Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap–cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines — the core replisome, RNA polymerase II and the ribosome — pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Chook, Y. M. & Suel, K. E. Nuclear import by karyopherin-βs: recognition and inhibition. Biochim. Biophys. Acta 1813, 1593–1606 (2011).
Matsuura, Y. Mechanistic insights from structural analyses of Ran-GTPase-driven nuclear export of proteins and RNAs. J. Mol. Biol. 428, 2025–2039 (2016).
Kalita, J., Kapinos, L. E. & Lim, R. Y. H. On the asymmetric partitioning of nucleocytoplasmic transport — recent insights and open questions. J. Cell Sci. 134, jcs240382 (2021).
O’Reilly, A. J., Dacks, J. B. & Field, M. C. Evolution of the karyopherin-β family of nucleocytoplasmic transport factors; ancient origins and continued specialization. PLoS ONE 6, e19308 (2011).
Thakar, K., Karaca, S., Port, S. A., Urlaub, H. & Kehlenbach, R. H. Identification of CRM1-dependent nuclear export cargos using quantitative mass spectrometry. Mol. Cell Proteom. 12, 664–678 (2013).
Wuhr, M. et al. The nuclear proteome of a vertebrate. Curr. Biol. 25, 2663–2671 (2015).
Kırlı, K. et al. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife 4, e11466 (2015).
Mackmull, M. T. et al. Landscape of nuclear transport receptor cargo specificity. Mol. Syst. Biol. 13, 962 (2017). This proteomics study identifies interaction partners for several Kaps and IMPαs using proximity ligation, which can differentiate direct versus ‘piggyback’ transport.
Kimura, M. et al. Extensive cargo identification reveals distinct biological roles of the 12 importin pathways. eLife 6, e21184 (2017). This proteomics study identifies import cargoes for the 12 mammalian importins and biportins.
Baade, I., Spillner, C., Schmitt, K., Valerius, O. & Kehlenbach, R. H. Extensive identification and in-depth validation of importin 13 cargoes. Mol. Cell Proteom. 17, 1337–1353 (2018). This proteomics study is the first to employ an experimental approach that can identify and differentiate both import and export cargoes of a biportin.
Aksu, M. et al. Xpo7 is a broad-spectrum exportin and a nuclear import receptor. J. Cell Biol. 217, 2329–2340 (2018). This article shows the first use of nanobodies as Kap-specific inhibitors and demonstrates that XPO7 functions as a biportin.
Vera Rodriguez, A., Frey, S. & Gorlich, D. Engineered SUMO/protease system identifies Pdr6 as a bidirectional nuclear transport receptor. J. Cell Biol. 218, 2006–2020 (2019). This article shows that PDR6 functions as a biportin and identifies novel import and export cargoes.
Lange, A. et al. Classical nuclear localization signals: definition, function, and interaction with importin α. J. Biol. Chem. 282, 5101–5105 (2007).
Fung, H. Y., Fu, S. C. & Chook, Y. M. Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals. eLife 6, e23961 (2017). This article shows how diverse NESs bind CRM1 and further expands the number of NES consensus sequences.
Soniat, M. & Chook, Y. M. Nuclear localization signals for four distinct karyopherin-β nuclear import systems. Biochem. J. 468, 353–362 (2015).
Pumroy, R. A. & Cingolani, G. Diversification of importin-α isoforms in cellular trafficking and disease states. Biochem. J. 466, 13–28 (2015).
Robbins, J., Dilworth, S. M., Laskey, R. A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615–623 (1991).
Kalderon, D., Richardson, W. D., Markham, A. F. & Smith, A. E. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311, 33–38 (1984).
Chang, C. C. et al. Ran pathway-independent regulation of mitotic Golgi disassembly by Importin-α. Nat. Commun. 10, 4307 (2019).
Jagga, B. et al. Structural basis for nuclear import selectivity of pioneer transcription factor SOX2. Nat. Commun. 12, 28 (2021). This article shows how IMPα3 recognizes SOX2 using two NLSs linked by a folded domain.
Lott, K., Bhardwaj, A., Sims, P. J. & Cingolani, G. A minimal nuclear localization signal (NLS) in human phospholipid scramblase 4 that binds only the minor NLS-binding site of importin α1. J. Biol. Chem. 286, 28160–28169 (2011).
Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94, 193–204 (1998).
Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nat. Struct. Biol. 6, 388–397 (1999).
Catimel, B. et al. Biophysical characterization of interactions involving importin-α during nuclear import. J. Biol. Chem. 276, 34189–34198 (2001).
Fanara, P., Hodel, M. R., Corbett, A. H. & Hodel, A. E. Quantitative analysis of nuclear localization signal (NLS)-importin α interaction through fluorescence depolarization. Evidence for auto-inhibitory regulation of NLS binding. J. Biol. Chem. 275, 21218–21223 (2000).
Hodel, M. R., Corbett, A. H. & Hodel, A. E. Dissection of a nuclear localization signal. J. Biol. Chem. 276, 1317–1325 (2001).
Hodel, A. E. et al. Nuclear localization signal receptor affinity correlates with in vivo localization in Saccharomyces cerevisiae. J. Biol. Chem. 281, 23545–23556 (2006).
Nardozzi, J., Wenta, N., Yasuhara, N., Vinkemeier, U. & Cingolani, G. Molecular basis for the recognition of phosphorylated STAT1 by importin α5. J. Mol. Biol. 402, 83–100 (2010).
Pumroy, R. A., Ke, S., Hart, D. J., Zachariae, U. & Cingolani, G. Molecular determinants for nuclear import of influenza A PB2 by importin α isoforms 3 and 7. Structure 23, 374–384 (2015).
Soniat, M. & Chook, Y. M. Karyopherin-β2 recognition of a PY-NLS variant that lacks the proline-tyrosine motif. Structure 24, 1802–1809 (2016). This study identifies the first PY-NLS that lacks the PY motif, illustrating the sequence diversity of PY-NLSs.
Suel, K. E., Gu, H. & Chook, Y. M. Modular organization and combinatorial energetics of proline-tyrosine nuclear localization signals. PLoS Biol. 6, e137 (2008).
Lee, B. J. et al. Rules for nuclear localization sequence recognition by karyopherin β 2. Cell 126, 543–558 (2006).
Kobayashi, J. & Matsuura, Y. Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p. J. Mol. Biol. 425, 1852–1868 (2013).
Kobayashi, J., Hirano, H. & Matsuura, Y. Crystal structure of the karyopherin Kap121p bound to the extreme C-terminus of the protein phosphatase Cdc14p. Biochem. Biophys. Res. Commun. 463, 309–314 (2015).
Makhnevych, T., Ptak, C., Lusk, C. P., Aitchison, J. D. & Wozniak, R. W. The role of karyopherins in the regulated sumoylation of septins. J. Cell Biol. 177, 39–49 (2007).
Jang, S. et al. Differential role for phosphorylation in alternative polyadenylation function versus nuclear import of SR-like protein CPSF6. Nucleic Acids Res. 47, 4663–468 (2019). This study shows how TNPO3 recognizes non-phosphorylated RS-like domains.
Yun, C. Y., Velazquez-Dones, A. L., Lyman, S. K. & Fu, X. D. Phosphorylation-dependent and -independent nuclear import of RS domain-containing splicing factors and regulators. J. Biol. Chem. 278, 18050–18055 (2003).
Lai, M. C., Lin, R. I. & Tarn, W. Y. Transportin-SR2 mediates nuclear import of phosphorylated SR proteins. Proc. Natl Acad. Sci. USA 98, 10154–10159 (2001).
Wen, W., Meinkoth, J. L., Tsien, R. Y. & Taylor, S. S. Identification of a signal for rapid export of proteins from the nucleus. Cell 82, 463–473 (1995).
Fischer, U., Huber, J., Boelens, W. C., Mattaj, I. W. & Luhrmann, R. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82, 475–483 (1995).
Dong, X. et al. Structural basis for leucine-rich nuclear export signal recognition by CRM1. Nature 458, 1136–1141 (2009).
Monecke, T. et al. Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP. Science 324, 1087–1091 (2009).
Guttler, T. et al. NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat. Struct. Mol. Biol. 17, 1367–1376 (2010).
Fung, H. Y., Fu, S. C., Brautigam, C. A. & Chook, Y. M. Structural determinants of nuclear export signal orientation in binding to exportin CRM1. eLife 4, e10034 (2015).
Huber, J. et al. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J. 17, 4114–4126 (1998).
Jullien, D., Gorlich, D., Laemmli, U. K. & Adachi, Y. Nuclear import of RPA in Xenopus egg extracts requires a novel protein XRIPα but not importin α. EMBO J. 18, 4348–4358 (1999).
Görlich, D., Henklein, P., Laskey, R. A. & Hartmann, E. A 41 amino acid motif in importin-α confers binding to importin-β and hence transit into the nucleus. EMBO J. 15, 1810–1817 (1996).
Cingolani, G., Bednenko, J., Gillespie, M. T. & Gerace, L. Molecular basis for the recognition of a nonclassical nuclear localization signal by importin β. Mol. Cell 10, 1345–1353 (2002).
Gonzalez, A. et al. Mechanism of karyopherin-β2 binding and nuclear import of ALS variants FUS(P525L) and FUS(R495X). Sci. Rep. 11, 3754 (2021).
Baade, I. et al. The RNA-binding protein FUS is chaperoned and imported into the nucleus by a network of import receptors. J. Biol. Chem. 296, 100659 (2021).
Bourgeois, B. et al. Nonclassical nuclear localization signals mediate nuclear import of CIRBP. Proc. Natl Acad. Sci. USA 117, 8503–8514 (2020). This study identifies the novel RGG motif recognized by KAPβ2.
Soniat, M., Cagatay, T. & Chook, Y. M. Recognition elements in the histone H3 and H4 tails for seven different importins. J. Biol. Chem. 291, 21171–21183 (2016).
Komeili, A. & O’Shea, E. K. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284, 977–980 (1999).
Fritz, J. et al. RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1. Mol. Cell Biol. 29, 1487–1497 (2009).
Sakurai, M. et al. ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay. Nat. Struct. Mol. Biol. 24, 534–543 (2017).
Xu, W. et al. Ebola virus VP24 targets a unique NLS binding site on karyopherin α 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 16, 187–200 (2014).
Choi, S. et al. Structural basis for the selective nuclear import of the C2H2 zinc-finger protein Snail by importin β. Acta Crystallogr. D. Biol. Crystallogr. 70, 1050–1060 (2014).
Lee, S. J. et al. The structure of importin-β bound to SREBP-2: nuclear import of a transcription factor. Science 302, 1571–1575 (2003).
Padavannil, A. et al. Importin-9 wraps around the H2A–H2B core to act as nuclear importer and histone chaperone. eLife 8, e43630 (2019). This article shows the first structure of IPO9 bound to histone dimer H2A–H2B in a chaperone-like manner.
Lin, W. et al. The roles of multiple importins for nuclear import of murine aristaless-related homeobox protein. J. Biol. Chem. 284, 20428–20439 (2009).
Lubert, E. J. & Sarge, K. D. Interaction between protein phosphatase 2A and members of the importin β superfamily. Biochem. Biophys. Res. Commun. 303, 908–913 (2003).
Volpon, L. et al. Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E. Proc. Natl Acad. Sci. USA 113, 5263–5268 (2016).
Bono, F., Cook, A. G., Grunwald, M., Ebert, J. & Conti, E. Nuclear import mechanism of the EJC component Mago-Y14 revealed by structural studies of importin 13. Mol. Cell 37, 211–222 (2010).
Grunwald, M. & Bono, F. Structure of Importin13–Ubc9 complex: nuclear import and release of a key regulator of sumoylation. EMBO J. 30, 427–438 (2011). This study shows how biportin PDR6 recognizes its import cargo UBC9 and export cargo eIF5A using a mechanism distinct from that of mammalian IPO13 and XPO4, respectively.
Aksu, M., Trakhanov, S., Vera Rodriguez, A. & Gorlich, D. Structural basis for the nuclear import and export functions of the biportin Pdr6/Kap122. J. Cell Biol. 218, 1839–1852 (2019).
Gontan, C. et al. Exportin 4 mediates a novel nuclear import pathway for Sox family transcription factors. J. Cell Biol. 185, 27–34 (2009).
Chatzifrangkeskou, M. et al. RASSF1A is required for the maintenance of nuclear actin levels. EMBO J. 38, e101168 (2019).
Grunwald, M., Lazzaretti, D. & Bono, F. Structural basis for the nuclear export activity of Importin13. EMBO J. 32, 899–913 (2013).
Kurisaki, A. et al. The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol. Cell Biol. 26, 1318–1332 (2006).
Aksu, M., Trakhanov, S. & Gorlich, D. Structure of the exportin Xpo4 in complex with RanGTP and the hypusine-containing translation factor eIF5A. Nat. Commun. 7, 11952 (2016).
Lipowsky, G. et al. Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J. 19, 4362–4371 (2000).
Smith, K. M. et al. Structural basis for importin α 3 specificity of W proteins in Hendra and Nipah viruses. Nat. Commun. 9, 3703 (2018).
Sankhala, R. S. et al. Three-dimensional context rather than NLS amino acid sequence determines importin α subtype specificity for RCC1. Nat. Commun. 8, 979 (2017).
Ivic, N. et al. Fuzzy interactions form and shape the histone transport complex. Mol. Cell 73, 1191–1203.e6 (2019). This study uses cryo electron microscopy to demonstrate how the IMPβ–IPO7 heterodimer binds and imports H1.
Maertens, G. N. et al. Structural basis for nuclear import of splicing factors by human Transportin 3. Proc. Natl Acad. Sci. USA 111, 2728–2733 (2014).
Caceres, J. F., Misteli, T., Screaton, G. R., Spector, D. L. & Krainer, A. R. Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J. Cell Biol. 138, 225–238 (1997).
Hopper, A. K. & Nostramo, R. T. tRNA processing and subcellular trafficking proteins multitask in pathways for other RNAs. Front. Genet. 10, 96 (2019).
Calado, A., Treichel, N., Muller, E. C., Otto, A. & Kutay, U. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J. 21, 6216–6224 (2002).
Bohnsack, M. T. et al. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J. 21, 6205–6215 (2002).
Okamura, M., Inose, H. & Masuda, S. RNA export through the NPC in eukaryotes. Genes 6, 124–149 (2015).
Verheggen, C. & Bertrand, E. CRM1 plays a nuclear role in transporting snoRNPs to nucleoli in higher eukaryotes. Nucleus 3, 132–137 (2012).
Martinez, I. et al. An Exportin-1-dependent microRNA biogenesis pathway during human cell quiescence. Proc. Natl Acad. Sci. USA 114, E4961–E4970 (2017).
Sheng, P. et al. Dicer cleaves 5′-extended microRNA precursors originating from RNA polymerase II transcription start sites. Nucleic Acids Res. 46, 5737–5752 (2018).
Wu, H., Becker, D. & Krebber, H. Telomerase RNA TLC1 shuttling to the cytoplasm requires mRNA export factors and is important for telomere maintenance. Cell Rep. 8, 1630–1638 (2014).
Gales, J. P., Kubina, J., Geldreich, A. & Dimitrova, M. Strength in diversity: nuclear export of viral RNAs. Viruses 12, 1014 (2020).
Yang, J., Bogerd, H. P., Wang, P. J., Page, D. C. & Cullen, B. R. Two closely related human nuclear export factors utilize entirely distinct export pathways. Mol. Cell 8, 397–406 (2001).
Lari, A. et al. A nuclear role for the DEAD-box protein Dbp5 in tRNA export. eLife 8, e48410 (2019).
Ohno, M., Segref, A., Bachi, A., Wilm, M. & Mattaj, I. W. PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 101, 187–198 (2000).
Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V. & Cullen, B. R. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338, 254–257 (1989).
Lee, S. J., Matsuura, Y., Liu, S. M. & Stewart, M. Structural basis for nuclear import complex dissociation by RanGTP. Nature 435, 693–696 (2005).
Matsuura, Y. & Stewart, M. Structural basis for the assembly of a nuclear export complex. Nature 432, 872–877 (2004).
Cook, A. G., Fukuhara, N., Jinek, M. & Conti, E. Structures of the tRNA export factor in the nuclear and cytosolic states. Nature 461, 60–65 (2009).
Okada, C. et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science 326, 1275–1279 (2009).
Chook, Y. M. & Blobel, G. Structure of the nuclear transport complex karyopherin-β2-Ran × GppNHp. Nature 399, 230–237 (1999).
Hahn, S. & Schlenstedt, G. Importin β-type nuclear transport receptors have distinct binding affinities for Ran-GTP. Biochem. Biophys. Res. Commun. 406, 383–388 (2011).
Cingolani, G., Petosa, C., Weis, K. & Muller, C. W. Structure of importin-β bound to the IBB domain of importin-α. Nature 399, 221–229 (1999).
Mitrousis, G., Olia, A. S., Walker-Kopp, N. & Cingolani, G. Molecular basis for the recognition of snurportin 1 by importin β. J. Biol. Chem. 283, 7877–7884 (2008).
Mosammaparast, N., Ewart, C. S. & Pemberton, L. F. A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B. EMBO J. 21, 6527–6538 (2002).
Mosammaparast, N., Del Rosario, B. C. & Pemberton, L. F. Modulation of histone deposition by the karyopherin kap114. Mol. Cell Biol. 25, 1764–1778 (2005).
Pemberton, L. F., Rosenblum, J. S. & Blobel, G. Nuclear Import of the TATA-binding protein: mediation by the karyopherin Kap114p and a possible mechanism for intranuclear targeting. J. Cell Biol. 145, 1407–1417 (1999).
Senger, B. et al. Mtr10p functions as a nuclear import receptor for the mRNA-binding protein Npl3p. EMBO J. 17, 2196–2207 (1998).
Lee, D. C. & Aitchison, J. D. Kap104p-mediated nuclear import. Nuclear localization signals in mRNA-binding proteins and the role of Ran and RNA. J. Biol. Chem. 274, 29031–29037 (1999).
Yamazawa, R. et al. Structural basis for selective binding of export cargoes by Exportin-5. Structure 26, 1393–1398.e2 (2018). This study shows how XPO5 recognizes mature tRNAs.
Wang, J. et al. XPO5 promotes primary miRNA processing independently of RanGTP. Nat. Commun. 11, 1845 (2020).
Cook, A. et al. The structure of the nuclear export receptor Cse1 in its cytosolic state reveals a closed conformation incompatible with cargo binding. Mol. Cell 18, 355–367 (2005).
Fung, H. Y. & Chook, Y. M. Atomic basis of CRM1–cargo recognition, release and inhibition. Semin. Cancer Biol. 27, 52–61 (2014).
Monecke, T. et al. Structural basis for cooperativity of CRM1 export complex formation. Proc. Natl Acad. Sci. USA 110, 960–965 (2013).
Dong, X., Biswas, A. & Chook, Y. M. Structural basis for assembly and disassembly of the CRM1 nuclear export complex. Nat. Struct. Mol. Biol. 16, 558–560 (2009).
Dian, C. et al. Structure of a truncation mutant of the nuclear export factor CRM1 provides insights into the auto-inhibitory role of its C-terminal helix. Structure 21, 1338–1349 (2013).
Koyama, M. & Matsuura, Y. An allosteric mechanism to displace nuclear export cargo from CRM1 and RanGTP by RanBP1. EMBO J. 29, 2002–201 (2010).
Li, Y. et al. Distinct RanBP1 nuclear export and cargo dissociation mechanisms between fungi and animals. eLife 8, e41331 (2019).
Fu, S. C., Fung, H. Y. J., Cagatay, T., Baumhardt, J. & Chook, Y. M. Correlation of CRM1–NES affinity with nuclear export activity. Mol. Biol. Cell 29, 2037–2044 (2018).
Christie, M. et al. Structural biology and regulation of protein import into the nucleus. J. Mol. Biol. 428, 2060–2090 (2016).
Cautain, B., Hill, R., de Pedro, N. & Link, W. Components and regulation of nuclear transport processes. FEBS J. 282, 445–462 (2015).
Suarez-Calvet, M. et al. Monomethylated and unmethylated FUS exhibit increased binding to Transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathol. 131, 587–604 (2016).
von Morgen, P., Lidak, T., Horejsi, Z. & Macurek, L. Nuclear localisation of 53BP1 is regulated by phosphorylation of the nuclear localisation signal. Biol. Cell 110, 137–146 (2018).
Zhang, X., Fan, S., Zhang, L. & Shi, Y. Glucagon-like peptide-1 receptor undergoes importin-α-dependent nuclear localization in rat aortic smooth muscle cells. FEBS Lett. 594, 1506–1516 (2020).
Li, F. L. et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat. Commun. 9, 508 (2018).
Howard, T. R. et al. The DNA sensor IFIX drives proteome alterations to mobilize nuclear and cytoplasmic antiviral responses, with its acetylation acting as a localization Toggle. mSystems 6, e0039721 (2021).
Cao, X. et al. Acetylation promotes TyrRS nuclear translocation to prevent oxidative damage. Proc. Natl Acad. Sci. USA 114, 687–692 (2017).
Napolitano, G. et al. mTOR-dependent phosphorylation controls TFEB nuclear export. Nat. Commun. 9, 3312 (2018).
Gkotinakou, I. M., Befani, C., Simos, G. & Liakos, P. ERK1/2 phosphorylates HIF-2α and regulates its activity by controlling its CRM1-dependent nuclear shuttling. J. Cell Sci. 132, jcs225698 (2019).
Fang, L. et al. SET1A-mediated mono-methylation at K342 regulates YAP activation by blocking its nuclear export and promotes tumorigenesis. Cancer Cell 34, 103–118.e9 (2018).
Poon, I. K. & Jans, D. A. Regulation of nuclear transport: central role in development and transformation? Traffic 6, 173–186 (2005).
Mehta, S. et al. Dephosphorylation of YB-1 is required for nuclear localisation during G2 phase of the cell cycle. Cancers (Basel) 12, 315 (2020).
Smidova, A. et al. 14-3-3 protein masks the nuclear localization sequence of caspase-2. FEBS J. 285, 4196–4213 (2018).
Kalabova, D. et al. 14-3-3 protein binding blocks the dimerization interface of caspase-2. FEBS J. 287, 3494–3510 (2020).
Duffraisse, M. et al. Role of a versatile peptide motif controlling Hox nuclear export and autophagy in the Drosophila fat body. J. Cell Sci. 133, jcs241943 (2020).
Purice, M. D. & Taylor, J. P. Linking hnRNP function to ALS and FTD pathology. Front. Neurosci. 12, 326 (2018).
Beijer, D. et al. Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. JCI Insight 6, e148363 (2021).
Naruse, H. et al. Molecular epidemiological study of familial amyotrophic lateral sclerosis in Japanese population by whole-exome sequencing and identification of novel HNRNPA1 mutation. Neurobiol. Aging 61, 255.e9–255.e16 (2018).
Liu, Q. et al. Whole-exome sequencing identifies a missense mutation in hnRNPA1 in a family with flail arm ALS. Neurology 87, 1763–1769 (2016).
Pilch, J. et al. Evidence for HNRNPH1 being another gene for Bain type syndromic mental retardation. Clin. Genet. 94, 381–385 (2018).
Bain, J. M. et al. Variants in HNRNPH2 on the X chromosome are associated with a neurodevelopmental disorder in females. Am. J. Hum. Genet. 99, 728–734 (2016).
Falini, B. et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc + AML. Blood 107, 4514–4523 (2006).
Pauty, J. et al. Cancer-causing mutations in the tumor suppressor PALB2 reveal a novel cancer mechanism using a hidden nuclear export signal in the WD40 repeat motif. Nucleic Acids Res. 45, 2644–2657 (2017).
Zhong, Y. et al. Nuclear export of misfolded SOD1 mediated by a normally buried NES-like sequence reduces proteotoxicity in the nucleus. eLife 6, e23759 (2017). This study shows how a mutation in SOD1 exposes a novel NES recognized by CRM1.
Wang, P. et al. Repression of classical nuclear export by S-nitrosylation of CRM1. J. Cell Sci. 122, 3772–3779 (2009).
Martin, A. P. et al. STK38 kinase acts as XPO1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes. EMBO Rep. 20, e48150 (2019).
Sun, H. L. et al. ERK activation globally downregulates miRNAs through phosphorylating Exportin-5. Cancer Cell 30, 723–736 (2016). This study shows how phosphorylation of XPO5 enables recruitment of a protein that causes subsequent conformation change in XPO5, leading to aberrant transport and disease.
Putker, M. et al. Redox-dependent control of FOXO/DAF-16 by transportin-1. Mol. Cell 49, 730–742 (2013).
Rothenbusch, U., Sawatzki, M., Chang, Y., Caesar, S. & Schlenstedt, G. Sumoylation regulates Kap114-mediated nuclear transport. EMBO J. 31, 2461–2472 (2012).
Liu, X. et al. PKA-site phosphorylation of importin13 regulates its subcellular localization and nuclear transport function. Biochem. J. 475, 2699–2712 (2018).
Corum, D. G., Tsichlis, P. N. & Muise-Helmericks, R. C. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1. FASEB J. 28, 395–407 (2014).
Galbraith, L. C. A. et al. PPAR-γ induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene 40, 2355–2366 (2021).
Azizian, N. G. & Li, Y. XPO1-dependent nuclear export as a target for cancer therapy. J. Hematol. Oncol. 13, 61 (2020).
Azmi, A. S., Uddin, M. H. & Mohammad, R. M. The nuclear export protein XPO1 — from biology to targeted therapy. Nat. Rev. Clin. Oncol. 18, 152–169 (2021).
Jain, P. et al. Clinical and molecular characteristics of XPO1 mutations in patients with chronic lymphocytic leukemia. Am. J. Hematol. 91, E478–E479 (2016).
Navarro-Bailon, A. et al. Exportin-1 E571K mutation is a common finding in patients with classical Hodgkin lymphoma. Hematol. Oncol. 37, 215–218 (2019).
Hing, Z. A. et al. Exploring the role of the recurrent exportin 1 (XPO1/CRM1) mutations E571G and E571K in chronic lymphocytic leukemia. Blood 128, 972–972 (2016).
Walker, J. S. et al. Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic leukemia. J. Hematol. Oncol. 14, 17 (2021).
Garcia-Santisteban, I. et al. A cellular reporter to evaluate CRM1 nuclear export activity: functional analysis of the cancer-related mutant E571K. Cell Mol. Life Sci. 73, 4685–4699 (2016).
Taylor, J. et al. Altered nuclear export signal recognition as a driver of oncogenesis. Cancer Discov. 9, 1452–1467 (2019).
Baumhardt, J. M. et al. Recognition of nuclear export signals by CRM1 carrying the oncogenic E571K mutation. Mol. Biol. Cell 31, 1879 (2020).
Miloudi, H. et al. XPO1(E571K) mutation modifies Exportin 1 localisation and interactome in B-cell lymphoma. Cancers (Basel) 12, 2829 (2020).
Wu, K., He, J., Pu, W. & Peng, Y. The role of Exportin-5 in microRNA biogenesis and cancer. Genomics Proteom. Bioinforma. 16, 120–126 (2018).
Lin, D. et al. Exportin-5 SUMOylation promotes hepatocellular carcinoma progression. Exp. Cell Res. 395, 112219 (2020).
Hahn, S., Maurer, P., Caesar, S. & Schlenstedt, G. Classical NLS proteins from Saccharomyces cerevisiae. J. Mol. Biol. 379, 678–694 (2008).
Hopwood, B. & Dalton, S. Cdc45p assembles into a complex with Cdc46p/Mcm5p, is required for minichromosome maintenance, and is essential for chromosomal DNA replication. Proc. Natl Acad. Sci. USA 93, 12309–12314 (1996).
Young, M. R., Suzuki, K., Yan, H., Gibson, S. & Tye, B. K. Nuclear accumulation of Saccharomyces cerevisiae Mcm3 is dependent on its nuclear localization sequence. Genes Cell 2, 631–643 (1997).
Pasion, S. G. & Forsburg, S. L. Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly. Mol. Biol. Cell 10, 4043–4057 (1999).
Liku, M. E., Nguyen, V. Q., Rosales, A. W., Irie, K. & Li, J. J. CDK phosphorylation of a novel NLS–NES module distributed between two subunits of the Mcm2–7 complex prevents chromosomal rereplication. Mol. Biol. Cell 16, 5026–5039 (2005).
Wu, R., Wang, J. & Liang, C. Cdt1p, through its interaction with Mcm6p, is required for the formation, nuclear accumulation and chromatin loading of the MCM complex. J. Cell Sci. 125, 209–219 (2012).
Frigola, J. et al. Cdt1 stabilizes an open MCM ring for helicase loading. Nat. Commun. 8, 15720 (2017).
Pohler, J. R., Otterlei, M. & Warbrick, E. An in vivo analysis of the localisation and interactions of human p66 DNA polymerase δ subunit. BMC Mol. Biol. 6, 17 (2005).
Shen, Y., Wang, K. & Qi, R. Z. The catalytic subunit of DNA polymerase δ is a nucleocytoplasmic shuttling protein. Exp. Cell Res. 375, 36–40 (2019).
Lancey, C. et al. Structure of the processive human Pol δ holoenzyme. Nat. Commun. 11, 1109 (2020).
Kelich, J. M., Papaioannou, H. & Skordalakes, E. Pol α-primase dependent nuclear localization of the mammalian CST complex. Commun. Biol. 4, 349 (2021).
Mizuno, T., Yamagishi, K., Miyazawa, H. & Hanaoka, F. Molecular architecture of the mouse DNA polymerase α-primase complex. Mol. Cell Biol. 19, 7886–7896 (1999).
Mizuno, T. et al. The second-largest subunit of the mouse DNA polymerase α-primase complex facilitates both production and nuclear translocation of the catalytic subunit of DNA polymerase α. Mol. Cell Biol. 18, 3552–3562 (1998).
Baranovskiy, A. G. et al. Mechanism of concerted RNA–DNA primer synthesis by the human primosome. J. Biol. Chem. 291, 10006–10020 (2016).
Kim, B. J. & Lee, H. Lys-110 is essential for targeting PCNA to replication and repair foci, and the K110A mutant activates apoptosis. Biol. Cell 100, 675–686 (2008).
Gulbis, J. M., Kelman, Z., Hurwitz, J., O’Donnell, M. & Kuriyan, J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87, 297–306 (1996).
Rodriguez-Vilarrupla, A. et al. Identification of the nuclear localization signal of p21(cip1) and consequences of its mutation on cell proliferation. FEBS Lett. 531, 319–323 (2002).
Merkle, C. J., Karnitz, L. M., Henry-Sanchez, J. T. & Chen, J. Cloning and characterization of hCTF18, hCTF8, and hDCC1. Human homologs of a Saccharomyces cerevisiae complex involved in sister chromatid cohesion establishment. J. Biol. Chem. 278, 30051–30056 (2003).
Kang, M. S. et al. Regulation of PCNA cycling on replicating DNA by RFC and RFC-like complexes. Nat. Commun. 10, 2420 (2019).
Belanger, K. D. et al. The karyopherin Msn5/Kap142 requires Nup82 for nuclear export and performs a function distinct from translocation in RPA protein import. J. Biol. Chem. 279, 43530–43539 (2004).
Yoshida, K. & Blobel, G. The karyopherin Kap142p/Msn5p mediates nuclear import and nuclear export of different cargo proteins. J. Cell Biol. 152, 729–740 (2001).
Belanger, K. D. et al. The karyopherin Kap95 and the C-termini of Rfa1, Rfa2, and Rfa3 are necessary for efficient nuclear import of functional RPA complex proteins in Saccharomyces cerevisiae. DNA Cell Biol. 30, 641–651 (2011).
Nguyen, V. Q., Co, C., Irie, K. & Li, J. J. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2–7. Curr. Biol. 10, 195–205 (2000).
Bouayad, D. et al. Nuclear-to-cytoplasmic relocalization of the proliferating cell nuclear antigen (PCNA) during differentiation involves a chromosome region maintenance 1 (CRM1)-dependent export and is a prerequisite for PCNA antiapoptotic activity in mature neutrophils. J. Biol. Chem. 287, 33812–33825 (2012).
Loeb, J. D. et al. The yeast nuclear import receptor is required for mitosis. Proc. Natl Acad. Sci. USA 92, 7647–7651 (1995).
Pulliam, K. F., Fasken, M. B., McLane, L. M., Pulliam, J. V. & Corbett, A. H. The classical nuclear localization signal receptor, importin-α, is required for efficient transition through the G1/S stage of the cell cycle in Saccharomyces cerevisiae. Genetics 181, 105–118 (2009).
Garrido-Godino, A. I., Gutierrez-Santiago, F. & Navarro, F. Biogenesis of RNA polymerases in yeast. Front. Mol. Biosci. 8, 669300 (2021).
Czeko, E., Seizl, M., Augsberger, C., Mielke, T. & Cramer, P. Iwr1 directs RNA polymerase II nuclear import. Mol. Cell 42, 261–266 (2011).
Gomez-Navarro, N. & Estruch, F. Different pathways for the nuclear import of yeast RNA polymerase II. Biochim. Biophys. Acta 1849, 1354–1362 (2015).
Forget, D. et al. Nuclear import of RNA polymerase II is coupled with nucleocytoplasmic shuttling of the RNA polymerase II-associated protein 2. Nucleic Acids Res. 41, 6881–6891 (2013).
Forget, D. et al. The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II. Mol. Cell Proteom. 9, 2827–2839 (2010).
Staresincic, L., Walker, J., Dirac-Svejstrup, A. B., Mitter, R. & Svejstrup, J. Q. GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein. J. Biol. Chem. 286, 35553–35561 (2011).
Minaker, S. W., Filiatrault, M. C., Ben-Aroya, S., Hieter, P. & Stirling, P. C. Biogenesis of RNA polymerases II and III requires the conserved GPN small GTPases in Saccharomyces cerevisiae. Genetics 193, 853–864 (2013).
Niesser, J., Wagner, F. R., Kostrewa, D., Muhlbacher, W. & Cramer, P. Structure of GPN-loop GTPase Npa3 and implications for RNA polymerase II assembly. Mol. Cell Biol. 36, 820–831 (2015).
Peiro-Chova, L. & Estruch, F. The yeast RNA polymerase II-associated factor Iwr1p is involved in the basal and regulated transcription of specific genes. J. Biol. Chem. 284, 28958–28967 (2009).
Gibney, P. A., Fries, T., Bailer, S. M. & Morano, K. A. Rtr1 is the Saccharomyces cerevisiae homolog of a novel family of RNA polymerase II-binding proteins. Eukaryot. Cell 7, 938–948 (2008).
Reyes-Pardo, H. et al. A nuclear export sequence in GPN-loop GTPase 1, an essential protein for nuclear targeting of RNA polymerase II, is necessary and sufficient for nuclear export. Biochim. Biophys. Acta 1823, 1756–1766 (2012).
Jakel, S., Mingot, J. M., Schwarzmaier, P., Hartmann, E. & Gorlich, D. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J. 21, 377–386 (2002).
Jakel, S. & Gorlich, D. Importin β, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J. 17, 4491–4502 (1998).
Rout, M. P., Blobel, G. & Aitchison, J. D. A distinct nuclear import pathway used by ribosomal proteins. Cell 89, 715–725 (1997).
Sydorskyy, Y. et al. Intersection of the Kap123p-mediated nuclear import and ribosome export pathways. Mol. Cell Biol. 23, 2042–2054 (2003).
Rosenblum, J. S., Pemberton, L. F. & Blobel, G. A nuclear import pathway for a protein involved in tRNA maturation. J. Cell Biol. 139, 1655–1661 (1997).
Schutz, S. et al. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. eLife 3, e03473 (2014).
Ting, Y. H. et al. Bcp1 is the nuclear chaperone of Rpl23 in Saccharomyces cerevisiae. J. Biol. Chem. 292, 585–596 (2017).
Timney, B. L. et al. Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo. J. Cell Biol. 175, 579–593 (2006).
Plafker, S. M. & Macara, I. G. Ribosomal protein L12 uses a distinct nuclear import pathway mediated by importin 11. Mol. Cell. Biol. 22, 1266–1275 (2002).
Mitterer, V. et al. Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation. Nat. Commun. 7, 10336 (2016).
Mitterer, V. et al. Nuclear import of dimerized ribosomal protein Rps3 in complex with its chaperone Yar1. Sci. Rep. 6, 36714 (2016).
Pillet, B. et al. The dedicated chaperone Acl4 escorts ribosomal protein Rpl4 to its nuclear pre-60S assembly site. PLoS Genet. 11, e1005565 (2015).
Stelter, P. et al. Coordinated ribosomal L4 protein assembly into the pre-ribosome is regulated by its eukaryote-specific extension. Mol. Cell 58, 854–862 (2015).
Kressler, D. et al. Synchronizing nuclear import of ribosomal proteins with ribosome assembly. Science 338, 666–671 (2012).
Schutz, S. et al. Molecular basis for disassembly of an importin:ribosomal protein complex by the escortin Tsr2. Nat. Commun. 9, 3669 (2018). Together with Ting et al. (2017), this paper identifies how nuclear chaperones mediate the RAN–GTP-independent release of RPs from Kaps, coordinating nuclear import and ribosome biogenesis.
Nerurkar, P. et al. Eukaryotic ribosome assembly and nuclear export. Int. Rev. Cell Mol. Biol. 319, 107–140 (2015).
Thomas, F. & Kutay, U. Biogenesis and nuclear export of ribosomal subunits in higher eukaryotes depend on the CRM1 export pathway. J. Cell Sci. 116, 2409–2419 (2003).
Zemp, I. et al. Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J. Cell Biol. 185, 1167–1180 (2009).
Seiser, R. M. et al. Ltv1 is required for efficient nuclear export of the ribosomal small subunit in Saccharomyces cerevisiae. Genetics 174, 679–691 (2006).
Vanrobays, E. et al. TOR regulates the subcellular distribution of DIM2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export. RNA 14, 2061–2073 (2008).
Schnapp, A., Schnapp, G., Erny, B. & Grummt, I. Function of the growth-regulated transcription initiation factor TIF-IA in initiation complex formation at the murine ribosomal gene promoter. Mol. Cell Biol. 13, 6723–6732 (1993).
Warner, J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999).
Wu, Z., Jiang, Q., Clarke, P. R. & Zhang, C. Phosphorylation of Crm1 by CDK1–cyclin-B promotes Ran-dependent mitotic spindle assembly. J. Cell Sci. 126, 3417–3428 (2013).
Guo, H., Wei, J. H., Zhang, Y. & Seemann, J. Importin α phosphorylation promotes TPX2 activation by GM130 to control astral microtubules and spindle orientation. J. Cell Sci. 134, jcs258356 (2021).
Beaudet, D., Pham, N., Skaik, N. & Piekny, A. Importin binding mediates the intramolecular regulation of anillin during cytokinesis. Mol. Biol. Cell 31, 1124–1139 (2020).
Guo, L. et al. Phosphorylation of importin-α1 by CDK1–cyclin B1 controls mitotic spindle assembly. J. Cell Sci. 132, jcs232314 (2019).
Nakada, R., Hirano, H. & Matsuura, Y. Structure of importin-α bound to a non-classical nuclear localization signal of the influenza A virus nucleoprotein. Sci. Rep. 5, 15055 (2015).
Wu, W. et al. Synergy of two low-affinity NLSs determines the high avidity of influenza A virus nucleoprotein NP for human importin α isoforms. Sci. Rep. 7, 11381 (2017).
Cansizoglu, A. E., Lee, B. J., Zhang, Z. C., Fontoura, B. M. & Chook, Y. M. Structure-based design of a pathway-specific nuclear import inhibitor. Nat. Struct. Mol. Biol. 14, 452–454 (2007).
Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R. & Gorlich, D. Export of importin α from the nucleus is mediated by a specific nuclear transport factor. Cell 90, 1061–1071 (1997).
Lipowsky, G. et al. Coordination of tRNA nuclear export with processing of tRNA. RNA 5, 539–549 (1999).
Stuven, T., Hartmann, E. & Gorlich, D. Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J. 22, 5928–5940 (2003).
Çağatay, T. & Chook, Y. M. Karyopherins in cancer. Curr. Opin. Cell Biol. 52, 30–42 (2018).
Kosugi, S. et al. Design of peptide inhibitors for the importin α/β nuclear import pathway by activity-based profiling. Chem. Biol. 15, 940–949 (2008).
Wagstaff, K. M., Rawlinson, S. M., Hearps, A. C. & Jans, D. A. An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. J. Biomol. Screen. 16, 192–200 (2011).
Ambrus, G. et al. Small molecule peptidomimetic inhibitors of importin α/β mediated nuclear transport. Bioorg. Med. Chem. 18, 7611–7620 (2010).
van der Watt, P. J. et al. Targeting the nuclear import receptor kpnβ1 as an anticancer therapeutic. Mol. Cancer Ther. 15, 560–573 (2016).
Ajayi-Smith, A. et al. Novel small molecule inhibitor of Kpnβ1 induces cell cycle arrest and apoptosis in cancer cells. Exp. Cell Res. 404, 112637 (2021).
Hintersteiner, M. et al. Identification of a small molecule inhibitor of importin β mediated nuclear import by confocal on-bead screening of tagged one-bead one-compound libraries. ACS Chem. Biol. 5, 967–979 (2010).
Soderholm, J. F. et al. Importazole, a small molecule inhibitor of the transport receptor importin-β. ACS Chem. Biol. 6, 700–708 (2011).
Jans, D. A., Martin, A. J. & Wagstaff, K. M. Inhibitors of nuclear transport. Curr. Opin. Cell Biol. 58, 50–60 (2019).
Gonzalez Canga, A. et al. The pharmacokinetics and interactions of ivermectin in humans — a mini-review. AAPS J. 10, 42–46 (2008).
Yang, S. N. Y. et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antivir. Res. 177, 104760 (2020).
Wagstaff, K. M. et al. Molecular dissection of an inhibitor targeting the HIV integrase dependent preintegration complex nuclear import. Cell Microbiol. 21, e12953 (2019).
Fraser, J. E. et al. A nuclear transport inhibitor that modulates the unfolded protein response and provides in vivo protection against lethal dengue virus infection. J. Infect. Dis. 210, 1780–1791 (2014).
Liu, W. et al. Identification of a covalent importin-5 inhibitor, goyazensolide, from a collective synthesis of furanoheliangolides. ACS Cent. Sci. 7, 954–962 (2021). This article identifies the first IPO5 inhibitor.
Engelsma, D., Bernad, R., Calafat, J. & Fornerod, M. Supraphysiological nuclear export signals bind CRM1 independently of RanGTP and arrest at Nup358. EMBO J. 23, 3643–3652 (2004).
Ferreira, B. I., Cautain, B., Grenho, I. & Link, W. Small molecule inhibitors of CRM1. Front. Pharmacol. 11, 625 (2020).
Lei, Y. et al. Structure-guided design of the first noncovalent small-molecule inhibitor of CRM1. J. Med. Chem. 64, 6596–6607 (2021).
Sun, Q. et al. Nuclear export inhibition through covalent conjugation and hydrolysis of Leptomycin B by CRM1. Proc. Natl Acad. Sci. USA 110, 1303–1308 (2013).
Ye, Y. & Li, B. 1′S-1′-acetoxychavicol acetate isolated from Alpinia galanga inhibits human immunodeficiency virus type 1 replication by blocking Rev transport. J. Gen. Virol. 87, 2047–2053 (2006).
Hilliard, M. et al. The anti-inflammatory prostaglandin 15-deoxy-Δ(12,14)-PGJ2 inhibits CRM1-dependent nuclear protein export. J. Biol. Chem. 285, 22202–22210 (2010).
Hing, Z. A. et al. Next-generation XPO1 inhibitor shows improved efficacy and in vivo tolerability in hematological malignancies. Leukemia 30, 2364–2372 (2016).
Etchin, J. et al. Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells. Leukemia 27, 66–74 (2013).
Lapalombella, R. et al. Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood 120, 4621–4634 (2012).
Haines, J. D. et al. Nuclear export inhibitors avert progression in preclinical models of inflammatory demyelination. Nat. Neurosci. 18, 511–520 (2015).
Sakakibara, K. et al. CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity. Blood 118, 3922–3931 (2011).
Niu, M., Chong, Y., Han, Y. & Liu, X. Novel reversible selective inhibitor of nuclear export shows that CRM1 is a target in colorectal cancer cells. Cancer Biol. Ther. 16, 1110–1118 (2015).
Tian, X. et al. Small-molecule antagonist targeting exportin-1 via rational structure-based discovery. J. Med. Chem. 63, 3881–3895 (2020).
Xu, H. W. et al. A low toxic CRM1 degrader: synthesis and anti-proliferation on MGC803 and HGC27. Eur. J. Med. Chem. 206, 112708 (2020).
Saito, N. et al. CBS9106-induced CRM1 degradation is mediated by cullin ring ligase activity and the neddylation pathway. Mol. Cancer Ther. 13, 3013–3023 (2014).
Peterson, T. J., Orozco, J. & Buege, M. Selinexor: a first-in-class nuclear export inhibitor for management of multiply relapsed multiple myeloma. Ann. Pharmacother. 54, 577–582 (2020).
Ben-Barouch, S. & Kuruvilla, J. Selinexor (KTP-330) — a selective inhibitor of nuclear export (SINE): anti-tumor activity in diffuse large B-cell lymphoma (DLBCL). Expert Opin. Investig. Drugs 29, 15–21 (2020).
Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999).
Nakai, K. & Kanehisa, M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897–911 (1992).
Kosugi, S., Hasebe, M., Tomita, M. & Yanagawa, H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl Acad. Sci. USA 106, 10171–10176 (2009).
Cokol, M., Nair, R. & Rost, B. Finding nuclear localization signals. EMBO Rep. 1, 411–415 (2000).
Brameier, M., Krings, A. & MacCallum, R. M. NucPred — predicting nuclear localization of proteins. Bioinformatics 23, 1159–1160 (2007).
Nair, R., Carter, P. & Rost, B. NLSdb: database of nuclear localization signals. Nucleic Acids Res. 31, 397–399 (2003).
Mehdi, A. M., Sehgal, M. S., Kobe, B., Bailey, T. L. & Boden, M. A probabilistic model of nuclear import of proteins. Bioinformatics 27, 1239–1246 (2011).
Nguyen Ba, A. N., Pogoutse, A., Provart, N. & Moses, A. M. NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. BMC Bioinforma. 10, 202 (2009).
Lin, J. R. & Hu, J. SeqNLS: nuclear localization signal prediction based on frequent pattern mining and linear motif scoring. PLoS ONE 8, e76864 (2013). This paper introduces SeqNLS, which is the current NLS predictor with the best balance in performance.
Bernhofer, M. et al. NLSdb — major update for database of nuclear localization signals and nuclear export signals. Nucleic Acids Res. 46, D503–D508 (2018).
Guo, Y., Yang, Y., Huang, Y. & Shen, H. B. Discovering nuclear targeting signal sequence through protein language learning and multivariate analysis. Anal. Biochem. 591, 113565 (2020).
la Cour, T. et al. NESbase version 1.0: a database of nuclear export signals. Nucleic Acids Res. 31, 393–396 (2003).
la Cour, T. et al. Analysis and prediction of leucine-rich nuclear export signals. Protein Eng. Des. Sel. 17, 527–536 (2004).
Fu, S. C., Imai, K. & Horton, P. Prediction of leucine-rich nuclear export signal containing proteins with NESsential. Nucleic Acids Res. 39, e111 (2011).
Prieto, G., Fullaondo, A. & Rodriguez, J. A. Prediction of nuclear export signals using weighted regular expressions (Wregex). Bioinformatics 30, 1220–1227 (2014).
Kosugi, S., Yanagawa, H., Terauchi, R. & Tabata, S. NESmapper: accurate prediction of leucine-rich nuclear export signals using activity-based profiles. PLoS Comput. Biol. 10, e1003841 (2014).
Xu, D. et al. LocNES: a computational tool for locating classical NESs in CRM1 cargo proteins. Bioinformatics 31, 1357–1365 (2015). This paper introduces LocNES, which is the top-performing NES predictor available currently.
Liku, M. E., Legere, E. A. & Moses, A. M. NoLogo: a new statistical model highlights the diversity and suggests new classes of Crm1-dependent nuclear export signals. BMC Bioinforma. 19, 65 (2018).
Lee, Y., Pei, J., Baumhardt, J. M., Chook, Y. M. & Grishin, N. V. Structural prerequisites for CRM1-dependent nuclear export signaling peptides: accessibility, adapting conformation, and the stability at the binding site. Sci. Rep. 9, 6627 (2019).
Acknowledgements
This work was funded by the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH) under Awards R01GM069909 and R35GM144137 (Y.M.C.), the Welch Foundation Grant I-1532 (Y.M.C.), Cancer Prevention Research Institute of Texas (CPRIT) Grant RP180410 (Y.M.C.), support from the Alfred and Mabel Gilman Chair in Molecular Pharmacology, Eugene McDermott Scholar in Biomedical Research (Y.M.C.), the Gilman Special Opportunities Award (H.Y.J.F.) and NIGMS Molecular Biophysics Training Program T32GM131963 (C.E.W.).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
Y.M.C. is a consultant for Faze Medicines. The remaining authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Molecular Cell Biology thanks Anita Corbett, Roderick Lim and Michael Rout for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
cNLS Mapper: http://nls-mapper.iab.keio.ac.jp
INSP: http://www.csbio.sjtu.edu.cn/bioinf/INSP/
LocNES: http://prodata.swmed.edu/LocNES/LocNES.php
NESmapper: https://sourceforge.net/projects/nesmapper/
NetNES: https://services.healthtech.dtu.dk/service.php?NetNES-1.1
NLStradamus: http://www.moseslab.csb.utoronto.ca/NLStradamus/
NoLogo: https://github.com/mppl1/NoLogo
NucPred: https://nucpred.bioinfo.se/nucpred/
NucImport: http://bioinf.scmb.uq.edu.au:8080/NucImport/
PSORT: https://www.genscript.com/psort.htmlPSORT II: https://psort.hgc.jp/form2.html
PredictNLS: https://rostlab.org/owiki/index.php/PredictNLS
SeqNLS: http://mleg.cse.sc.edu/seqNLS/
Supplementary information
Glossary
- Nanobodies
-
Small, single-domain antibodies derived from camelids (camels, alpacas and llamas) that lack light chains.
- HEAT repeats
-
Structural motifs composed of two antiparallel α-helices that are usually connected by a loop. HEAT repeats occur in tandem to form solenoid or superhelical structures.
- Intrinsically disordered regions
-
(IDRs). Protein regions that do not have persistent tertiary structures.
- Armadillo (ARM) repeat domain
-
A protein domain typically 40 residues long that shares homology with repeating units in the ARM protein family. It contains two or three helices per repeat, which stack into a solenoid arrangement.
- Amyotrophic lateral sclerosis
-
A fatal neurodegenerative disease, with progressive loss of motor neuron control that leads to paralysis. Amyotrophic lateral sclerosis onset and progression may be a consequence of protein misfolding/aggregation.
- Exon junction complex
-
A multiprotein complex that binds to the junction between exons in nuclear precursor mRNAs and remains bound during their export to the cytoplasm.
- MH2 domain
-
A protein domain found in the carboxy-terminal portion of SMAD proteins. It comprises a β-sandwich fold with a three-helix bundle on one end and a loop–helix region on the other.
- SH3-like domain
-
A small globular domain that binds poly-proline motifs, comprising five or six β-strands tightly packed into antiparallel β-sheets.
- OB domain
-
A small globular domain composed of two three-stranded antiparallel β-strands packed into a flattened β-barrel.
- Machine learning
-
A branch of artificial intelligence that automates iterative analytical model building based solely on training data, with minimal human intervention.
- m3G cap
-
A 2,2,7-trimethylated guanosine cap structure of uridylate-rich small nuclear RNAs (U small nuclear RNAs), which are the RNA components of spliceosomal ribonucleoproteins (small nuclear RNP).
- Multisystem proteinopathy
-
A group of inherited disorders that cause neurodegeneration, myopathy and bone disease, and can manifest as amyotrophic lateral sclerosis, frontotemporal dementia, inclusion body myopathy, Paget’s disease of bone or their combination.
- P-body
-
A type of cytoplasmic granule containing mRNAs and proteins that is involved in RNA metabolism with liquid droplet properties.
- MEX67-MTR2
-
A heterodimeric mRNA export receptor that also functions in ribosomal export and is conserved in eukaryotes.
Rights and permissions
About this article
Cite this article
Wing, C.E., Fung, H.Y.J. & Chook, Y.M. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 23, 307–328 (2022). https://doi.org/10.1038/s41580-021-00446-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41580-021-00446-7
This article is cited by
-
Nuclear-import receptors as gatekeepers of pathological phase transitions in ALS/FTD
Molecular Neurodegeneration (2024)
-
NUP43 promotes PD-L1/nPD-L1/PD-L1 feedback loop via TM4SF1/JAK/STAT3 pathway in colorectal cancer progression and metastatsis
Cell Death Discovery (2024)
-
A checkpoint function for Nup98 in nuclear pore formation suggested by novel inhibitory nanobodies
The EMBO Journal (2024)
-
Nuclear to cytoplasmic transport is a druggable dependency in MYC-driven hepatocellular carcinoma
Nature Communications (2024)
-
Endosome mediated nucleocytoplasmic trafficking and endomembrane allocation is crucial to polyglutamine toxicity
Cell Biology and Toxicology (2024)