter sequences that influence the expression of host genes, modify 3D chromatin architecture and give rise to novel regulatory genes, including non-coding RNAs and transcription factors. We discuss how TEs spur regulatory evolution and facilitate the emergence of genetic novelties in mammalian physiology and development. By virtue of their repetitive and interspersed nature, TEs offer unique opportunities to dissect the effects of mutation and genomic context on the function and evolution of cis-regulatory elements. We argue that TE-centric studies hold the key to unlocking general principles of transcription regulation and evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major types of TEs in mammalian genomes.
Fig. 2: Overview of mechanisms by which TEs influence host transcription regulation.
Fig. 3: Examples of families of TEs in humans and mice that may have cis-regulatory functions based on the binding of specific TFs or on functional experiments.
Fig. 4: Transposable element insertional polymorphisms that drive cis-regulatory changes and their phenotypic association in GWAS.
Fig. 5: Use of TEs as a model system for studying transcription regulation.

Similar content being viewed by others

References

  1. Wells, J. N. & Feschotte, C. A field guide to eukaryotic transposable elements. Annu. Rev. Genet. 54, 539–561 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Sundaram, V. & Wysocka, J. Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190347 (2020).

    Article  CAS  Google Scholar 

  4. Drongitis, D., Aniello, F., Fucci, L. & Donizetti, A. Roles of transposable elements in the different layers of gene expression regulation. Int. J. Mol. Sci. 20, 5755 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  5. Fort, V., Khelifi, G. & Hussein, S. M. I. Long non-coding RNAs and transposable elements: a functional relationship. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118837 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Jangam, D., Feschotte, C. & Betrán, E. Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 33, 817–831 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Goerner-Potvin, P. & Bourque, G. Computational tools to unmask transposable elements. Nat. Rev. Genet. 19, 688–704 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. McGuire, A. L. et al. The road ahead in genetics and genomics. Nat. Rev. Genet. 21, 581–596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349 (1969).

    Article  CAS  PubMed  Google Scholar 

  13. Davidson, E. H. & Britten, R. J. Regulation of gene expression: possible role of repetitive sequences. Science 204, 1052–1059 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Sundaram, V. & Wang, T. Transposable element mediated innovation in gene regulatory landscapes of cells: re-visiting the “Gene-Battery” model. BioEssays 40, 1700155 (2018).

    Article  CAS  Google Scholar 

  15. Enriquez-Gasca, R., Gould, P. A. & Rowe, H. M. Host gene regulation by transposable elements: the new, the old and the ugly. Viruses 12, 1089 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  16. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. bioRxiv https://doi.org/10.1101/2021.07.12.451456v1 (2021).

    Article  Google Scholar 

  18. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Pehrsson, E. C., Choudhary, M. N. K., Sundaram, V. & Wang, T. The epigenomic landscape of transposable elements across normal human development and anatomy. Nat. Commun. 10, 5640 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bourque, G. et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sundaram, V. et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963–1976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Sundaram, V. Functional cis -regulatory modules encoded by mouse-specific endogenous retrovirus. Nat. Commun. 8, 14550 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, T. et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl Acad. Sci. USA 104, 18613–18618 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hermant, C. & Torres-Padilla, M.-E. TFs for TEs: the transcription factor repertoire of mammalian transposable elements. Genes Dev. 35, 22–39 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jacques, P.-É., Jeyakani, J. & Bourque, G. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet. 9, e1003504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trizzino, M. et al. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res. 27, 1623–1633 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ito, J. et al. Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet. 13, e1006883 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sun, X. et al. Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression. Proc. Natl Acad. Sci. USA 115, E5526–E5535 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Faulkner, G. J. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41, 563–571 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Miao, B. et al. Tissue-specific usage of transposable element-derived promoters in mouse development. Genome Biol. 21, 255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodriguez-Terrones, D. & Torres-Padilla, M.-E. Nimble and ready to mingle: transposon outbursts of early development. Trends Genet. 34, 806–820 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pontis, J. et al. Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 24, 724–735.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fuentes, D. R., Swigut, T. & Wysocka, J. Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. eLife 7, e35989 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lu, X. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21, 423–425 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Barakat, T. S. et al. Functional dissection of the enhancer repertoire in human embryonic stem cells. Cell Stem Cell 23, 276–288.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Göke, J. et al. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 16, 135–141 (2015).

    Article  PubMed  CAS  Google Scholar 

  40. Tang, W. W. C. et al. A unique gene regulatory network resets the human germline epigenome for development. Cell 161, 1453–1467 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carter, T. A. et al. Mosaic cis-regulatory evolution drives transcriptional partitioning of HERVH endogenous retrovirus in the human embryo. bioRxiv https://doi.org/10.1101/2021.07.08.451617v1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jacobs, F. M. et al. An evolutionary arms race between KRAB zinc finger genes 91/93 and SVA/L1 retrotransposons. Nature 516, 242–245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Imbeault, M., Helleboid, P.-Y. & Trono, D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543, 550–554 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Bruno, M., Mahgoub, M. & Macfarlan, T. S. The arms race between KRAB–zinc finger proteins and endogenous retroelements and its impact on mammals. Annu. Rev. Genet. 53, 393–416 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Todd, C. D., Deniz, Ö., Taylor, D. & Branco, M. R. Functional evaluation of transposable elements as enhancers in mouse embryonic and trophoblast stem cells. eLife 8, e44344 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chuong, E. B., Rumi, M. A. K., Soares, M. J. & Baker, J. C. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat. Genet. 45, 325–329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sakashita, A. et al. Endogenous retroviruses drive species-specific germline transcriptomes in mammals. Nat. Struct. Mol. Biol. 27, 967–977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bolcun-Filas, E. et al. A-MYB (MYBL1) transcription factor is a master regulator of male meiosis. Development 138, 3319–3330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Flemr, M. et al. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155, 807–816 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Duboule, D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev. Suppl. 1994, 135–142 (1994).

    Google Scholar 

  51. Irie, N. & Kuratani, S. The developmental hourglass model: a predictor of the basic body plan? Development 141, 4649–4655 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Haig, D. Transposable elements: self-seekers of the germline, team-players of the soma. BioEssays 38, 1158–1166 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Loreto, E. L. S. & Pereira, C. M. Somatizing the transposons action. Mob. Genet. Elem. 7, 1–9 (2017).

    Article  CAS  Google Scholar 

  54. Xie, M. et al. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat. Genet. 45, 836–841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554–566 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Okhovat, M. et al. Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome. Proc. Natl Acad. Sci. USA 117, 19328–19338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sasaki, T. et al. Possible involvement of SINEs in mammalian-specific brain formation. Proc. Natl Acad. Sci. USA 105, 4220–4225 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Notwell, J. H., Chung, T., Heavner, W. & Bejerano, G. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat. Commun. 6, 6644 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Ye, M. et al. Specific subfamilies of transposable elements contribute to different domains of T lymphocyte enhancers. Proc. Natl Acad. Sci. USA 117, 7905–7916 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pavlicev, M., Hiratsuka, K., Swaggart, K. A., Dunn, C. & Muglia, L. Detecting endogenous retrovirus-driven tissue-specific gene transcription. Genome Biol. Evol. 7, 1082–1097 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  CAS  Google Scholar 

  62. Suntsova, M. et al. Human-specific endogenous retroviral insert serves as an enhancer for the schizophrenia-linked gene PRODH. Proc. Natl Acad. Sci. USA 110, 19472–19477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Trizzino, M., Kapusta, A. & Brown, C. D. Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics 19, 468 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Raviram, R. et al. Analysis of 3D genomic interactions identifies candidate host genes that transposable elements potentially regulate. Genome Biol. 19, 216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmid, C. D. & Bucher, P. MER41 repeat sequences contain inducible STAT1 binding sites. PLoS One 5, e11425 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sgarbanti, M. et al. IRF-1 is required for full NF-kappaB transcriptional activity at the human immunodeficiency virus type 1 long terminal repeat enhancer. J. Virol. 82, 3632–3641 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Simonti, C. N., Pavlicev, M. & Capra, J. A. Transposable element exaptation into regulatory regions is rare, influenced by evolutionary age, and subject to pleiotropic constraints. Mol. Biol. Evol. 34, 2856–2869 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Emera, D. & Wagner, G. P. Transformation of a transposon into a derived prolactin promoter with function during human pregnancy. Proc. Natl Acad. Sci. USA 109, 11246–11251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Judd, J., Sanderson, H. & Feschotte, C. Evolution of mouse circadian enhancers from transposable elements. Genome Biol. 22, 193 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cohen, C. J., Lock, W. M. & Mager, D. L. Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448, 105–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Lanciano, S. & Cristofari, G. Measuring and interpreting transposable element expression. Nat. Rev. Genet. 21, 721–736 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Etchegaray, E., Naville, M., Volff, J.-N. & Haftek-Terreau, Z. Transposable element-derived sequences in vertebrate development. Mob. DNA 12, 1 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nigumann, P., Redik, K., Mätlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Mätlik, K., Redik, K. & Speek, M. L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotechnol. 2006, 71753 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Criscione, S. W. et al. Genome-wide characterization of human L1 antisense promoter-driven transcripts. BMC Genomics 17, 463 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, F. et al. DUX-miR-344-ZMYM2-mediated activation of MERVL LTRs induces a totipotent 2C-like state. Cell Stem Cell 26, 234–250.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Modzelewski, A. J. et al. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell 184, 5541–5558 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Ardeljan, D., Taylor, M. S., Ting, D. T. & Burns, K. H. The human long interspersed element-1 retrotransposon: an emerging biomarker of neoplasia. Clin. Chem. 63, 816–822 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Burns, K. H. Transposable elements in cancer. Nat. Rev. Cancer 17, 415–424 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Jang, H. S. et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51, 611–617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Babaian, A. & Mager, D. L. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA 7, 24 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Roulois, D. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chiappinelli, K. B. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brocks, D. et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat. Genet. 49, 1052–1060 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ishak, C. A. & De Carvalho, D. D. Reactivation of endogenous retroelements in cancer development and therapy. Annu. Rev. Cancer Biol. 4, 159–176 (2020).

    Article  Google Scholar 

  89. Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Robson, M. I., Ringel, A. R. & Mundlos, S. Regulatory landscaping: how enhancer-promoter communication is sculpted in 3D. Mol. Cell 74, 1110–1122 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Long, H. K., Prescott, S. L. & Wysocka, J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167, 1170–1187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 772 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Rada-Iglesias, A., Grosveld, F. G. & Papantonis, A. Forces driving the three-dimensional folding of eukaryotic genomes. Mol. Syst. Biol. 14, e8214 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Zheng, H. & Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat. Rev. Genet. 22, 154–168 (2020).

    Article  PubMed  CAS  Google Scholar 

  96. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hildebrand, E. M. & Dekker, J. Mechanisms and functions of chromosome compartmentalization. Trends Biochem. Sci. 45, 385–396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Finn, E. H. & Misteli, T. Molecular basis and biological function of variability in spatial genome organization. Science 365, eaaw9498 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mir, M., Bickmore, W., Furlong, E. E. M. & Narlikar, G. Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase? Development 146, dev182766 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ghavi-Helm, Y. Functional consequences of chromosomal rearrangements on gene expression: not so deleterious after all? J. Mol. Biol. 432, 665–675 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, J. et al. MIR retrotransposon sequences provide insulators to the human genome. Proc. Natl Acad. Sci. USA 112, E4428–E4437 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Cournac, A., Koszul, R. & Mozziconacci, J. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements. Nucleic Acids Res. 44, 245–255 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hendrickson, P. G. et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 49, 925–934 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kruse, K. et al. Transposable elements drive reorganisation of 3D chromatin during early embryogenesis. bioRxiv https://doi.org/10.1101/523712 (2019).

    Article  Google Scholar 

  110. Ghirlando, R. & Felsenfeld, G. CTCF: making the right connections. Genes Dev. 30, 881–891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schmidt, D. et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148, 335–348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Harmston, N. et al. Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation. Nat. Commun. 8, 441 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Choudhary, M. N. et al. Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biol. 21, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kaaij, L. J. T., Mohn, F., van der Weide, R. H., de Wit, E. & Bühler, M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437–1451.e14 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Lunyak, V. V. et al. Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317, 248–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Ichiyanagi, T. et al. B2 SINE copies serve as a transposable boundary of DNA methylation and histone modifications in the mouse. Mol. Biol. Evol. 38, 2380–2395 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kirkland, J. G., Raab, J. R. & Kamakaka, R. T. TFIIIC bound DNA elements in nuclear organization and insulation. Biochim. Biophys. Acta 1829, 418–424 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Kapusta, A. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 9, e1003470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kelley, D. & Rinn, J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 13, R107 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Johnson, R. & Guigó, R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20, 959–976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kapusta, A. & Feschotte, C. Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet. 30, 439–452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fort, A. et al. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat. Genet. 46, 558–566 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Durruthy-Durruthy, J. et al. The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nat. Genet. 48, 44–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Wilson, K. D. et al. Endogenous retrovirus-derived lncRNA BANCR promotes cardiomyocyte migration in humans and non-human primates. Dev. Cell 54, 694–709.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, Y. et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 25, 69–80 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Ohnuki, M. et al. Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proc. Natl Acad. Sci. USA 111, 12426–12431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jachowicz, J. W. et al. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat. Genet. 49, 1502–1510 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Percharde, M. et al. A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174, 391–405.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vihervaara, A., Duarte, F. M. & Lis, J. T. Molecular mechanisms driving transcriptional stress responses. Nat. Rev. Genet. 19, 385–397 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zovoilis, A., Cifuentes-Rojas, C., Chu, H.-P., Hernandez, A. J. & Lee, J. T. Destabilization of B2 RNA by EZH2 activates the stress response. Cell 167, 1788–1802.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hernandez, A. J. et al. B2 and ALU retrotransposons are self-cleaving ribozymes whose activity is enhanced by EZH2. Proc. Natl Acad. Sci. USA 117, 415–425 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Allen, T. A., Von Kaenel, S., Goodrich, J. A. & Kugel, J. F. The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat. Struct. Mol. Biol. 11, 816–821 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Espinoza, C. A., Allen, T. A., Hieb, A. R., Kugel, J. F. & Goodrich, J. A. B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat. Struct. Mol. Biol. 11, 822–829 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Cheng, Y. et al. Increased processing of SINE B2 ncRNAs unveils a novel type of transcriptome deregulation in amyloid beta neuropathology. eLife 9, e61265 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mariner, P. D. et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29, 499–509 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Cosby, R. L. et al. Recurrent evolution of vertebrate transcription factors by transposase capture. Science 371, eabc6405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cordaux, R., Udit, S., Batzer, M. A. & Feschotte, C. Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc. Natl Acad. Sci. USA 103, 8101–8106 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lee, S.-H. et al. The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. Proc. Natl Acad. Sci. USA 102, 18075–18080 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tellier, M. & Chalmers, R. Human SETMAR is a DNA sequence-specific histone-methylase with a broad effect on the transcriptome. Nucleic Acids Res. 47, 122–133 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Bailey, A. D. et al. The conserved Cockayne syndrome B-piggyBac fusion protein (CSB-PGBD3) affects DNA repair and induces both interferon-like and innate antiviral responses in CSB-null cells. DNA Repair 11, 488–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Breitling, R. & Gerber, J. K. Origin of the paired domain. Dev. Genes Evol. 210, 644–650 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Goodier, J. L. Restricting retrotransposons: a review. Mob. DNA 7, 16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Molaro, A. & Malik, H. S. Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline. Curr. Opin. Genet. Dev. 37, 51–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cosby, R. L., Chang, N.-C. & Feschotte, C. Host-transposon interactions: conflict, cooperation, and cooption. Genes Dev. 33, 1098–1116 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Smith, Z. D. et al. DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Deniz, Ö., Frost, J. M. & Branco, M. R. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 20, 417–431 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Miranda, T. B. & Jones, P. A. DNA methylation: the nuts and bolts of repression. J. Cell. Physiol. 213, 384–390 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. de la Rica, L. et al. TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells. Genome Biol. 17, 234 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Elmer, J. L. & Ferguson-Smith, A. C. Strain-specific epigenetic regulation of endogenous retroviruses: the role of trans-acting modifiers. Viruses 12, E810 (2020).

    Article  PubMed  CAS  Google Scholar 

  150. Waterland, R. A. & Jirtle, R. L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23, 5293–5300 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Whitelaw, E. & Martin, D. I. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat. Genet. 27, 361–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Bertozzi, T. M. & Ferguson-Smith, A. C. Metastable epialleles and their contribution to epigenetic inheritance in mammals. Semin. Cell Dev. Biol. 97, 93–105 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Duhl, D. M. J., Vrieling, H., Miller, K. A., Wolff, G. L. & Barsh, G. S. Neomorphic agouti mutations in obese yellow mice. Nat. Genet. 8, 59–65 (1994).

    Article  CAS  PubMed  Google Scholar 

  154. Dickies, M. M. A new viable yellow mutation in the house mouse. J. Hered. 53, 84–86 (1962).

    Article  CAS  PubMed  Google Scholar 

  155. Faulk, C., Barks, A. & Dolinoy, D. C. Phylogenetic and DNA methylation analysis reveal novel regions of variable methylation in the mouse IAP class of transposons. BMC Genomics 14, 48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kazachenka, A. et al. Identification, characterization, and heritability of murine metastable epialleles: implications for non-genetic inheritance. Cell 175, 1259–1271 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kessler, N. J., Waterland, R. A., Prentice, A. M. & Silver, M. J. Establishment of environmentally sensitive DNA methylation states in the very early human embryo. Sci. Adv. 4, eaat2624 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Bertozzi, T. M., Elmer, J. L., Macfarlan, T. S. & Ferguson-Smith, A. C. KRAB zinc finger protein diversification drives mammalian interindividual methylation variability. Proc. Natl Acad. Sci. USA 117, 31290–31300 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Silver, M. J. et al. Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome Biol. 16, 118 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Karimi, M. M. et al. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8, 676–687 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ito, J. et al. Endogenous retroviruses drive KRAB zinc-finger protein family expression for tumor suppression. Sci. Adv. 6, abc3020 (2020).

    Article  CAS  Google Scholar 

  162. Timms, R. T., Tchasovnikarova, I. A. & Lehner, P. J. Position-effect variegation revisited: HUSHing up heterochromatin in human cells. BioEssays 38, 333–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Liu, N. et al. Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature 553, 228–232 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Robbez-Masson, L. et al. The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes. Genome Res. 28, 836–845 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Saint-André, V., Batsché, E., Rachez, C. & Muchardt, C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat. Struct. Mol. Biol. 18, 337–344 (2011).

    Article  PubMed  CAS  Google Scholar 

  166. Tunbak, H. et al. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat. Commun. 11, 5387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lynch, M. The Origins of Genome Architecture (Sinauer Associates Inc., 2007).

  168. Lowe, C. B. & Haussler, D. 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome. PLoS One 7, e43128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ting, C. N., Rosenberg, M. P., Snow, C. M., Samuelson, L. C. & Meisler, M. H. Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Genes Dev. 6, 1457–1465 (1992).

    Article  CAS  PubMed  Google Scholar 

  170. Samuelson, L. C., Phillips, R. S. & Swanberg, L. J. Amylase gene structures in primates: retroposon insertions and promoter evolution. Mol. Biol. Evol. 13, 767–779 (1996).

    Article  CAS  PubMed  Google Scholar 

  171. Gerlo, S., Davis, J. R. E., Mager, D. L. & Kooijman, R. Prolactin in man: a tale of two promoters. BioEssays 28, 1051–1055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Emera, D. et al. Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements. Mol. Biol. Evol. 29, 239–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Lynch, V. J. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 10, 551–561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 1154–1159 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Dunn-Fletcher, C. E. et al. Anthropoid primate-specific retroviral element THE1B controls expression of CRH in placenta and alters gestation length. PLoS Biol. 16, e2006337 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Sun, M. et al. Endogenous retroviruses drive lineage-specific regulatory evolution across primate and rodent placentae. Mol. Biol. Evol. 38, 4992–5004 (2021).

    Article  PubMed  Google Scholar 

  177. Prescott, S. L. et al. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 163, 68–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nishihara, H. Coordinately co-opted multiple transposable elements constitute an enhancer for wnt5a expression in the mammalian secondary palate. PLoS Genet. 12, 1006380 (2016).

    Article  CAS  Google Scholar 

  179. ENCODE Project Consortium. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  CAS  Google Scholar 

  180. Long, H. K. et al. Loss of extreme long-range enhancers in human neural crest drives a craniofacial disorder. Cell Stem Cell 27, 765–783.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Payer, L. M. & Burns, K. H. Transposable elements in human genetic disease. Nat. Rev. Genet. 20, 760–772 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Sudmant, P. H. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tam, O. H., Ostrow, L. W. & Gale Hammell, M. Diseases of the nERVous system: retrotransposon activity in neurodegenerative disease. Mob. DNA 10, 32 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Hancks, D. C. & Kazazian, H. H. Roles for retrotransposon insertions in human disease. Mob. DNA 7, 9 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Gymrek, M. et al. Abundant contribution of short tandem repeats to gene expression variation in humans. Nat. Genet. 48, 22–29 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Spirito, G., Mangoni, D., Sanges, R. & Gustincich, S. Impact of polymorphic transposable elements on transcription in lymphoblastoid cell lines from public data. BMC Bioinform. 20, 495 (2019).

    Article  CAS  Google Scholar 

  187. Wang, L., Norris, E. T. & Jordan, I. K. Human retrotransposon insertion polymorphisms are associated with health and disease via gene regulatory phenotypes. Front. Microbiol. 8, 1418 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Goubert, C., Zevallos, N. A. & Feschotte, C. Contribution of unfixed transposable element insertions to human regulatory variation. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190331 (2020).

    Article  CAS  Google Scholar 

  189. Payer, L. M. Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc. Natl Acad. Sci. USA 114, 3984–3992 (2017).

    Article  CAS  Google Scholar 

  190. Marchi, E., Kanapin, A., Magiorkinis, G. & Belshaw, R. Unfixed endogenous retroviral insertions in the human population. J. Virol. 88, 9529–9537 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Turner, G. Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr. Biol. 11, 1531–1535 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Wallace, A. D. et al. To ERV is human: a phenotype-wide scan linking polymorphic human endogenous retrovirus-K insertions to complex phenotypes. Front. Genet. 9, 298 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Sekar, A. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Karamitros, T. Human endogenous retrovirus-K HML-2 integration within RASGRF2 is associated with intravenous drug abuse and modulates transcription in a cell-line model. Proc. Natl Acad. Sci. USA 115, 10434–10439 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 239–243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Nowak, M. A., Boerlijst, M. C., Cooke, J. & Smith, J. M. Evolution of genetic redundancy. Nature 388, 167–171 (1997).

    Article  CAS  PubMed  Google Scholar 

  197. Cannavò, E. et al. Shadow enhancers are pervasive features of developmental regulatory networks. Curr. Biol. 26, 38–51 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Frankel, N. et al. Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature 466, 490–493 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Farley, E. K. et al. Suboptimization of developmental enhancers. Science 350, 325–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Zemojtel, T. et al. CpG deamination creates transcription factor-binding sites with high efficiency. Genome Biol. Evol. 3, 1304–1311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. He, J. et al. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nat. Commun. 12, 1456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Shao, W. & Wang, T. Transcript assembly improves expression quantification of transposable elements in single-cell RNA-seq data. Genome Res. 31, 88–100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Chang, N.-C., Rovira, Q., Wells, J. N., Feschotte, C. & Vaquerizas, J. M. A genomic portrait of zebrafish transposable elements and their spatiotemporal embryonic expression. Genome Res. https://doi.org/10.1101/gr.275655.121 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Du, J. et al. Chromatin variation associated with liver metabolism is mediated by transposable elements. Epigenetics Chromatin 9, 28 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Hummel, B. The evolutionary capacitor HSP90 buffers the regulatory effects of mammalian endogenous retroviruses. Nat. Struct. Mol. Biol. 24, 234–242 (2017).

    Article  CAS  PubMed  Google Scholar 

  210. Li, W. et al. Human endogenous retrovirus-K contributes to motor neuron disease. Sci. Transl. Med. 7, 307ra153 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Turelli, P. et al. Primate-restricted KRAB zinc finger proteins and target retrotransposons control gene expression in human neurons. Sci. Adv. 6, eaba3200 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Padmanabhan Nair, V. et al. Activation of HERV-K(HML-2) disrupts cortical patterning and neuronal differentiation by increasing NTRK3. Cell Stem Cell 28, 1566–1581.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Berwaer, M., Martial, J. A. & Davis, J. R. Characterization of an up-stream promoter directing extrapituitary expression of the human prolactin gene. Mol. Endocrinol. 8, 635–642 (1994).

    CAS  PubMed  Google Scholar 

  214. Gellersen, B., Kempf, R., Telgmann, R. & DiMattia, G. E. Nonpituitary human prolactin gene transcription is independent of Pit-1 and differentially controlled in lymphocytes and in endometrial stroma. Mol. Endocrinol. 8, 356–373 (1994).

    CAS  PubMed  Google Scholar 

  215. Jacob, K. K. & Stanley, F. M. CCAAT/enhancer-binding protein alpha is a physiological regulator of prolactin gene expression. Endocrinology 140, 4542–4550 (1999).

    Article  CAS  PubMed  Google Scholar 

  216. Lynch, V. J., Brayer, K., Gellersen, B. & Wagner, G. P. HoxA-11 and FOXO1A cooperate to regulate decidual prolactin expression: towards inferring the core transcriptional regulators of decidual genes. PLoS One 4, e6845 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Brar, A. K., Kessler, C. A. & Handwerger, S. An Ets motif in the proximal decidual prolactin promoter is essential for basal gene expression. J. Mol. Endocrinol. 29, 99–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  218. Ishida, M. et al. Involvement of cAMP response element-binding protein in the regulation of cell proliferation and the prolactin promoter of lactotrophs in primary culture. Am. J. Physiol. Endocrinol. Metab. 293, E1529–E1537 (2007).

    Article  CAS  PubMed  Google Scholar 

  219. Schulte, A. M. et al. Influence of the human endogenous retrovirus-like element HERV-E.PTN on the expression of growth factor pleiotrophin: a critical role of a retroviral Sp1-binding site. Oncogene 19, 3988–3998 (2000).

    Article  CAS  PubMed  Google Scholar 

  220. Ling, J. et al. The solitary long terminal repeats of ERV-9 endogenous retrovirus are conserved during primate evolution and possess enhancer activities in embryonic and hematopoietic cells. J. Virol. 76, 2410–2423 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Pi, W. et al. Long-range function of an intergenic retrotransposon. Proc. Natl Acad. Sci. USA 107, 12992–12997 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zhang, W. et al. Zscan4c activates endogenous retrovirus MERVL and cleavage embryo genes. Nucleic Acids Res. 47, 8485–8501 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25, 594–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science https://doi.org/10.1126/science.1232542 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work we were unable to cite due to space limitations. This work was supported by awards R35-GM122550, U01-HG009391 and R01-CA260691 from the National Institutes of Health to C.F., and R35-GM131757 and HHMI investigator award to J.W. J.J. was supported by NHGRI fellowship F31-HG010820. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. R.F. was funded by an EMBO long-term fellowship and a Cancer Research Institute/Bristol-Myers Squibb postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Cedric Feschotte or Joanna Wysocka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Dixie Mager, Didier Trono and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Co-opted

Co-opted or exapted refers to the process by which transposable element (TE) sequences are repurposed for host function. Classically, this term implies that the process conferred adaptive changes that increased organismal fitness. In the context of gene regulation, the term is also used to describe the process by which TEs give rise to novel cis-regulatory elements that cause demonstrable changes in host gene expression.

Gene-battery model

Theory developed by Britten and Davidson postulating that repetitive sequences are a driver of the evolution of protein expression control with a limited number of effectors.

Chimeric and alternative transcripts

Transcripts that result from joining by splicing of RNAs that are not part of the same region of origin. They may comprise exons of different genes or combinations of sequences of TE and non-TE origin.

Methyl-CpG sites

The cytosine in 5′-CpG-3′ dinucleotides (C-phosphate-G) can be methylated to form 5-methylcytosine, which frequently triggers a C-to-T mutation through deamination.

Topologically associating domain

(TAD). Large architectural domains of chromatin demarcated by insulator proteins that generally restrict the space in which three-dimensional DNA contacts and enhancer–promoter interactions are favoured.

Chromatin loop domain

Folding of chromatin that causes two regions of the genome that are separated by (a large) linear space along the DNA to come into close three-dimensional proximity.

KRAB domains

Repressive transcription factor domain, characterizing KRAB containing zinc-finger repressor proteins.

Metastable epialleles

Alleles that are differentially epigenetically regulated and maintained throughout the organism’s lifetime and, in some cases, also across generations. They typically arise due to the variable levels of DNA methylation established during early development and can respond to environmental stressors and potentially drive phenotypic variation.

Trans-chromosomic mESCs

Mouse embryonic stem cell (mESC) clones to which a human chromosome has been transferred, resulting in aneuploid cells in which the effects of a non-primate cellular context on a primate chromosome can be assayed.

Position-effect variegation

Phenomenon that defines the distinct expression levels that a gene or transgene exhibits when located at different positions in the genome, usually in correlation with the activated or repressed status of the neighbouring chromatin.

TE insertion polymorphism

A TE insertion allele that is not yet fixed but segregating in the population; emerges from transpositions that occur in the germline and may be transmitted to the offspring, thereby increasing TE frequency in the population.

Expression quantitative trait loci

Loci that explain expression variation among individuals in a population.

Genome-wide association studies

(GWAS). A population genetics method of linking genetic variants present within the population with various traits and diseases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fueyo, R., Judd, J., Feschotte, C. et al. Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol 23, 481–497 (2022). https://doi.org/10.1038/s41580-022-00457-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00457-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research