Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Karyopherin-mediated nucleocytoplasmic transport

Abstract

Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap–cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines — the core replisome, RNA polymerase II and the ribosome — pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kap-mediated nucleocytoplasmic transport and principles of Kap–cargo interactions and RAN–GTP-dependent loading/unloading.
Fig. 2: Comparison of unliganded, cargo-bound and RAN-bound importins.
Fig. 3: Comparison of unliganded, cargo-bound and RAN-bound exportins and biportins.
Fig. 4: Regulation of Kap–cargo interactions.
Fig. 5: Nuclear trafficking of three different gene expression machineries.

Similar content being viewed by others

References

  1. Chook, Y. M. & Suel, K. E. Nuclear import by karyopherin-βs: recognition and inhibition. Biochim. Biophys. Acta 1813, 1593–1606 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Matsuura, Y. Mechanistic insights from structural analyses of Ran-GTPase-driven nuclear export of proteins and RNAs. J. Mol. Biol. 428, 2025–2039 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Kalita, J., Kapinos, L. E. & Lim, R. Y. H. On the asymmetric partitioning of nucleocytoplasmic transport — recent insights and open questions. J. Cell Sci. 134, jcs240382 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. O’Reilly, A. J., Dacks, J. B. & Field, M. C. Evolution of the karyopherin-β family of nucleocytoplasmic transport factors; ancient origins and continued specialization. PLoS ONE 6, e19308 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Thakar, K., Karaca, S., Port, S. A., Urlaub, H. & Kehlenbach, R. H. Identification of CRM1-dependent nuclear export cargos using quantitative mass spectrometry. Mol. Cell Proteom. 12, 664–678 (2013).

    Article  CAS  Google Scholar 

  6. Wuhr, M. et al. The nuclear proteome of a vertebrate. Curr. Biol. 25, 2663–2671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kırlı, K. et al. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife 4, e11466 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mackmull, M. T. et al. Landscape of nuclear transport receptor cargo specificity. Mol. Syst. Biol. 13, 962 (2017). This proteomics study identifies interaction partners for several Kaps and IMPαs using proximity ligation, which can differentiate direct versus ‘piggyback’ transport.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Kimura, M. et al. Extensive cargo identification reveals distinct biological roles of the 12 importin pathways. eLife 6, e21184 (2017). This proteomics study identifies import cargoes for the 12 mammalian importins and biportins.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baade, I., Spillner, C., Schmitt, K., Valerius, O. & Kehlenbach, R. H. Extensive identification and in-depth validation of importin 13 cargoes. Mol. Cell Proteom. 17, 1337–1353 (2018). This proteomics study is the first to employ an experimental approach that can identify and differentiate both import and export cargoes of a biportin.

    Article  CAS  Google Scholar 

  11. Aksu, M. et al. Xpo7 is a broad-spectrum exportin and a nuclear import receptor. J. Cell Biol. 217, 2329–2340 (2018). This article shows the first use of nanobodies as Kap-specific inhibitors and demonstrates that XPO7 functions as a biportin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vera Rodriguez, A., Frey, S. & Gorlich, D. Engineered SUMO/protease system identifies Pdr6 as a bidirectional nuclear transport receptor. J. Cell Biol. 218, 2006–2020 (2019). This article shows that PDR6 functions as a biportin and identifies novel import and export cargoes.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Lange, A. et al. Classical nuclear localization signals: definition, function, and interaction with importin α. J. Biol. Chem. 282, 5101–5105 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Fung, H. Y., Fu, S. C. & Chook, Y. M. Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals. eLife 6, e23961 (2017). This article shows how diverse NESs bind CRM1 and further expands the number of NES consensus sequences.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Soniat, M. & Chook, Y. M. Nuclear localization signals for four distinct karyopherin-β nuclear import systems. Biochem. J. 468, 353–362 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Pumroy, R. A. & Cingolani, G. Diversification of importin-α isoforms in cellular trafficking and disease states. Biochem. J. 466, 13–28 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Robbins, J., Dilworth, S. M., Laskey, R. A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615–623 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Kalderon, D., Richardson, W. D., Markham, A. F. & Smith, A. E. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311, 33–38 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Chang, C. C. et al. Ran pathway-independent regulation of mitotic Golgi disassembly by Importin-α. Nat. Commun. 10, 4307 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Jagga, B. et al. Structural basis for nuclear import selectivity of pioneer transcription factor SOX2. Nat. Commun. 12, 28 (2021). This article shows how IMPα3 recognizes SOX2 using two NLSs linked by a folded domain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lott, K., Bhardwaj, A., Sims, P. J. & Cingolani, G. A minimal nuclear localization signal (NLS) in human phospholipid scramblase 4 that binds only the minor NLS-binding site of importin α1. J. Biol. Chem. 286, 28160–28169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94, 193–204 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nat. Struct. Biol. 6, 388–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Catimel, B. et al. Biophysical characterization of interactions involving importin-α during nuclear import. J. Biol. Chem. 276, 34189–34198 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Fanara, P., Hodel, M. R., Corbett, A. H. & Hodel, A. E. Quantitative analysis of nuclear localization signal (NLS)-importin α interaction through fluorescence depolarization. Evidence for auto-inhibitory regulation of NLS binding. J. Biol. Chem. 275, 21218–21223 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Hodel, M. R., Corbett, A. H. & Hodel, A. E. Dissection of a nuclear localization signal. J. Biol. Chem. 276, 1317–1325 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Hodel, A. E. et al. Nuclear localization signal receptor affinity correlates with in vivo localization in Saccharomyces cerevisiae. J. Biol. Chem. 281, 23545–23556 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Nardozzi, J., Wenta, N., Yasuhara, N., Vinkemeier, U. & Cingolani, G. Molecular basis for the recognition of phosphorylated STAT1 by importin α5. J. Mol. Biol. 402, 83–100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pumroy, R. A., Ke, S., Hart, D. J., Zachariae, U. & Cingolani, G. Molecular determinants for nuclear import of influenza A PB2 by importin α isoforms 3 and 7. Structure 23, 374–384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Soniat, M. & Chook, Y. M. Karyopherin-β2 recognition of a PY-NLS variant that lacks the proline-tyrosine motif. Structure 24, 1802–1809 (2016). This study identifies the first PY-NLS that lacks the PY motif, illustrating the sequence diversity of PY-NLSs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suel, K. E., Gu, H. & Chook, Y. M. Modular organization and combinatorial energetics of proline-tyrosine nuclear localization signals. PLoS Biol. 6, e137 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Lee, B. J. et al. Rules for nuclear localization sequence recognition by karyopherin β 2. Cell 126, 543–558 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kobayashi, J. & Matsuura, Y. Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p. J. Mol. Biol. 425, 1852–1868 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi, J., Hirano, H. & Matsuura, Y. Crystal structure of the karyopherin Kap121p bound to the extreme C-terminus of the protein phosphatase Cdc14p. Biochem. Biophys. Res. Commun. 463, 309–314 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Makhnevych, T., Ptak, C., Lusk, C. P., Aitchison, J. D. & Wozniak, R. W. The role of karyopherins in the regulated sumoylation of septins. J. Cell Biol. 177, 39–49 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jang, S. et al. Differential role for phosphorylation in alternative polyadenylation function versus nuclear import of SR-like protein CPSF6. Nucleic Acids Res. 47, 4663–468 (2019). This study shows how TNPO3 recognizes non-phosphorylated RS-like domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yun, C. Y., Velazquez-Dones, A. L., Lyman, S. K. & Fu, X. D. Phosphorylation-dependent and -independent nuclear import of RS domain-containing splicing factors and regulators. J. Biol. Chem. 278, 18050–18055 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Lai, M. C., Lin, R. I. & Tarn, W. Y. Transportin-SR2 mediates nuclear import of phosphorylated SR proteins. Proc. Natl Acad. Sci. USA 98, 10154–10159 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen, W., Meinkoth, J. L., Tsien, R. Y. & Taylor, S. S. Identification of a signal for rapid export of proteins from the nucleus. Cell 82, 463–473 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Fischer, U., Huber, J., Boelens, W. C., Mattaj, I. W. & Luhrmann, R. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82, 475–483 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Dong, X. et al. Structural basis for leucine-rich nuclear export signal recognition by CRM1. Nature 458, 1136–1141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Monecke, T. et al. Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP. Science 324, 1087–1091 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Guttler, T. et al. NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat. Struct. Mol. Biol. 17, 1367–1376 (2010).

    Article  PubMed  CAS  Google Scholar 

  44. Fung, H. Y., Fu, S. C., Brautigam, C. A. & Chook, Y. M. Structural determinants of nuclear export signal orientation in binding to exportin CRM1. eLife 4, e10034 (2015).

    Article  PubMed Central  Google Scholar 

  45. Huber, J. et al. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J. 17, 4114–4126 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jullien, D., Gorlich, D., Laemmli, U. K. & Adachi, Y. Nuclear import of RPA in Xenopus egg extracts requires a novel protein XRIPα but not importin α. EMBO J. 18, 4348–4358 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Görlich, D., Henklein, P., Laskey, R. A. & Hartmann, E. A 41 amino acid motif in importin-α confers binding to importin-β and hence transit into the nucleus. EMBO J. 15, 1810–1817 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cingolani, G., Bednenko, J., Gillespie, M. T. & Gerace, L. Molecular basis for the recognition of a nonclassical nuclear localization signal by importin β. Mol. Cell 10, 1345–1353 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez, A. et al. Mechanism of karyopherin-β2 binding and nuclear import of ALS variants FUS(P525L) and FUS(R495X). Sci. Rep. 11, 3754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baade, I. et al. The RNA-binding protein FUS is chaperoned and imported into the nucleus by a network of import receptors. J. Biol. Chem. 296, 100659 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bourgeois, B. et al. Nonclassical nuclear localization signals mediate nuclear import of CIRBP. Proc. Natl Acad. Sci. USA 117, 8503–8514 (2020). This study identifies the novel RGG motif recognized by KAPβ2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Soniat, M., Cagatay, T. & Chook, Y. M. Recognition elements in the histone H3 and H4 tails for seven different importins. J. Biol. Chem. 291, 21171–21183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Komeili, A. & O’Shea, E. K. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284, 977–980 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Fritz, J. et al. RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1. Mol. Cell Biol. 29, 1487–1497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sakurai, M. et al. ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay. Nat. Struct. Mol. Biol. 24, 534–543 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu, W. et al. Ebola virus VP24 targets a unique NLS binding site on karyopherin α 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 16, 187–200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Choi, S. et al. Structural basis for the selective nuclear import of the C2H2 zinc-finger protein Snail by importin β. Acta Crystallogr. D. Biol. Crystallogr. 70, 1050–1060 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, S. J. et al. The structure of importin-β bound to SREBP-2: nuclear import of a transcription factor. Science 302, 1571–1575 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Padavannil, A. et al. Importin-9 wraps around the H2A–H2B core to act as nuclear importer and histone chaperone. eLife 8, e43630 (2019). This article shows the first structure of IPO9 bound to histone dimer H2A–H2B in a chaperone-like manner.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lin, W. et al. The roles of multiple importins for nuclear import of murine aristaless-related homeobox protein. J. Biol. Chem. 284, 20428–20439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lubert, E. J. & Sarge, K. D. Interaction between protein phosphatase 2A and members of the importin β superfamily. Biochem. Biophys. Res. Commun. 303, 908–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Volpon, L. et al. Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E. Proc. Natl Acad. Sci. USA 113, 5263–5268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bono, F., Cook, A. G., Grunwald, M., Ebert, J. & Conti, E. Nuclear import mechanism of the EJC component Mago-Y14 revealed by structural studies of importin 13. Mol. Cell 37, 211–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Grunwald, M. & Bono, F. Structure of Importin13–Ubc9 complex: nuclear import and release of a key regulator of sumoylation. EMBO J. 30, 427–438 (2011). This study shows how biportin PDR6 recognizes its import cargo UBC9 and export cargo eIF5A using a mechanism distinct from that of mammalian IPO13 and XPO4, respectively.

    Article  PubMed  CAS  Google Scholar 

  65. Aksu, M., Trakhanov, S., Vera Rodriguez, A. & Gorlich, D. Structural basis for the nuclear import and export functions of the biportin Pdr6/Kap122. J. Cell Biol. 218, 1839–1852 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gontan, C. et al. Exportin 4 mediates a novel nuclear import pathway for Sox family transcription factors. J. Cell Biol. 185, 27–34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chatzifrangkeskou, M. et al. RASSF1A is required for the maintenance of nuclear actin levels. EMBO J. 38, e101168 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Grunwald, M., Lazzaretti, D. & Bono, F. Structural basis for the nuclear export activity of Importin13. EMBO J. 32, 899–913 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Kurisaki, A. et al. The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol. Cell Biol. 26, 1318–1332 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aksu, M., Trakhanov, S. & Gorlich, D. Structure of the exportin Xpo4 in complex with RanGTP and the hypusine-containing translation factor eIF5A. Nat. Commun. 7, 11952 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lipowsky, G. et al. Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J. 19, 4362–4371 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smith, K. M. et al. Structural basis for importin α 3 specificity of W proteins in Hendra and Nipah viruses. Nat. Commun. 9, 3703 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Sankhala, R. S. et al. Three-dimensional context rather than NLS amino acid sequence determines importin α subtype specificity for RCC1. Nat. Commun. 8, 979 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Ivic, N. et al. Fuzzy interactions form and shape the histone transport complex. Mol. Cell 73, 1191–1203.e6 (2019). This study uses cryo electron microscopy to demonstrate how the IMPβ–IPO7 heterodimer binds and imports H1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maertens, G. N. et al. Structural basis for nuclear import of splicing factors by human Transportin 3. Proc. Natl Acad. Sci. USA 111, 2728–2733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Caceres, J. F., Misteli, T., Screaton, G. R., Spector, D. L. & Krainer, A. R. Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J. Cell Biol. 138, 225–238 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hopper, A. K. & Nostramo, R. T. tRNA processing and subcellular trafficking proteins multitask in pathways for other RNAs. Front. Genet. 10, 96 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Calado, A., Treichel, N., Muller, E. C., Otto, A. & Kutay, U. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J. 21, 6216–6224 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bohnsack, M. T. et al. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J. 21, 6205–6215 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Okamura, M., Inose, H. & Masuda, S. RNA export through the NPC in eukaryotes. Genes 6, 124–149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Verheggen, C. & Bertrand, E. CRM1 plays a nuclear role in transporting snoRNPs to nucleoli in higher eukaryotes. Nucleus 3, 132–137 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Martinez, I. et al. An Exportin-1-dependent microRNA biogenesis pathway during human cell quiescence. Proc. Natl Acad. Sci. USA 114, E4961–E4970 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sheng, P. et al. Dicer cleaves 5′-extended microRNA precursors originating from RNA polymerase II transcription start sites. Nucleic Acids Res. 46, 5737–5752 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu, H., Becker, D. & Krebber, H. Telomerase RNA TLC1 shuttling to the cytoplasm requires mRNA export factors and is important for telomere maintenance. Cell Rep. 8, 1630–1638 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Gales, J. P., Kubina, J., Geldreich, A. & Dimitrova, M. Strength in diversity: nuclear export of viral RNAs. Viruses 12, 1014 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  86. Yang, J., Bogerd, H. P., Wang, P. J., Page, D. C. & Cullen, B. R. Two closely related human nuclear export factors utilize entirely distinct export pathways. Mol. Cell 8, 397–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Lari, A. et al. A nuclear role for the DEAD-box protein Dbp5 in tRNA export. eLife 8, e48410 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ohno, M., Segref, A., Bachi, A., Wilm, M. & Mattaj, I. W. PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 101, 187–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V. & Cullen, B. R. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338, 254–257 (1989).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, S. J., Matsuura, Y., Liu, S. M. & Stewart, M. Structural basis for nuclear import complex dissociation by RanGTP. Nature 435, 693–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Matsuura, Y. & Stewart, M. Structural basis for the assembly of a nuclear export complex. Nature 432, 872–877 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Cook, A. G., Fukuhara, N., Jinek, M. & Conti, E. Structures of the tRNA export factor in the nuclear and cytosolic states. Nature 461, 60–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Okada, C. et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science 326, 1275–1279 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Chook, Y. M. & Blobel, G. Structure of the nuclear transport complex karyopherin-β2-Ran × GppNHp. Nature 399, 230–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Hahn, S. & Schlenstedt, G. Importin β-type nuclear transport receptors have distinct binding affinities for Ran-GTP. Biochem. Biophys. Res. Commun. 406, 383–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Cingolani, G., Petosa, C., Weis, K. & Muller, C. W. Structure of importin-β bound to the IBB domain of importin-α. Nature 399, 221–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Mitrousis, G., Olia, A. S., Walker-Kopp, N. & Cingolani, G. Molecular basis for the recognition of snurportin 1 by importin β. J. Biol. Chem. 283, 7877–7884 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Mosammaparast, N., Ewart, C. S. & Pemberton, L. F. A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B. EMBO J. 21, 6527–6538 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mosammaparast, N., Del Rosario, B. C. & Pemberton, L. F. Modulation of histone deposition by the karyopherin kap114. Mol. Cell Biol. 25, 1764–1778 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pemberton, L. F., Rosenblum, J. S. & Blobel, G. Nuclear Import of the TATA-binding protein: mediation by the karyopherin Kap114p and a possible mechanism for intranuclear targeting. J. Cell Biol. 145, 1407–1417 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Senger, B. et al. Mtr10p functions as a nuclear import receptor for the mRNA-binding protein Npl3p. EMBO J. 17, 2196–2207 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee, D. C. & Aitchison, J. D. Kap104p-mediated nuclear import. Nuclear localization signals in mRNA-binding proteins and the role of Ran and RNA. J. Biol. Chem. 274, 29031–29037 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Yamazawa, R. et al. Structural basis for selective binding of export cargoes by Exportin-5. Structure 26, 1393–1398.e2 (2018). This study shows how XPO5 recognizes mature tRNAs.

    Article  CAS  PubMed  Google Scholar 

  104. Wang, J. et al. XPO5 promotes primary miRNA processing independently of RanGTP. Nat. Commun. 11, 1845 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cook, A. et al. The structure of the nuclear export receptor Cse1 in its cytosolic state reveals a closed conformation incompatible with cargo binding. Mol. Cell 18, 355–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Fung, H. Y. & Chook, Y. M. Atomic basis of CRM1–cargo recognition, release and inhibition. Semin. Cancer Biol. 27, 52–61 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Monecke, T. et al. Structural basis for cooperativity of CRM1 export complex formation. Proc. Natl Acad. Sci. USA 110, 960–965 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Dong, X., Biswas, A. & Chook, Y. M. Structural basis for assembly and disassembly of the CRM1 nuclear export complex. Nat. Struct. Mol. Biol. 16, 558–560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dian, C. et al. Structure of a truncation mutant of the nuclear export factor CRM1 provides insights into the auto-inhibitory role of its C-terminal helix. Structure 21, 1338–1349 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Koyama, M. & Matsuura, Y. An allosteric mechanism to displace nuclear export cargo from CRM1 and RanGTP by RanBP1. EMBO J. 29, 2002–201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, Y. et al. Distinct RanBP1 nuclear export and cargo dissociation mechanisms between fungi and animals. eLife 8, e41331 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Fu, S. C., Fung, H. Y. J., Cagatay, T., Baumhardt, J. & Chook, Y. M. Correlation of CRM1–NES affinity with nuclear export activity. Mol. Biol. Cell 29, 2037–2044 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Christie, M. et al. Structural biology and regulation of protein import into the nucleus. J. Mol. Biol. 428, 2060–2090 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Cautain, B., Hill, R., de Pedro, N. & Link, W. Components and regulation of nuclear transport processes. FEBS J. 282, 445–462 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Suarez-Calvet, M. et al. Monomethylated and unmethylated FUS exhibit increased binding to Transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathol. 131, 587–604 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. von Morgen, P., Lidak, T., Horejsi, Z. & Macurek, L. Nuclear localisation of 53BP1 is regulated by phosphorylation of the nuclear localisation signal. Biol. Cell 110, 137–146 (2018).

    Article  CAS  Google Scholar 

  117. Zhang, X., Fan, S., Zhang, L. & Shi, Y. Glucagon-like peptide-1 receptor undergoes importin-α-dependent nuclear localization in rat aortic smooth muscle cells. FEBS Lett. 594, 1506–1516 (2020).

    Article  PubMed  Google Scholar 

  118. Li, F. L. et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat. Commun. 9, 508 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  119. Howard, T. R. et al. The DNA sensor IFIX drives proteome alterations to mobilize nuclear and cytoplasmic antiviral responses, with its acetylation acting as a localization Toggle. mSystems 6, e0039721 (2021).

    Article  PubMed  Google Scholar 

  120. Cao, X. et al. Acetylation promotes TyrRS nuclear translocation to prevent oxidative damage. Proc. Natl Acad. Sci. USA 114, 687–692 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Napolitano, G. et al. mTOR-dependent phosphorylation controls TFEB nuclear export. Nat. Commun. 9, 3312 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  122. Gkotinakou, I. M., Befani, C., Simos, G. & Liakos, P. ERK1/2 phosphorylates HIF-2α and regulates its activity by controlling its CRM1-dependent nuclear shuttling. J. Cell Sci. 132, jcs225698 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Fang, L. et al. SET1A-mediated mono-methylation at K342 regulates YAP activation by blocking its nuclear export and promotes tumorigenesis. Cancer Cell 34, 103–118.e9 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Poon, I. K. & Jans, D. A. Regulation of nuclear transport: central role in development and transformation? Traffic 6, 173–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Mehta, S. et al. Dephosphorylation of YB-1 is required for nuclear localisation during G2 phase of the cell cycle. Cancers (Basel) 12, 315 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  126. Smidova, A. et al. 14-3-3 protein masks the nuclear localization sequence of caspase-2. FEBS J. 285, 4196–4213 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Kalabova, D. et al. 14-3-3 protein binding blocks the dimerization interface of caspase-2. FEBS J. 287, 3494–3510 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Duffraisse, M. et al. Role of a versatile peptide motif controlling Hox nuclear export and autophagy in the Drosophila fat body. J. Cell Sci. 133, jcs241943 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Purice, M. D. & Taylor, J. P. Linking hnRNP function to ALS and FTD pathology. Front. Neurosci. 12, 326 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Beijer, D. et al. Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. JCI Insight 6, e148363 (2021).

    Article  PubMed Central  Google Scholar 

  131. Naruse, H. et al. Molecular epidemiological study of familial amyotrophic lateral sclerosis in Japanese population by whole-exome sequencing and identification of novel HNRNPA1 mutation. Neurobiol. Aging 61, 255.e9–255.e16 (2018).

    Article  CAS  Google Scholar 

  132. Liu, Q. et al. Whole-exome sequencing identifies a missense mutation in hnRNPA1 in a family with flail arm ALS. Neurology 87, 1763–1769 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Pilch, J. et al. Evidence for HNRNPH1 being another gene for Bain type syndromic mental retardation. Clin. Genet. 94, 381–385 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Bain, J. M. et al. Variants in HNRNPH2 on the X chromosome are associated with a neurodevelopmental disorder in females. Am. J. Hum. Genet. 99, 728–734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Falini, B. et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc + AML. Blood 107, 4514–4523 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Pauty, J. et al. Cancer-causing mutations in the tumor suppressor PALB2 reveal a novel cancer mechanism using a hidden nuclear export signal in the WD40 repeat motif. Nucleic Acids Res. 45, 2644–2657 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhong, Y. et al. Nuclear export of misfolded SOD1 mediated by a normally buried NES-like sequence reduces proteotoxicity in the nucleus. eLife 6, e23759 (2017). This study shows how a mutation in SOD1 exposes a novel NES recognized by CRM1.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wang, P. et al. Repression of classical nuclear export by S-nitrosylation of CRM1. J. Cell Sci. 122, 3772–3779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Martin, A. P. et al. STK38 kinase acts as XPO1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes. EMBO Rep. 20, e48150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sun, H. L. et al. ERK activation globally downregulates miRNAs through phosphorylating Exportin-5. Cancer Cell 30, 723–736 (2016). This study shows how phosphorylation of XPO5 enables recruitment of a protein that causes subsequent conformation change in XPO5, leading to aberrant transport and disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Putker, M. et al. Redox-dependent control of FOXO/DAF-16 by transportin-1. Mol. Cell 49, 730–742 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Rothenbusch, U., Sawatzki, M., Chang, Y., Caesar, S. & Schlenstedt, G. Sumoylation regulates Kap114-mediated nuclear transport. EMBO J. 31, 2461–2472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu, X. et al. PKA-site phosphorylation of importin13 regulates its subcellular localization and nuclear transport function. Biochem. J. 475, 2699–2712 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Corum, D. G., Tsichlis, P. N. & Muise-Helmericks, R. C. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1. FASEB J. 28, 395–407 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Galbraith, L. C. A. et al. PPAR-γ induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene 40, 2355–2366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Azizian, N. G. & Li, Y. XPO1-dependent nuclear export as a target for cancer therapy. J. Hematol. Oncol. 13, 61 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Azmi, A. S., Uddin, M. H. & Mohammad, R. M. The nuclear export protein XPO1 — from biology to targeted therapy. Nat. Rev. Clin. Oncol. 18, 152–169 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Jain, P. et al. Clinical and molecular characteristics of XPO1 mutations in patients with chronic lymphocytic leukemia. Am. J. Hematol. 91, E478–E479 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Navarro-Bailon, A. et al. Exportin-1 E571K mutation is a common finding in patients with classical Hodgkin lymphoma. Hematol. Oncol. 37, 215–218 (2019).

    Article  PubMed  Google Scholar 

  150. Hing, Z. A. et al. Exploring the role of the recurrent exportin 1 (XPO1/CRM1) mutations E571G and E571K in chronic lymphocytic leukemia. Blood 128, 972–972 (2016).

    Article  Google Scholar 

  151. Walker, J. S. et al. Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic leukemia. J. Hematol. Oncol. 14, 17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Garcia-Santisteban, I. et al. A cellular reporter to evaluate CRM1 nuclear export activity: functional analysis of the cancer-related mutant E571K. Cell Mol. Life Sci. 73, 4685–4699 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Taylor, J. et al. Altered nuclear export signal recognition as a driver of oncogenesis. Cancer Discov. 9, 1452–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Baumhardt, J. M. et al. Recognition of nuclear export signals by CRM1 carrying the oncogenic E571K mutation. Mol. Biol. Cell 31, 1879 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Miloudi, H. et al. XPO1(E571K) mutation modifies Exportin 1 localisation and interactome in B-cell lymphoma. Cancers (Basel) 12, 2829 (2020).

    Article  CAS  Google Scholar 

  156. Wu, K., He, J., Pu, W. & Peng, Y. The role of Exportin-5 in microRNA biogenesis and cancer. Genomics Proteom. Bioinforma. 16, 120–126 (2018).

    Article  Google Scholar 

  157. Lin, D. et al. Exportin-5 SUMOylation promotes hepatocellular carcinoma progression. Exp. Cell Res. 395, 112219 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Hahn, S., Maurer, P., Caesar, S. & Schlenstedt, G. Classical NLS proteins from Saccharomyces cerevisiae. J. Mol. Biol. 379, 678–694 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Hopwood, B. & Dalton, S. Cdc45p assembles into a complex with Cdc46p/Mcm5p, is required for minichromosome maintenance, and is essential for chromosomal DNA replication. Proc. Natl Acad. Sci. USA 93, 12309–12314 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Young, M. R., Suzuki, K., Yan, H., Gibson, S. & Tye, B. K. Nuclear accumulation of Saccharomyces cerevisiae Mcm3 is dependent on its nuclear localization sequence. Genes Cell 2, 631–643 (1997).

    Article  CAS  Google Scholar 

  161. Pasion, S. G. & Forsburg, S. L. Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly. Mol. Biol. Cell 10, 4043–4057 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liku, M. E., Nguyen, V. Q., Rosales, A. W., Irie, K. & Li, J. J. CDK phosphorylation of a novel NLS–NES module distributed between two subunits of the Mcm2–7 complex prevents chromosomal rereplication. Mol. Biol. Cell 16, 5026–5039 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wu, R., Wang, J. & Liang, C. Cdt1p, through its interaction with Mcm6p, is required for the formation, nuclear accumulation and chromatin loading of the MCM complex. J. Cell Sci. 125, 209–219 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Frigola, J. et al. Cdt1 stabilizes an open MCM ring for helicase loading. Nat. Commun. 8, 15720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pohler, J. R., Otterlei, M. & Warbrick, E. An in vivo analysis of the localisation and interactions of human p66 DNA polymerase δ subunit. BMC Mol. Biol. 6, 17 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  166. Shen, Y., Wang, K. & Qi, R. Z. The catalytic subunit of DNA polymerase δ is a nucleocytoplasmic shuttling protein. Exp. Cell Res. 375, 36–40 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Lancey, C. et al. Structure of the processive human Pol δ holoenzyme. Nat. Commun. 11, 1109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kelich, J. M., Papaioannou, H. & Skordalakes, E. Pol α-primase dependent nuclear localization of the mammalian CST complex. Commun. Biol. 4, 349 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mizuno, T., Yamagishi, K., Miyazawa, H. & Hanaoka, F. Molecular architecture of the mouse DNA polymerase α-primase complex. Mol. Cell Biol. 19, 7886–7896 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mizuno, T. et al. The second-largest subunit of the mouse DNA polymerase α-primase complex facilitates both production and nuclear translocation of the catalytic subunit of DNA polymerase α. Mol. Cell Biol. 18, 3552–3562 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Baranovskiy, A. G. et al. Mechanism of concerted RNA–DNA primer synthesis by the human primosome. J. Biol. Chem. 291, 10006–10020 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kim, B. J. & Lee, H. Lys-110 is essential for targeting PCNA to replication and repair foci, and the K110A mutant activates apoptosis. Biol. Cell 100, 675–686 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gulbis, J. M., Kelman, Z., Hurwitz, J., O’Donnell, M. & Kuriyan, J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87, 297–306 (1996).

    Article  CAS  PubMed  Google Scholar 

  174. Rodriguez-Vilarrupla, A. et al. Identification of the nuclear localization signal of p21(cip1) and consequences of its mutation on cell proliferation. FEBS Lett. 531, 319–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  175. Merkle, C. J., Karnitz, L. M., Henry-Sanchez, J. T. & Chen, J. Cloning and characterization of hCTF18, hCTF8, and hDCC1. Human homologs of a Saccharomyces cerevisiae complex involved in sister chromatid cohesion establishment. J. Biol. Chem. 278, 30051–30056 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Kang, M. S. et al. Regulation of PCNA cycling on replicating DNA by RFC and RFC-like complexes. Nat. Commun. 10, 2420 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  177. Belanger, K. D. et al. The karyopherin Msn5/Kap142 requires Nup82 for nuclear export and performs a function distinct from translocation in RPA protein import. J. Biol. Chem. 279, 43530–43539 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Yoshida, K. & Blobel, G. The karyopherin Kap142p/Msn5p mediates nuclear import and nuclear export of different cargo proteins. J. Cell Biol. 152, 729–740 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Belanger, K. D. et al. The karyopherin Kap95 and the C-termini of Rfa1, Rfa2, and Rfa3 are necessary for efficient nuclear import of functional RPA complex proteins in Saccharomyces cerevisiae. DNA Cell Biol. 30, 641–651 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nguyen, V. Q., Co, C., Irie, K. & Li, J. J. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2–7. Curr. Biol. 10, 195–205 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Bouayad, D. et al. Nuclear-to-cytoplasmic relocalization of the proliferating cell nuclear antigen (PCNA) during differentiation involves a chromosome region maintenance 1 (CRM1)-dependent export and is a prerequisite for PCNA antiapoptotic activity in mature neutrophils. J. Biol. Chem. 287, 33812–33825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Loeb, J. D. et al. The yeast nuclear import receptor is required for mitosis. Proc. Natl Acad. Sci. USA 92, 7647–7651 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pulliam, K. F., Fasken, M. B., McLane, L. M., Pulliam, J. V. & Corbett, A. H. The classical nuclear localization signal receptor, importin-α, is required for efficient transition through the G1/S stage of the cell cycle in Saccharomyces cerevisiae. Genetics 181, 105–118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Garrido-Godino, A. I., Gutierrez-Santiago, F. & Navarro, F. Biogenesis of RNA polymerases in yeast. Front. Mol. Biosci. 8, 669300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Czeko, E., Seizl, M., Augsberger, C., Mielke, T. & Cramer, P. Iwr1 directs RNA polymerase II nuclear import. Mol. Cell 42, 261–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Gomez-Navarro, N. & Estruch, F. Different pathways for the nuclear import of yeast RNA polymerase II. Biochim. Biophys. Acta 1849, 1354–1362 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Forget, D. et al. Nuclear import of RNA polymerase II is coupled with nucleocytoplasmic shuttling of the RNA polymerase II-associated protein 2. Nucleic Acids Res. 41, 6881–6891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Forget, D. et al. The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II. Mol. Cell Proteom. 9, 2827–2839 (2010).

    Article  CAS  Google Scholar 

  189. Staresincic, L., Walker, J., Dirac-Svejstrup, A. B., Mitter, R. & Svejstrup, J. Q. GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein. J. Biol. Chem. 286, 35553–35561 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Minaker, S. W., Filiatrault, M. C., Ben-Aroya, S., Hieter, P. & Stirling, P. C. Biogenesis of RNA polymerases II and III requires the conserved GPN small GTPases in Saccharomyces cerevisiae. Genetics 193, 853–864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Niesser, J., Wagner, F. R., Kostrewa, D., Muhlbacher, W. & Cramer, P. Structure of GPN-loop GTPase Npa3 and implications for RNA polymerase II assembly. Mol. Cell Biol. 36, 820–831 (2015).

    Article  PubMed  CAS  Google Scholar 

  192. Peiro-Chova, L. & Estruch, F. The yeast RNA polymerase II-associated factor Iwr1p is involved in the basal and regulated transcription of specific genes. J. Biol. Chem. 284, 28958–28967 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Gibney, P. A., Fries, T., Bailer, S. M. & Morano, K. A. Rtr1 is the Saccharomyces cerevisiae homolog of a novel family of RNA polymerase II-binding proteins. Eukaryot. Cell 7, 938–948 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Reyes-Pardo, H. et al. A nuclear export sequence in GPN-loop GTPase 1, an essential protein for nuclear targeting of RNA polymerase II, is necessary and sufficient for nuclear export. Biochim. Biophys. Acta 1823, 1756–1766 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Jakel, S., Mingot, J. M., Schwarzmaier, P., Hartmann, E. & Gorlich, D. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J. 21, 377–386 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Jakel, S. & Gorlich, D. Importin β, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J. 17, 4491–4502 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rout, M. P., Blobel, G. & Aitchison, J. D. A distinct nuclear import pathway used by ribosomal proteins. Cell 89, 715–725 (1997).

    Article  CAS  PubMed  Google Scholar 

  198. Sydorskyy, Y. et al. Intersection of the Kap123p-mediated nuclear import and ribosome export pathways. Mol. Cell Biol. 23, 2042–2054 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rosenblum, J. S., Pemberton, L. F. & Blobel, G. A nuclear import pathway for a protein involved in tRNA maturation. J. Cell Biol. 139, 1655–1661 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Schutz, S. et al. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. eLife 3, e03473 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Ting, Y. H. et al. Bcp1 is the nuclear chaperone of Rpl23 in Saccharomyces cerevisiae. J. Biol. Chem. 292, 585–596 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. Timney, B. L. et al. Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo. J. Cell Biol. 175, 579–593 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Plafker, S. M. & Macara, I. G. Ribosomal protein L12 uses a distinct nuclear import pathway mediated by importin 11. Mol. Cell. Biol. 22, 1266–1275 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mitterer, V. et al. Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation. Nat. Commun. 7, 10336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Mitterer, V. et al. Nuclear import of dimerized ribosomal protein Rps3 in complex with its chaperone Yar1. Sci. Rep. 6, 36714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Pillet, B. et al. The dedicated chaperone Acl4 escorts ribosomal protein Rpl4 to its nuclear pre-60S assembly site. PLoS Genet. 11, e1005565 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  207. Stelter, P. et al. Coordinated ribosomal L4 protein assembly into the pre-ribosome is regulated by its eukaryote-specific extension. Mol. Cell 58, 854–862 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kressler, D. et al. Synchronizing nuclear import of ribosomal proteins with ribosome assembly. Science 338, 666–671 (2012).

    Article  CAS  PubMed  Google Scholar 

  209. Schutz, S. et al. Molecular basis for disassembly of an importin:ribosomal protein complex by the escortin Tsr2. Nat. Commun. 9, 3669 (2018). Together with Ting et al. (2017), this paper identifies how nuclear chaperones mediate the RAN–GTP-independent release of RPs from Kaps, coordinating nuclear import and ribosome biogenesis.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  210. Nerurkar, P. et al. Eukaryotic ribosome assembly and nuclear export. Int. Rev. Cell Mol. Biol. 319, 107–140 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Thomas, F. & Kutay, U. Biogenesis and nuclear export of ribosomal subunits in higher eukaryotes depend on the CRM1 export pathway. J. Cell Sci. 116, 2409–2419 (2003).

    Article  CAS  PubMed  Google Scholar 

  212. Zemp, I. et al. Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J. Cell Biol. 185, 1167–1180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Seiser, R. M. et al. Ltv1 is required for efficient nuclear export of the ribosomal small subunit in Saccharomyces cerevisiae. Genetics 174, 679–691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Vanrobays, E. et al. TOR regulates the subcellular distribution of DIM2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export. RNA 14, 2061–2073 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Schnapp, A., Schnapp, G., Erny, B. & Grummt, I. Function of the growth-regulated transcription initiation factor TIF-IA in initiation complex formation at the murine ribosomal gene promoter. Mol. Cell Biol. 13, 6723–6732 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Warner, J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999).

    Article  CAS  PubMed  Google Scholar 

  217. Wu, Z., Jiang, Q., Clarke, P. R. & Zhang, C. Phosphorylation of Crm1 by CDK1–cyclin-B promotes Ran-dependent mitotic spindle assembly. J. Cell Sci. 126, 3417–3428 (2013).

    CAS  PubMed  Google Scholar 

  218. Guo, H., Wei, J. H., Zhang, Y. & Seemann, J. Importin α phosphorylation promotes TPX2 activation by GM130 to control astral microtubules and spindle orientation. J. Cell Sci. 134, jcs258356 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Beaudet, D., Pham, N., Skaik, N. & Piekny, A. Importin binding mediates the intramolecular regulation of anillin during cytokinesis. Mol. Biol. Cell 31, 1124–1139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Guo, L. et al. Phosphorylation of importin-α1 by CDK1–cyclin B1 controls mitotic spindle assembly. J. Cell Sci. 132, jcs232314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Nakada, R., Hirano, H. & Matsuura, Y. Structure of importin-α bound to a non-classical nuclear localization signal of the influenza A virus nucleoprotein. Sci. Rep. 5, 15055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wu, W. et al. Synergy of two low-affinity NLSs determines the high avidity of influenza A virus nucleoprotein NP for human importin α isoforms. Sci. Rep. 7, 11381 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  223. Cansizoglu, A. E., Lee, B. J., Zhang, Z. C., Fontoura, B. M. & Chook, Y. M. Structure-based design of a pathway-specific nuclear import inhibitor. Nat. Struct. Mol. Biol. 14, 452–454 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R. & Gorlich, D. Export of importin α from the nucleus is mediated by a specific nuclear transport factor. Cell 90, 1061–1071 (1997).

    Article  CAS  PubMed  Google Scholar 

  225. Lipowsky, G. et al. Coordination of tRNA nuclear export with processing of tRNA. RNA 5, 539–549 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Stuven, T., Hartmann, E. & Gorlich, D. Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J. 22, 5928–5940 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Çağatay, T. & Chook, Y. M. Karyopherins in cancer. Curr. Opin. Cell Biol. 52, 30–42 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  228. Kosugi, S. et al. Design of peptide inhibitors for the importin α/β nuclear import pathway by activity-based profiling. Chem. Biol. 15, 940–949 (2008).

    Article  CAS  PubMed  Google Scholar 

  229. Wagstaff, K. M., Rawlinson, S. M., Hearps, A. C. & Jans, D. A. An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. J. Biomol. Screen. 16, 192–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  230. Ambrus, G. et al. Small molecule peptidomimetic inhibitors of importin α/β mediated nuclear transport. Bioorg. Med. Chem. 18, 7611–7620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. van der Watt, P. J. et al. Targeting the nuclear import receptor kpnβ1 as an anticancer therapeutic. Mol. Cancer Ther. 15, 560–573 (2016).

    Article  PubMed  CAS  Google Scholar 

  232. Ajayi-Smith, A. et al. Novel small molecule inhibitor of Kpnβ1 induces cell cycle arrest and apoptosis in cancer cells. Exp. Cell Res. 404, 112637 (2021).

    Article  CAS  PubMed  Google Scholar 

  233. Hintersteiner, M. et al. Identification of a small molecule inhibitor of importin β mediated nuclear import by confocal on-bead screening of tagged one-bead one-compound libraries. ACS Chem. Biol. 5, 967–979 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Soderholm, J. F. et al. Importazole, a small molecule inhibitor of the transport receptor importin-β. ACS Chem. Biol. 6, 700–708 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Jans, D. A., Martin, A. J. & Wagstaff, K. M. Inhibitors of nuclear transport. Curr. Opin. Cell Biol. 58, 50–60 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Gonzalez Canga, A. et al. The pharmacokinetics and interactions of ivermectin in humans — a mini-review. AAPS J. 10, 42–46 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  237. Yang, S. N. Y. et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antivir. Res. 177, 104760 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Wagstaff, K. M. et al. Molecular dissection of an inhibitor targeting the HIV integrase dependent preintegration complex nuclear import. Cell Microbiol. 21, e12953 (2019).

    Article  PubMed  CAS  Google Scholar 

  239. Fraser, J. E. et al. A nuclear transport inhibitor that modulates the unfolded protein response and provides in vivo protection against lethal dengue virus infection. J. Infect. Dis. 210, 1780–1791 (2014).

    Article  CAS  PubMed  Google Scholar 

  240. Liu, W. et al. Identification of a covalent importin-5 inhibitor, goyazensolide, from a collective synthesis of furanoheliangolides. ACS Cent. Sci. 7, 954–962 (2021). This article identifies the first IPO5 inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Engelsma, D., Bernad, R., Calafat, J. & Fornerod, M. Supraphysiological nuclear export signals bind CRM1 independently of RanGTP and arrest at Nup358. EMBO J. 23, 3643–3652 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Ferreira, B. I., Cautain, B., Grenho, I. & Link, W. Small molecule inhibitors of CRM1. Front. Pharmacol. 11, 625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Lei, Y. et al. Structure-guided design of the first noncovalent small-molecule inhibitor of CRM1. J. Med. Chem. 64, 6596–6607 (2021).

    Article  CAS  PubMed  Google Scholar 

  244. Sun, Q. et al. Nuclear export inhibition through covalent conjugation and hydrolysis of Leptomycin B by CRM1. Proc. Natl Acad. Sci. USA 110, 1303–1308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Ye, Y. & Li, B. 1′S-1′-acetoxychavicol acetate isolated from Alpinia galanga inhibits human immunodeficiency virus type 1 replication by blocking Rev transport. J. Gen. Virol. 87, 2047–2053 (2006).

    Article  CAS  PubMed  Google Scholar 

  246. Hilliard, M. et al. The anti-inflammatory prostaglandin 15-deoxy-Δ(12,14)-PGJ2 inhibits CRM1-dependent nuclear protein export. J. Biol. Chem. 285, 22202–22210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Hing, Z. A. et al. Next-generation XPO1 inhibitor shows improved efficacy and in vivo tolerability in hematological malignancies. Leukemia 30, 2364–2372 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Etchin, J. et al. Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells. Leukemia 27, 66–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  249. Lapalombella, R. et al. Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood 120, 4621–4634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Haines, J. D. et al. Nuclear export inhibitors avert progression in preclinical models of inflammatory demyelination. Nat. Neurosci. 18, 511–520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Sakakibara, K. et al. CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity. Blood 118, 3922–3931 (2011).

    Article  CAS  PubMed  Google Scholar 

  252. Niu, M., Chong, Y., Han, Y. & Liu, X. Novel reversible selective inhibitor of nuclear export shows that CRM1 is a target in colorectal cancer cells. Cancer Biol. Ther. 16, 1110–1118 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Tian, X. et al. Small-molecule antagonist targeting exportin-1 via rational structure-based discovery. J. Med. Chem. 63, 3881–3895 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Xu, H. W. et al. A low toxic CRM1 degrader: synthesis and anti-proliferation on MGC803 and HGC27. Eur. J. Med. Chem. 206, 112708 (2020).

    Article  CAS  PubMed  Google Scholar 

  255. Saito, N. et al. CBS9106-induced CRM1 degradation is mediated by cullin ring ligase activity and the neddylation pathway. Mol. Cancer Ther. 13, 3013–3023 (2014).

    Article  CAS  PubMed  Google Scholar 

  256. Peterson, T. J., Orozco, J. & Buege, M. Selinexor: a first-in-class nuclear export inhibitor for management of multiply relapsed multiple myeloma. Ann. Pharmacother. 54, 577–582 (2020).

    Article  PubMed  Google Scholar 

  257. Ben-Barouch, S. & Kuruvilla, J. Selinexor (KTP-330) — a selective inhibitor of nuclear export (SINE): anti-tumor activity in diffuse large B-cell lymphoma (DLBCL). Expert Opin. Investig. Drugs 29, 15–21 (2020).

    Article  CAS  PubMed  Google Scholar 

  258. Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  259. Nakai, K. & Kanehisa, M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897–911 (1992).

    Article  CAS  PubMed  Google Scholar 

  260. Kosugi, S., Hasebe, M., Tomita, M. & Yanagawa, H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl Acad. Sci. USA 106, 10171–10176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Cokol, M., Nair, R. & Rost, B. Finding nuclear localization signals. EMBO Rep. 1, 411–415 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Brameier, M., Krings, A. & MacCallum, R. M. NucPred — predicting nuclear localization of proteins. Bioinformatics 23, 1159–1160 (2007).

    Article  CAS  PubMed  Google Scholar 

  263. Nair, R., Carter, P. & Rost, B. NLSdb: database of nuclear localization signals. Nucleic Acids Res. 31, 397–399 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Mehdi, A. M., Sehgal, M. S., Kobe, B., Bailey, T. L. & Boden, M. A probabilistic model of nuclear import of proteins. Bioinformatics 27, 1239–1246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Nguyen Ba, A. N., Pogoutse, A., Provart, N. & Moses, A. M. NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. BMC Bioinforma. 10, 202 (2009).

    Article  CAS  Google Scholar 

  266. Lin, J. R. & Hu, J. SeqNLS: nuclear localization signal prediction based on frequent pattern mining and linear motif scoring. PLoS ONE 8, e76864 (2013). This paper introduces SeqNLS, which is the current NLS predictor with the best balance in performance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Bernhofer, M. et al. NLSdb — major update for database of nuclear localization signals and nuclear export signals. Nucleic Acids Res. 46, D503–D508 (2018).

    Article  CAS  PubMed  Google Scholar 

  268. Guo, Y., Yang, Y., Huang, Y. & Shen, H. B. Discovering nuclear targeting signal sequence through protein language learning and multivariate analysis. Anal. Biochem. 591, 113565 (2020).

    Article  CAS  PubMed  Google Scholar 

  269. la Cour, T. et al. NESbase version 1.0: a database of nuclear export signals. Nucleic Acids Res. 31, 393–396 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  270. la Cour, T. et al. Analysis and prediction of leucine-rich nuclear export signals. Protein Eng. Des. Sel. 17, 527–536 (2004).

    Article  PubMed  CAS  Google Scholar 

  271. Fu, S. C., Imai, K. & Horton, P. Prediction of leucine-rich nuclear export signal containing proteins with NESsential. Nucleic Acids Res. 39, e111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Prieto, G., Fullaondo, A. & Rodriguez, J. A. Prediction of nuclear export signals using weighted regular expressions (Wregex). Bioinformatics 30, 1220–1227 (2014).

    Article  CAS  PubMed  Google Scholar 

  273. Kosugi, S., Yanagawa, H., Terauchi, R. & Tabata, S. NESmapper: accurate prediction of leucine-rich nuclear export signals using activity-based profiles. PLoS Comput. Biol. 10, e1003841 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  274. Xu, D. et al. LocNES: a computational tool for locating classical NESs in CRM1 cargo proteins. Bioinformatics 31, 1357–1365 (2015). This paper introduces LocNES, which is the top-performing NES predictor available currently.

    Article  CAS  PubMed  Google Scholar 

  275. Liku, M. E., Legere, E. A. & Moses, A. M. NoLogo: a new statistical model highlights the diversity and suggests new classes of Crm1-dependent nuclear export signals. BMC Bioinforma. 19, 65 (2018).

    Article  CAS  Google Scholar 

  276. Lee, Y., Pei, J., Baumhardt, J. M., Chook, Y. M. & Grishin, N. V. Structural prerequisites for CRM1-dependent nuclear export signaling peptides: accessibility, adapting conformation, and the stability at the binding site. Sci. Rep. 9, 6627 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH) under Awards R01GM069909 and R35GM144137 (Y.M.C.), the Welch Foundation Grant I-1532 (Y.M.C.), Cancer Prevention Research Institute of Texas (CPRIT) Grant RP180410 (Y.M.C.), support from the Alfred and Mabel Gilman Chair in Molecular Pharmacology, Eugene McDermott Scholar in Biomedical Research (Y.M.C.), the Gilman Special Opportunities Award (H.Y.J.F.) and NIGMS Molecular Biophysics Training Program T32GM131963 (C.E.W.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Ho Yee Joyce Fung or Yuh Min Chook.

Ethics declarations

Competing interests

Y.M.C. is a consultant for Faze Medicines. The remaining authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Anita Corbett, Roderick Lim and Michael Rout for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

cNLS Mapper: http://nls-mapper.iab.keio.ac.jp

INSP: http://www.csbio.sjtu.edu.cn/bioinf/INSP/

LocNES: http://prodata.swmed.edu/LocNES/LocNES.php

NESmapper: https://sourceforge.net/projects/nesmapper/

NetNES: https://services.healthtech.dtu.dk/service.php?NetNES-1.1

NLStradamus: http://www.moseslab.csb.utoronto.ca/NLStradamus/

NoLogo: https://github.com/mppl1/NoLogo

NucPred: https://nucpred.bioinfo.se/nucpred/

NucImport: http://bioinf.scmb.uq.edu.au:8080/NucImport/

PSORT: https://www.genscript.com/psort.htmlPSORT II: https://psort.hgc.jp/form2.html

PredictNLS: https://rostlab.org/owiki/index.php/PredictNLS

SeqNLS: http://mleg.cse.sc.edu/seqNLS/

Wregex: http://ehubio.ehu.eus/wregex/home.xhtml

Supplementary information

Glossary

Nanobodies

Small, single-domain antibodies derived from camelids (camels, alpacas and llamas) that lack light chains.

HEAT repeats

Structural motifs composed of two antiparallel α-helices that are usually connected by a loop. HEAT repeats occur in tandem to form solenoid or superhelical structures.

Intrinsically disordered regions

(IDRs). Protein regions that do not have persistent tertiary structures.

Armadillo (ARM) repeat domain

A protein domain typically 40 residues long that shares homology with repeating units in the ARM protein family. It contains two or three helices per repeat, which stack into a solenoid arrangement.

Amyotrophic lateral sclerosis

A fatal neurodegenerative disease, with progressive loss of motor neuron control that leads to paralysis. Amyotrophic lateral sclerosis onset and progression may be a consequence of protein misfolding/aggregation.

Exon junction complex

A multiprotein complex that binds to the junction between exons in nuclear precursor mRNAs and remains bound during their export to the cytoplasm.

MH2 domain

A protein domain found in the carboxy-terminal portion of SMAD proteins. It comprises a β-sandwich fold with a three-helix bundle on one end and a loop–helix region on the other.

SH3-like domain

A small globular domain that binds poly-proline motifs, comprising five or six β-strands tightly packed into antiparallel β-sheets.

OB domain

A small globular domain composed of two three-stranded antiparallel β-strands packed into a flattened β-barrel.

Machine learning

A branch of artificial intelligence that automates iterative analytical model building based solely on training data, with minimal human intervention.

m3G cap

A 2,2,7-trimethylated guanosine cap structure of uridylate-rich small nuclear RNAs (U small nuclear RNAs), which are the RNA components of spliceosomal ribonucleoproteins (small nuclear RNP).

Multisystem proteinopathy

A group of inherited disorders that cause neurodegeneration, myopathy and bone disease, and can manifest as amyotrophic lateral sclerosis, frontotemporal dementia, inclusion body myopathy, Paget’s disease of bone or their combination.

P-body

A type of cytoplasmic granule containing mRNAs and proteins that is involved in RNA metabolism with liquid droplet properties.

MEX67-MTR2

A heterodimeric mRNA export receptor that also functions in ribosomal export and is conserved in eukaryotes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wing, C.E., Fung, H.Y.J. & Chook, Y.M. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 23, 307–328 (2022). https://doi.org/10.1038/s41580-021-00446-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00446-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing