Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modulation of cellular processes by histone and non-histone protein acetylation

Abstract

Lysine acetylation is a widespread and versatile protein post-translational modification. Lysine acetyltransferases and lysine deacetylases catalyse the addition or removal, respectively, of acetyl groups at both histone and non-histone targets. In this Review, we discuss several features of acetylation and deacetylation, including their diversity of targets, rapid turnover, exquisite sensitivity to the concentrations of the cofactors acetyl-CoA, acyl-CoA and NAD+, and tight interplay with metabolism. Histone acetylation and non-histone protein acetylation influence a myriad of cellular and physiological processes, including transcription, phase separation, autophagy, mitosis, differentiation and neural function. The activity of lysine acetyltransferases and lysine deacetylases can, in turn, be regulated by metabolic states, diet and specific small molecules. Histone acetylation has also recently been shown to mediate cellular memory. These features enable acetylation to integrate the cellular state with transcriptional output and cell-fate decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular effects of histone acetylation on chromatin.
Fig. 2: Protein acetylation regulates RNA–protein interactions and phase separation.
Fig. 3: Histone acetylation is capable of marking genes for future activation.
Fig. 4: Cellular roles of non-histone protein acetylation.
Fig. 5: Bidirectional communication between histone acylation and metabolism.

Similar content being viewed by others

References

  1. Hansen, B. K. et al. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat. Commun. 10, 1055 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhao, Y. & Garcia, B. A. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb. Perspect. Biol. 7, a025064 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhou, T., Chung, Y.-H., Chen, J. & Chen, Y. Site-specific identification of lysine acetylation stoichiometries in mammalian cells. J. Proteome Res. 15, 1103–1113 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Weinert, B. T. et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell 174, 231–244.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weinert, B. T. et al. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci. Signal. 4, ra48 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607–618 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Gillette, M. A. et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182, 200–225.e35 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sheikh, B. N. & Akhtar, A. The many lives of KATs — detectors, integrators and modulators of the cellular environment. Nat. Rev. Genet. 20, 7–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Cai, Y. et al. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J. Biol. Chem. 285, 4268–4272 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Feller, C., Forné, I., Imhof, A. & Becker, P. B. Global and specific responses of the histone acetylome to systematic perturbation. Mol. Cell 57, 559–571 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Radzisheuskaya, A. et al. Complex-dependent histone acetyltransferase activity of KAT8 determines its role in transcription and cellular homeostasis. Mol. Cell 81, 1749–1765 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Z. A. et al. Diverse nucleosome site-selectivity among histone deacetylase complexes. eLife 9, e57663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Agudelo Garcia, P. A., Nagarajan, P. & Parthun, M. R. Hat1-dependent lysine acetylation targets diverse cellular functions. J. Proteome Res. 19, 1663–1673 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Voss, A. K. & Thomas, T. Histone lysine and genomic targets of histone acetyltransferases in mammals. Bioessays 40, e1800078 (2018).

    Article  PubMed  CAS  Google Scholar 

  16. McGinty, R. K. & Tan, S. Nucleosome structure and function. Chem. Rev. 115, 2255–2273 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Kalashnikova, A. A., Porter-Goff, M. E., Muthurajan, U. M., Luger, K. & Hansen, J. C. The role of the nucleosome acidic patch in modulating higher order chromatin structure. J. R. Soc. Interface 10, 20121022 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Huertas, J. & Cojocaru, V. Breaths, twists, and turns of atomistic nucleosomes. J. Mol. Biol. 433, 166744 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Collepardo-Guevara, R. et al. Chromatin unfolding by epigenetic modifications explained by dramatic impairment of internucleosome interactions: a multiscale computational study. J. Am. Chem. Soc. 137, 10205–10215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, R., Erler, J. & Langowski, J. Histone acetylation regulates chromatin accessibility: role of H4K16 in inter-nucleosome interaction. Biophys. J. 112, 450–459 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Wilkins, B. J. et al. A cascade of histone modifications induces chromatin condensation in mitosis. Science 343, 77–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Allahverdi, A. et al. The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res. 39, 1680–1691 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Mishra, L. N., Pepenella, S., Rogge, R., Hansen, J. C. & Hayes, J. J. Acetylation mimics within a single nucleosome alter local DNA accessibility in compacted nucleosome arrays. Sci. Rep. 6, 34808 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saurabh, S., Glaser, M. A., Lansac, Y. & Maiti, P. K. Atomistic simulation of stacked nucleosome core particles: tail bridging, the H4 tail, and effect of hydrophobic forces. J. Phys. Chem. B 120, 3048–3060 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, K. K. & Workman, J. L. Histone acetyltransferase complexes: one size doesn’t fit all. Nat. Rev. Mol. Cell Biol. 8, 284–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Khan, A., Bridgers, J. B. & Strahl, B. D. Expanding the reader landscape of histone acylation. Structure 25, 571–573 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zaware, N. & Zhou, M.-M. Bromodomain biology and drug discovery. Nat. Struct. Mol. Biol. 26, 870–879 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897–903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. USA 51, 786–794 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Narita, T. et al. Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Mol. Cell 81, 2166–2182.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Morgan, M. A. J. & Shilatifard, A. Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat. Genet. 52, 1271–1281 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, H. & Pugh, B. F. What do transcription factors interact with? J. Mol. Biol. 433, 166883 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Lim, B. & Levine, M. S. Enhancer-promoter communication: hubs or loops? Curr. Opin. Genet. Dev. 67, 5–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alexander, J. M. et al. Live-cell imaging reveals enhancer-dependent transcription in the absence of enhancer proximity. eLife 8, e41769 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21, 71–87 (2019).

    Article  PubMed  CAS  Google Scholar 

  40. Rajagopal, N. et al. Distinct and predictive histone lysine acetylation patterns at promoters, enhancers, and gene bodies. G3 4, 2051–2063 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sungalee, S. et al. Histone acetylation dynamics modulates chromatin conformation and allele-specific interactions at oncogenic loci. Nat. Genet. 53, 650–662 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Kanno, T. et al. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat. Struct. Mol. Biol. 21, 1047–1057 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vaid, R., Wen, J. & Mannervik, M. Release of promoter-proximal paused Pol II in response to histone deacetylase inhibition. Nucleic Acids Res. 48, 4877–4890 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stasevich, T. J. et al. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516, 272–275 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Boija, A. et al. CBP regulates recruitment and release of promoter-proximal RNA polymerase II. Mol. Cell 68, 491–503.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Winter, G. E. et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol. Cell 67, 5–18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muhar, M. et al. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science 360, 800–805 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng, B. et al. Acute perturbation strategies in interrogating RNA polymerase II elongation factor function in gene expression. Genes Dev. 35, 273–285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baptista, T. et al. SAGA is a general cofactor for RNA polymerase II transcription. Mol. Cell 68, 130–143.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bonnet, J. et al. The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription. Genes Dev. 28, 1999–2012 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Slaughter, M. J. et al. HDAC inhibition results in widespread alteration of the histone acetylation landscape and BRD4 targeting to gene bodies. Cell Rep. 34, 108638 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Greer, C. B. et al. Histone deacetylases positively regulate transcription through the elongation machinery. Cell Rep. 13, 1444–1455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ram, O. et al. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 147, 1628–1639 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dovey, O. M., Foster, C. T. & Cowley, S. M. Emphasizing the positive: a role for histone deacetylases in transcriptional activation. Cell Cycle 9, 2700–2701 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Hogg, S. J. et al. Targeting histone acetylation dynamics and oncogenic transcription by catalytic P300/CBP inhibition. Mol. Cell 81, 2183–2200.e13 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barnes, C. E., English, D. M. & Cowley, S. M. Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem. 63, 97–107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gong, F., Chiu, L.-Y. & Miller, K. M. Acetylation reader proteins: linking acetylation signaling to genome maintenance and cancer. PLoS Genet. 12, e1006272 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Mashtalir, N. et al. Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. Science 373, 306–315 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Hsu, C.-C. et al. Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A.Z deposition in non-small cell lung cancer. Genes. Dev. 32, 58–69 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cai, Y. et al. The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes. J. Biol. Chem. 280, 13665–13670 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Centore, R. C., Sandoval, G. J., Soares, L. M. M., Kadoch, C. & Chan, H. M. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 36, 936–950 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Rothbart, S. B. et al. An interactive database for the assessment of histone antibody specificity. Mol. Cell 59, 502–511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lahm, A. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl Acad. Sci. USA 104, 17335–17340 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McClure, J. J. et al. Comparison of the deacylase and deacetylase activity of zinc-dependent HDACs. ACS Chem. Biol. 12, 1644–1655 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Narita, T., Weinert, B. T. & Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20, 156–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Figlia, G., Willnow, P. & Teleman, A. A. Metabolites regulate cell signaling and growth via covalent modification of proteins. Dev. Cell 54, 156–170 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 363, 15–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, M. & Lin, H. Understanding the function of mammalian sirtuins and protein lysine acylation. Annu. Rev. Biochem. 90, 245–285 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Eshun-Wilson, L. et al. Effects of α-tubulin acetylation on microtubule structure and stability. Proc. Natl Acad. Sci. USA 116, 10366–10371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kalebic, N. et al. αTAT1 is the major α-tubulin acetyltransferase in mice. Nat. Commun. 4, 1962 (2013).

    Article  PubMed  CAS  Google Scholar 

  76. North, B. J. et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 33, 1438–1453 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lamonica, J. M., Vakoc, C. R. & Blobel, G. A. Acetylation of GATA-1 is required for chromatin occupancy. Blood 108, 3736–3738 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lamonica, J. M. et al. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc. Natl Acad. Sci. USA 108, E159–E168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Corley, M., Burns, M. C. & Yeo, G. W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell 78, 9–29 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Snead, W. T. & Gladfelter, A. S. The control centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation. Mol. Cell 76, 295–305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gal, J. et al. The acetylation of lysine-376 of G3BP1 regulates RNA binding and stress granule dynamics. Mol. Cell. Biol. 39, e00052–19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Arenas, A. et al. Lysine acetylation regulates the RNA binding, subcellular localization and inclusion formation of FUS. Hum. Mol. Genet. 29, 2684–2697 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cohen, T. J. et al. An acetylation switch controls TDP-43 function and aggregation propensity. Nat. Commun. 6, 5845 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Martin, E. W. & Holehouse, A. S. Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg. Top. Life Sci. 4, 307–329 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Ukmar-Godec, T. et al. Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat. Commun. 10, 2909 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Saito, M. et al. Acetylation of intrinsically disordered regions regulates phase separation. Nat. Chem. Biol. 15, 51–61 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Razin, S. V. & Ulianov, S. V. Divide and rule: phase separation in eukaryotic genome functioning. Cells 9, 2480 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  88. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tatavosian, R. et al. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J. Biol. Chem. 294, 1451–1463 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Plys, A. J. et al. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799–813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ma, L. et al. Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics. Mol. Cell 81, 1682–1697.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Farr, S. E., Woods, E. J., Joseph, J. A., Garaizar, A. & Collepardo-Guevara, R. Nucleosome plasticity is a critical element of chromatin liquid-liquid phase separation and multivalent nucleosome interactions. Nat. Commun. 12, 2883 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zee, B. M., Levin, R. S., DiMaggio, P. A. & Garcia, B. A. Global turnover of histone post-translational modifications and variants in human cells. Epigenetics Chromatin 3, 22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zheng, Y., Thomas, P. M. & Kelleher, N. L. Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites. Nat. Commun. 4, 2203 (2013).

    Article  PubMed  CAS  Google Scholar 

  99. Baeza, J. et al. Revealing dynamic protein acetylation across subcellular compartments. J. Proteome Res. 19, 2404–2418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gottesfeld, J. M. & Forbes, D. J. Mitotic repression of the transcriptional machinery. Trends Biochem. Sci. 22, 197–202 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Prescott, D. M. & Bender, M. A. Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. Exp. Cell Res. 26, 260–268 (1962).

    Article  PubMed  Google Scholar 

  102. Pelham-Webb, B. et al. H3K27ac bookmarking promotes rapid post-mitotic activation of the pluripotent stem cell program without impacting 3D chromatin reorganization. Mol. Cell 81, 1732–1748.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Palozola, K. C. et al. Mitotic transcription and waves of gene reactivation during mitotic exit. Science 358, 119–122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kruhlak, M. J. et al. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J. Biol. Chem. 276, 38307–38319 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Ginno, P. A., Burger, L., Seebacher, J., Iesmantavicius, V. & Schübeler, D. Cell cycle-resolved chromatin proteomics reveals the extent of mitotic preservation of the genomic regulatory landscape. Nat. Commun. 9, 4048 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Javasky, E. et al. Study of mitotic chromatin supports a model of bookmarking by histone modifications and reveals nucleosome deposition patterns. Genome Res. 28, 1455–1466 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhiteneva, A. et al. Mitotic post-translational modifications of histones promote chromatin compaction. Open. Biol. 7, 170076 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Behera, V. et al. Interrogating histone acetylation and BRD4 as mitotic bookmarks of transcription. Cell Rep. 27, 400–415.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Halsall, J. A. et al. Histone modifications form a cell-type-specific chromosomal bar code that persists through the cell cycle. Sci. Rep. 11, 3009 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kang, H. et al. Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation. Genes. Dev. 34, 913–930 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao, R., Nakamura, T., Fu, Y., Lazar, Z. & Spector, D. L. Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat. Cell Biol. 13, 1295–1304 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Samata, M. et al. Intergenerationally maintained histone H4 lysine 16 acetylation is instructive for future gene activation. Cell 182, 127–144.e23 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Festuccia, N., Gonzalez, I., Owens, N. & Navarro, P. Mitotic bookmarking in development and stem cells. Development 144, 3633–3645 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Palozola, K. C., Lerner, J. & Zaret, K. S. A changing paradigm of transcriptional memory propagation through mitosis. Nat. Rev. Mol. Cell Biol. 20, 55–64 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hsiung, C. C.-S. et al. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition. Genes Dev. 30, 1423–1439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hua, B. L. & Orr-Weaver, T. L. DNA replication control during development: insights into the onset of s phase, replication initiation, and fork progression. Genetics 207, 29–47 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bar-Ziv, R., Voichek, Y. & Barkai, N. Chromatin dynamics during DNA replication. Genome Res. 26, 1245–1256 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ehrenhofer-Murray, A. E. Chromatin dynamics at DNA replication, transcription and repair. Eur. J. Biochem. 271, 2335–2349 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Tadros, W. & Lipshitz, H. D. The maternal-to-zygotic transition: a play in two acts. Development 136, 3033–3042 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Sato, Y. et al. Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis. Development 146, dev179127 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mo, F. et al. Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat. Chem. Biol. 12, 226–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ward, T. et al. Regulation of a dynamic interaction between two microtubule-binding proteins, EB1 and TIP150, by the mitotic p300/CBP-associated factor (PCAF) orchestrates kinetochore microtubule plasticity and chromosome stability during mitosis. J. Biol. Chem. 288, 15771–15785 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xia, P. et al. EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochore-microtubule interactions in mitosis. Proc. Natl Acad. Sci. USA 109, 16564–16569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Choi, E. et al. BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. EMBO J. 28, 2077–2089 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nalawansha, D. A., Gomes, I. D., Wambua, M. K. & Pflum, M. K. H. HDAC inhibitor-induced mitotic arrest is mediated by Eg5/KIF11 acetylation. Cell Chem. Biol. 24, 481–492.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Orpinell, M. et al. The ATAC acetyl transferase complex controls mitotic progression by targeting non-histone substrates. EMBO J. 29, 2381–2394 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lin, C.-C. et al. CoA synthase regulates mitotic fidelity via CBP-mediated acetylation. Nat. Commun. 9, 1039 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Pavlova, G. A. et al. RNAi-mediated depletion of the NSL complex subunits leads to abnormal chromosome segregation and defective centrosome duplication in Drosophila mitosis. PLoS Genet. 15, e1008371 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Meunier, S. et al. An epigenetic regulator emerges as microtubule minus-end binding and stabilizing factor in mitosis. Nat. Commun. 6, 7889 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Galdieri, L., Zhang, T., Rogerson, D., Lleshi, R. & Vancura, A. Protein acetylation and acetyl coenzyme a metabolism in budding yeast. Eukaryot. Cell 13, 1472–1483 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Cai, L., Sutter, B. M., Li, B. & Tu, B. P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426–437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee, J. V. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306–319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Reid, M. A., Dai, Z. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298–1306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wagner, G. R. & Payne, R. M. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288, 29036–29045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. James, A. M. et al. Non-enzymatic N-acetylation of lysine residues by acetylCoA often occurs via a proximal S-acetylated thiol intermediate sensitive to glyoxalase II. Cell Rep. 18, 2105–2112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Baeza, J., Smallegan, M. J. & Denu, J. M. Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 10, 122–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Weinert, B. T. et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 10, 716 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Weinert, B. T. et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 4, 842–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Weinert, B. T. et al. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol. Cell 51, 265–272 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Weinert, B. T., Moustafa, T., Iesmantavicius, V., Zechner, R. & Choudhary, C. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions. EMBO J. 34, 2620–2632 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xie, N. et al. NAD metabolism: pathophysiologic mechanisms and therapeutic potential. Signal. Transduct. Target. Ther. 5, 227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Feldman, J. L. et al. Kinetic and structural basis for acyl-group selectivity and NAD+ dependence in sirtuin-catalyzed deacylation. Biochemistry 54, 3037–3050 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Henry, R. A., Kuo, Y.-M., Bhattacharjee, V., Yen, T. J. & Andrews, A. J. Changing the selectivity of p300 by acetyl-CoA modulation of histone acetylation. ACS Chem. Biol. 10, 146–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Lu, C. & Thompson, C. B. Metabolic regulation of epigenetics. Cell Metab. 16, 9–17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mews, P. et al. Histone methylation has dynamics distinct from those of histone acetylation in cell cycle reentry from quiescence. Mol. Cell. Biol. 34, 3968–3980 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Kinnaird, A., Zhao, S., Wellen, K. E. & Michelakis, E. D. Metabolic control of epigenetics in cancer. Nat. Rev. Cancer 16, 694–707 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Cluntun, A. A. et al. The rate of glycolysis quantitatively mediates specific histone acetylation sites. Cancer Metab. 3, 10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Mariño, G. et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 53, 710–725 (2014).

    Article  PubMed  CAS  Google Scholar 

  149. Bao, X. et al. Glutarylation of histone H4 lysine 91 regulates chromatin dynamics. Mol. Cell 76, 660–675.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Wang, Y. et al. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. Nature 552, 273–277 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Du, J. et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Park, J. et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50, 919–930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tan, M. et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 19, 605–617 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rardin, M. J. et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 18, 920–933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pannek, M. et al. Crystal structures of the mitochondrial deacylase sirtuin 4 reveal isoform-specific acyl recognition and regulation features. Nat. Commun. 8, 1513 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Jiang, H. et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110–113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Trefely, S., Lovell, C. D., Snyder, N. W. & Wellen, K. E. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol. Metab. 38, 100941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Simithy, J. et al. Characterization of histone acylations links chromatin modifications with metabolism. Nat. Commun. 8, 1141 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Sabari, B. R., Zhang, D., Allis, C. D. & Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18, 90–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Sadhukhan, S. et al. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc. Natl Acad. Sci. USA 113, 4320–4325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mews, P. et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546, 381–386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Farrugia, M. A. & Puglielli, L. Nε-lysine acetylation in the endoplasmic reticulum — a novel cellular mechanism that regulates proteostasis and autophagy. J. Cell Sci. 131, jcs221747 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Pehar, M. & Puglielli, L. Lysine acetylation in the lumen of the ER: a novel and essential function under the control of the UPR. Biochim. Biophys. Acta 1833, 686–697 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Hosp, F. et al. Lysine acetylation in mitochondria: From inventory to function. Mitochondrion 33, 58–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Chatterjee, A. et al. MOF acetyl transferase regulates transcription and respiration in mitochondria. Cell 167, 722–738.e23 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Lombard, D. B. et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807–8814 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Son, S. M. et al. Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A. Cell Metab. 29, 192–201.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Scher, M. B., Vaquero, A. & Reinberg, D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 21, 920–928 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. McKinsey, T. A., Zhang, C. L., Lu, J. & Olson, E. N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Carrer, A. et al. Impact of a high-fat diet on tissue acyl-CoA and histone acetylation levels. J. Biol. Chem. 292, 3312–3322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Boon, R., Silveira, G. G. & Mostoslavsky, R. Nuclear metabolism and the regulation of the epigenome. Nat. Metab. 2, 1190–1203 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Dai, Z., Ramesh, V. & Locasale, J. W. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21, 737–753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Diehl, K. L. & Muir, T. W. Chromatin as a key consumer in the metabolite economy. Nat. Chem. Biol. 16, 620–629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Katada, S., Imhof, A. & Sassone-Corsi, P. Connecting threads: epigenetics and metabolism. Cell 148, 24–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Zhang, J.-J. et al. Nuclear dihydroxyacetone phosphate signals nutrient sufficiency and cell cycle phase to global histone acetylation. Nat. Metab. 3, 859–875 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Houston, R. et al. Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses. PLoS Biol. 18, e3000981 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Katsyuba, E., Romani, M., Hofer, D. & Auwerx, J. NAD homeostasis in health and disease. Nat. Metab. 2, 9–31 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Ryu, K. W. et al. Metabolic regulation of transcription through compartmentalized NAD biosynthesis. Science 360, eaan5780 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Son, S. M., Park, S. J., Fernandez-Estevez, M. & Rubinsztein, D. C. Autophagy regulation by acetylation — implications for neurodegenerative diseases. Exp. Mol. Med. 53, 30–41 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Son, S. M. et al. Leucine regulates autophagy via acetylation of the mTORC1 component raptor. Nat. Commun. 11, 3148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang, Y. et al. Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB. EMBO Rep. 21, e48335 (2020).

    CAS  PubMed  Google Scholar 

  184. Chowdhry, S. et al. NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling. Nature 569, 570–575 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhao, S. et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579, 586–591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhong, L. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140, 280–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sheikh, B. N. et al. Neural metabolic imbalance induced by MOF dysfunction triggers pericyte activation and breakdown of vasculature. Nat. Cell Biol. 22, 828–841 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Petkau, N., Budak, H., Zhou, X., Oster, H. & Eichele, G. Acetylation of BMAL1 by TIP60 controls BRD4-P-TEFb recruitment to circadian promoters. eLife 8, e43235 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Etchegaray, J.-P., Lee, C., Wade, P. A. & Reppert, S. M. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177–182 (2002).

    Article  PubMed  CAS  Google Scholar 

  192. Peek, C. B. et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342, 1243417 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Sinturel, F., Petrenko, V. & Dibner, C. Circadian clocks make metabolism run. J. Mol. Biol. 432, 3680–3699 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Hirsch, C. L., Wrana, J. L. & Dent, S. Y. R. KATapulting toward pluripotency and cancer. J. Mol. Biol. 429, 1958–1977 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Acharya, D. et al. KAT-independent gene regulation by Tip60 promotes ESC self-renewal but not pluripotency. Cell Rep. 19, 671–679 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Jamaladdin, S. et al. Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells. Proc. Natl Acad. Sci. USA 111, 9840–9845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Williams, E. O. et al. Sirtuin 1 promotes deacetylation of Oct4 and maintenance of naive pluripotency. Cell Rep. 17, 809–820 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Mu, W.-L. et al. Sox2 deacetylation by sirt1 is involved in mouse somatic reprogramming. Stem Cell 33, 2135–2147 (2015).

    Article  CAS  Google Scholar 

  200. Etchegaray, J.-P. et al. The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine. Nat. Cell Biol. 17, 545–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Pessoa Rodrigues, C. et al. Temporal expression of MOF acetyltransferase primes transcription factor networks for erythroid fate. Sci. Adv. 6, eaaz4815 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Thomas, T. et al. Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev. 20, 1175–1186 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sheikh, B. N. et al. MOZ (KAT6A) is essential for the maintenance of classically defined adult hematopoietic stem cells. Blood 128, 2307–2318 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Rebel, V. I. et al. Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc. Natl Acad. Sci. USA 99, 14789–14794 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Tarazona, O. A. & Pourquié, O. Exploring the influence of cell metabolism on cell fate through protein post-translational modifications. Dev. Cell 54, 282–292 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Moussaieff, A. et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21, 392–402 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Yucel, N. et al. Glucose metabolism drives histone acetylation landscape transitions that dictate muscle stem cell function. Cell Rep. 27, 3939–3955.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Comerford, S. A. et al. Acetate dependence of tumors. Cell 159, 1591–1602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Yoshii, Y. et al. Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolism. Cancer Sci. 100, 821–827 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Mashimo, T. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603–1614 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Schug, Z. T. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Gao, X. et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat. Commun. 7, 11960 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Bulusu, V. et al. Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 18, 647–658 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Fallah, M. S., Szarics, D., Robson, C. M. & Eubanks, J. H. Impaired regulation of histone methylation and acetylation underlies specific neurodevelopmental disorders. Front. Genet. 11, 613098 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Humbert, J. et al. De novo KAT5 variants cause a syndrome with recognizable facial dysmorphisms, cerebellar atrophy, sleep disturbance, and epilepsy. Am. J. Hum. Genet. 107, 564–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Li, L. et al. Lysine acetyltransferase 8 is involved in cerebral development and syndromic intellectual disability. J. Clin. Invest. 130, 1431–1445 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Zhang, L. X. et al. Further delineation of the clinical spectrum of KAT6B disorders and allelic series of pathogenic variants. Genet. Med. 22, 1338–1347 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Cohen, T. J. et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2, 252 (2011).

    Article  PubMed  Google Scholar 

  219. Min, S.-W. et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67, 953–966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Shin, M.-K. et al. Reducing acetylated tau is neuroprotective in brain injury. Cell 184, 2715–2732 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Arakhamia, T. et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180, 633–644.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Klein, H.-U. et al. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. Nat. Neurosci. 22, 37–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Nativio, R. et al. Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat. Neurosci. 21, 497–505 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Nativio, R. et al. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nat. Genet. 52, 1024–1035 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Marzi, S. J. et al. A histone acetylome-wide association study of Alzheimer’s disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nat. Neurosci. 21, 1618–1627 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Olzscha, H., Fedorov, O., Kessler, B. M., Knapp, S. & La Thangue, N. B. CBP/p300 bromodomains regulate amyloid-like protein aggregation upon aberrant lysine acetylation. Cell Chem. Biol. 24, 9–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Caballero, B. et al. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat. Commun. 12, 2238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Mews, P. et al. Alcohol metabolism contributes to brain histone acetylation. Nature 574, 717–721 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ghrayeb, A., Gottlieb, E. & Mor, I. Alcohol-derived acetate modulates brain function. Nat. Metab. 1, 1036–1037 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Karoutas, A. et al. The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nat. Cell Biol. 21, 1248–1260 (2019).

    Article  CAS  PubMed  Google Scholar 

  231. Karoutas, A. & Akhtar, A. Functional mechanisms and abnormalities of the nuclear lamina. Nat. Cell Biol. 23, 116–126 (2021).

    Article  CAS  PubMed  Google Scholar 

  232. Reynoird, N. et al. Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains. EMBO J. 29, 2943–2952 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Rosencrance, C. D. et al. Chromatin hyperacetylation impacts chromosome folding by forming a nuclear subcompartment. Mol. Cell 78, 112–126.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Rosencrance, A. et al. Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell 171, 573–587.e14 (2017).

    Article  CAS  Google Scholar 

  235. Amano, H. et al. Telomere dysfunction induces sirtuin repression that drives telomere-dependent disease. Cell Metab. 29, 1274–1290.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Garber, K. HDAC inhibitors overcome first hurdle. Nat. Biotechnol. 25, 17–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  237. Simon, R. P., Robaa, D., Alhalabi, Z., Sippl, W. & Jung, M. KATching-up on small molecule modulators of lysine acetyltransferases. J. Med. Chem. 59, 1249–1270 (2016).

    Article  CAS  PubMed  Google Scholar 

  238. Brown, J. A. Patent spotlight: small-molecule lysine acetyltransferase inhibitors (KATi). Pharm. Pat. Anal. 9, 17–28 (2020).

    Article  CAS  PubMed  Google Scholar 

  239. Gao, C. et al. Rational design and validation of a Tip60 histone acetyltransferase inhibitor. Sci. Rep. 4, 5372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Baell, J. B. et al. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature 560, 253–257 (2018).

    Article  CAS  PubMed  Google Scholar 

  241. Lasko, L. M. et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 550, 128–132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Alqahtani, A. et al. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci. OA 5, FSO372 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Sun, Y. et al. Safety and efficacy of bromodomain and extra-terminal inhibitors for the treatment of hematological malignancies and solid tumors: a systematic study of clinical trials. Front. Pharmacol. 11, 621093 (2020).

    Article  CAS  PubMed  Google Scholar 

  244. Miller, K. D. et al. Targeting ACSS2 with a transition state mimetic inhibits triple-negative breast cancer growth. Cancer Res. 81, 1252–1264 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  246. Satoh, A. et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416–430 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Dai, H., Sinclair, D. A., Ellis, J. L. & Steegborn, C. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacol. Ther. 188, 140–154 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Bonkowski, M. S. & Sinclair, D. A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 17, 679–690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).

    Article  CAS  PubMed  Google Scholar 

  250. Campisi, J. et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature 571, 183–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Chen, D. et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22, 1753–1757 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Cantó, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Fulco, M. et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 14, 661–673 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  255. Cantó, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Frederick, D. W. et al. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab. 24, 269–282 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. & Kroemer, G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 29, 592–610 (2019).

    Article  CAS  PubMed  Google Scholar 

  258. Bogan, K. L. & Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr. 28, 115–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  259. Martens, C. R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD in healthy middle-aged and older adults. Nat. Commun. 9, 1286 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Hong, S. et al. Nicotinamide N-methyltransferase regulates hepatic nutrient metabolism through Sirt1 protein stabilization. Nat. Med. 21, 887–894 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S.-I. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Mills, K. F. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24, 795–806 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Das, A. et al. Impairment of an endothelial NAD-HS signaling network is a reversible cause of vascular aging. Cell 173, 74–89.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Covarrubias, A. J., Perrone, R., Grozio, A. & Verdin, E. NAD metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22, 119–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  265. Ruan, H.-B. & Crawford, P. A. Ketone bodies as epigenetic modifiers. Curr. Opin. Clin. Nutr. Metab. Care 21, 260–266 (2018).

    Article  CAS  PubMed  Google Scholar 

  266. Huang, H. et al. The regulatory enzymes and protein substrates for the lysine β-hydroxybutyrylation pathway. Sci. Adv. 7, eabe2771 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Xie, Z. et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell 62, 194–206 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Cotter, D. G. et al. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J. Clin. Invest. 124, 5175–5190 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  269. d’Avignon, D. A. et al. Hepatic ketogenic insufficiency reprograms hepatic glycogen metabolism and the lipidome. JCI Insight 3, e99762 (2018).

    Article  PubMed Central  Google Scholar 

  270. Arima, Y. et al. Murine neonatal ketogenesis preserves mitochondrial energetics by preventing protein hyperacetylation. Nat. Metab. 3, 196–210 (2021).

    Article  PubMed  CAS  Google Scholar 

  271. Dávalos-Salas, M. et al. Deletion of intestinal Hdac3 remodels the lipidome of enterocytes and protects mice from diet-induced obesity. Nat. Commun. 10, 5291 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Whitt, J. et al. Disruption of epithelial HDAC3 in intestine prevents diet-induced obesity in mice. Gastroenterology 155, 501–513 (2018).

    Article  CAS  PubMed  Google Scholar 

  273. Ríos-Covián, D. et al. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7, 185 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Chriett, S. et al. Prominent action of butyrate over β-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Sci. Rep. 9, 742 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  275. Yang, X. et al. Histone acetyltransferase 1 promotes homologous recombination in DNA repair by facilitating histone turnover. J. Biol. Chem. 288, 18271–18282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Ruiz-García, A. B. et al. HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyltransferase enzyme specific for free histone H4. J. Biol. Chem. 273, 12599–12605 (1998).

    Article  PubMed  Google Scholar 

  277. Han, Z. et al. Revealing the protein propionylation activity of the histone acetyltransferase MOF (males absent on the first). J. Biol. Chem. 293, 3410–3420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Lerin, C. et al. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab. 3, 429–438 (2006).

    Article  CAS  PubMed  Google Scholar 

  279. Langer, M. R., Fry, C. J., Peterson, C. L. & Denu, J. M. Modulating acetyl-CoA binding in the GCN5 family of histone acetyltransferases. J. Biol. Chem. 277, 27337–27344 (2002).

    Article  CAS  PubMed  Google Scholar 

  280. Tanner, K. G., Langer, M. R., Kim, Y. & Denu, J. M. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J. Biol. Chem. 275, 22048–22055 (2000).

    Article  CAS  PubMed  Google Scholar 

  281. Fournier, M. et al. KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification. Nat. Commun. 7, 13227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Ferreira, R. et al. Site-specific acetylation of ISWI by GCN5. BMC Mol. Biol. 8, 73 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Kim, J.-H., Saraf, A., Florens, L., Washburn, M. & Workman, J. L. Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. Genes Dev. 24, 2766–2771 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Wan, J. et al. PCAF-mediated acetylation of transcriptional factor HOXB9 suppresses lung adenocarcinoma progression by targeting oncogenic protein JMJD6. Nucleic Acids Res. 44, 10662–10675 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Tanner, K. G., Langer, M. R. & Denu, J. M. Kinetic mechanism of human histone acetyltransferase P/CAF. Biochemistry 39, 11961–11969 (2000).

    Article  CAS  PubMed  Google Scholar 

  286. Wang, L.-T. et al. PCAF-mediated acetylation of ISX recruits BRD4 to promote epithelial-mesenchymal transition. EMBO Rep. 21, e48795 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Shi, D. et al. CBP and p300 are cytoplasmic E4 polyubiquitin ligases for p53. Proc. Natl Acad. Sci. USA 106, 16275–16280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Iioka, T. et al. P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain. J. Bone Miner. Res. 18, 1419–1429 (2003).

    Article  CAS  PubMed  Google Scholar 

  289. Hung, H. L., Lau, J., Kim, A. Y., Weiss, M. J. & Blobel, G. A. CREB-binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites. Mol. Cell. Biol. 19, 3496–3505 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Thompson, P. R., Kurooka, H., Nakatani, Y. & Cole, P. A. Transcriptional coactivator protein p300. Kinetic characterization of its histone acetyltransferase activity. J. Biol. Chem. 276, 33721–33729 (2001).

    Article  CAS  PubMed  Google Scholar 

  291. Vasudevarao, M. D. et al. Naphthoquinone-mediated inhibition of lysine acetyltransferase KAT3B/p300, basis for non-toxic inhibitor synthesis. J. Biol. Chem. 289, 7702–7717 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Liu, X. et al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451, 846–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  293. Siam, A. et al. Regulation of alternative splicing by p300-mediated acetylation of splicing factors. RNA 25, 813–824 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Schröder, S. et al. Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells. Mol. Cell 52, 314–324 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Boyes, J., Byfield, P., Nakatani, Y. & Ogryzko, V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396, 594–598 (1998).

    Article  CAS  PubMed  Google Scholar 

  296. Lee, H. J., Chun, M. & Kandror, K. V. Tip60 and HDAC7 interact with the endothelin receptor a and may be involved in downstream signaling. J. Biol. Chem. 276, 16597–16600 (2001).

    Article  CAS  PubMed  Google Scholar 

  297. Sheridan, A. M. et al. PLIP, a novel splice variant of Tip60, interacts with group IV cytosolic phospholipase A2, induces apoptosis, and potentiates prostaglandin production. Mol. Cell. Biol. 21, 4470–4481 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Cheng, X. et al. Pacer is a mediator of mTORC1 and GSK3-TIP60 signaling in regulation of autophagosome maturation and lipid metabolism. Mol. Cell 73, 788–802.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  299. Sun, Y., Xu, Y., Roy, K. & Price, B. D. DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol. Cell. Biol. 27, 8502–8509 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Xiong, X. et al. Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2. Nat. Chem. Biol. 12, 1111–1118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Rokudai, S. et al. MOZ increases p53 acetylation and premature senescence through its complex formation with PML. Proc. Natl Acad. Sci. USA 110, 3895–3900 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Ullah, M. et al. Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes. Mol. Cell. Biol. 28, 6828–6843 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Cosentino, M. S. et al. Kat6b modulates Oct4 and nanog binding to chromatin in embryonic stem cells and is required for efficient neural differentiation. J. Mol. Biol. 431, 1148–1159 (2019).

    Article  CAS  PubMed  Google Scholar 

  304. Doyon, Y. et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol. Cell 21, 51–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  305. Niida, H. et al. Phosphorylated HBO1 at UV irradiated sites is essential for nucleotide excision repair. Nat. Commun. 8, 16102 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Kwon, I. et al. BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol. Cell. Biol. 26, 7318–7330 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Lin, R. et al. CLOCK acetylates ASS1 to drive circadian rhythm of ureagenesis. Mol. Cell 68, 198–209.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  308. Ma, Y. et al. The CSRP2BP histone acetyltransferase drives smooth muscle gene expression. Nucleic Acids Res. 45, 3046–3058 (2017).

    Article  CAS  PubMed  Google Scholar 

  309. Guelman, S. et al. The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol. Cell. Biol. 29, 1176–1188 (2009).

    Article  CAS  PubMed  Google Scholar 

  310. Sun, H. et al. Cul4-Ddb1 ubiquitin ligases facilitate DNA replication-coupled sister chromatid cohesion through regulation of cohesin acetyltransferase Esco2. PLoS Genet. 15, e1007685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Minamino, M. et al. Esco1 acetylates cohesin via a mechanism different from that of Esco2. Curr. Biol. 25, 1694–1706 (2015).

    Article  CAS  PubMed  Google Scholar 

  312. Nekooki-Machida, Y. et al. Dynamic localization of α-tubulin acetyltransferase ATAT1 through the cell cycle in human fibroblastic KD cells. Med. Mol. Morphol. 51, 217–226 (2018).

    Article  CAS  PubMed  Google Scholar 

  313. Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C. & Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623–4635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Seto, E. & Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324, 654–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  317. Wang, Y.-P. et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J. 33, 1304–1320 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  318. Onyango, P., Celic, I., McCaffery, J. M., Boeke, J. D. & Feinberg, A. P. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl Acad. Sci. USA 99, 13653–13658 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Iwahara, T., Bonasio, R., Narendra, V. & Reinberg, D. SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol. Cell. Biol. 32, 5022–5034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Zhang, X. et al. Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3. Cell Discov. 5, 35 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  321. Bao, X. et al. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. eLife 3, e02999 (2014).

    Article  PubMed Central  Google Scholar 

  322. Jin, L. et al. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J. Biol. Chem. 284, 24394–24405 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Rardin, M. J. et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc. Natl Acad. Sci. USA 110, 6601–6606 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Mathias, R. A. et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159, 1615–1625 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Anderson, K. A. et al. SIRT4 is a lysine deacylase that controls leucine metabolism and insulin secretion. Cell Metab. 25, 838–855.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Laurent, G. et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50, 686–698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Wang, F. et al. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell Rep. 19, 2331–2344 (2017).

    Article  CAS  PubMed  Google Scholar 

  328. Nakagawa, T., Lomb, D. J., Haigis, M. C. & Guarente, L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137, 560–570 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Etchegaray, J.-P. et al. The histone deacetylase SIRT6 restrains transcription elongation via promoter-proximal pausing. Mol. Cell 75, 683–699.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Kiran, S. et al. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal. FEBS J. 280, 3451–3466 (2013).

    Article  CAS  PubMed  Google Scholar 

  331. Ford, E. et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20, 1075–1080 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Barber, M. F. et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487, 114–118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Yu, J. et al. Regulation of serine-threonine kinase Akt activation by NAD+-dependent deacetylase SIRT7. Cell Rep. 18, 1229–1240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Sobuz, S. U. et al. SIRT7 regulates the nuclear export of NF-κB p65 by deacetylating Ran. Biochim. Biophys. Acta Mol. Cell Res. 1866, 1355–1367 (2019).

    Article  CAS  PubMed  Google Scholar 

  335. Chen, S. et al. SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing. Nat. Commun. 7, 10734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Ianni, A. et al. SIRT7-dependent deacetylation of NPM promotes p53 stabilization following UV-induced genotoxic stress. Proc. Natl Acad. Sci. USA 118, e2015339118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Cai, R. L., Yan-Neale, Y., Cueto, M. A., Xu, H. & Cohen, D. HDAC1, a histone deacetylase, forms a complex with Hus1 and Rad9, two G2/M checkpoint Rad proteins. J. Biol. Chem. 275, 27909–27916 (2000).

    Article  CAS  PubMed  Google Scholar 

  338. Ito, A. et al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 21, 6236–6245 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Ma, P. & Schultz, R. M. Histone deacetylase 2 (HDAC2) regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse. PLoS Genet. 9, e1003377 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Wagner, F. F. et al. Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chem. Sci. 6, 804–815 (2015).

    Article  CAS  PubMed  Google Scholar 

  341. Chini, C. C. S., Escande, C., Nin, V. & Chini, E. N. HDAC3 is negatively regulated by the nuclear protein DBC1. J. Biol. Chem. 285, 40830–40837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Bhaskara, S. et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 18, 436–447 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Ziesché, E. et al. The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-κB. Nucleic Acids Res. 41, 90–109 (2013).

    Article  PubMed  CAS  Google Scholar 

  344. Waltregny, D. et al. Expression of histone deacetylase 8, a class I histone deacetylase, is restricted to cells showing smooth muscle differentiation in normal human tissues. Am. J. Pathol. 165, 553–564 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Kozyreva, V. K. et al. NEDD9 regulates actin dynamics through cortactin deacetylation in an AURKA/HDAC6-dependent manner. Mol. Cancer Res. 12, 681–693 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Vanaja, G. R., Ramulu, H. G. & Kalle, A. M. Overexpressed HDAC8 in cervical cancer cells shows functional redundancy of tubulin deacetylation with HDAC6. Cell Commun. Signal. 16, 20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Castañeda, C. A. et al. HDAC8 substrate selectivity is determined by long- and short-range interactions leading to enhanced reactivity for full-length histone substrates compared with peptides. J. Biol. Chem. 292, 21568–21577 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  348. Li, J. et al. Histone deacetylase 8 regulates cortactin deacetylation and contraction in smooth muscle tissues. Am. J. Physiol. Cell Physiol. 307, C288–C295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Olson, D. E. et al. An unbiased approach to identify endogenous substrates of ‘histone’ deacetylase 8. ACS Chem. Biol. 9, 2210–2216 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Cambronne, X. A. et al. Biosensor reveals multiple sources for mitochondrial NAD+. Science 352, 1474–1477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Yang, D. & Arya, G. Structure and binding of the H4 histone tail and the effects of lysine 16 acetylation. Phys. Chem. Chem. Phys. 13, 2911–2921 (2011).

    Article  CAS  PubMed  Google Scholar 

  352. Caslini, C., Hong, S., Ban, Y. J., Chen, X. S. & Ince, T. A. HDAC7 regulates histone 3 lysine 27 acetylation and transcriptional activity at super-enhancer-associated genes in breast cancer stem cells. Oncogene 38, 6599–6614 (2019).

    Article  CAS  PubMed  Google Scholar 

  353. Paparidis, N. F. D. S., Durvale, M. C. & Canduri, F. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. Mol. Biosyst. 13, 246–276 (2017).

    Article  PubMed  CAS  Google Scholar 

  354. Khoueiry, P. et al. BRD4 bimodal binding at promoters and drug-induced displacement at Pol II pause sites associates with I-BET sensitivity. Epigenetics Chromatin 12, 39 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Arya, G. & Schlick, T. Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model. Proc. Natl Acad. Sci. USA 103, 16236–16241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Graves, H. K., Wang, P., Lagarde, M., Chen, Z. & Tyler, J. K. Mutations that prevent or mimic persistent post-translational modifications of the histone H3 globular domain cause lethality and growth defects in Drosophila. Epigenetics Chromatin 9, 9 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  357. Armstrong, R. L. et al. Chromatin conformation and transcriptional activity are permissive regulators of DNA replication initiation in Drosophila. Genome Res. 28, 1688–1700 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Copur, Ö., Gorchakov, A., Finkl, K., Kuroda, M. I. & Müller, J. Sex-specific phenotypes of histone H4 point mutants establish dosage compensation as the critical function of H4K16 acetylation in. Proc. Natl Acad. Sci. USA 115, 13336–13341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Zhang, W. et al. Probing the function of metazoan histones with a systematic library of H3 and H4 mutants. Dev. Cell 48, 406–419 (2019).

    Article  CAS  PubMed  Google Scholar 

  360. Nakanishi, S. et al. A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nat. Struct. Mol. Biol. 15, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Dai, J. et al. Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants. Cell 134, 1066–1078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Zhang, T., Zhang, Z., Dong, Q., Xiong, J. & Zhu, B. Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells. Genome Biol. 21, 45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all past and current members of the Akhtar laboratory for stimulating scientific discussions, and in particular T. H. Tsang, A. Panhale, B. Sheikh, M. Samata, U. Erdogdu, T. Rumpf, C. Pessoa Rodrigues, A. Alexiadis, M. Wiese and T. Kulkarni for constructive comments on the manuscript. Research in the Akhtar laboratory is supported by the Max Planck Society (MPG); and by the German Research Foundation (DFG) under Germany’s Excellence Strategy (Centre for Integrative Biological Signalling Studies, EXC-2189, project ID 390939984), CRC 992 (A02), CRC 1425 (P04) and CRC 1381 (B3) awarded to A.A.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Asifa Akhtar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks TaeSoo Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Stoichiometry

The proportion of the total protein pool that is modified by acetylation at a particular Lys residue at a particular time.

Acetylome

A high-throughput profile of all acetylated proteins and residues in a particular peptide mixture detected by mass spectrometry.

H2A–H2B acidic patch

A 3D surface formed by acidic amino acids in histone H2A (Glu56, Glu61, Glu64, Asp90, Glu91 and Glu92) and histone H2B (Glu110) in an assembled nucleosome.

Bromodomain and extra-terminal domain

(BET). Refers to a family of four proteins — BRDT, BRD2, BRD3 and BRD4 — in humans and mice. Each BET protein carries two bromodomains.

Nucleosome-remodelling factors

A large family of proteins with ATPase activity that repositions nucleosomes along the DNA through nucleosome sliding, spacing and eviction or by collaborating with histone chaperones to assemble nucleosomes on DNA.

Stress granules

Transient membraneless cytoplasmic ribonucleoprotein organelles whose assembly is induced by specific cellular stresses.

RNA recognition motif

(RRM). A canonical RNA-binding protein domain consisting of two α-helices packed on an antiparallel four-stranded β-sheet.

Inclusion bodies

Membraneless cytoplasmic proteinaceous or ribonucleoprotein assemblies associated with neurodegenerative disorders.

Intrinsically disordered regions

(IDRs). Segments of protein that do not autonomously adopt a specific 3D structure and that are thought to display conformational heterogeneity.

Acyl-CoA synthetase short-chain family member

The enzymes ACSS1, ACSS2 and ACSS3 synthesize acetyl-CoA from acetate. ACSS1 and ACSS3 are found in the mitochondrial matrix, whereas ACSS2 is located in the cytoplasm and nucleus.

ATP-citrate synthase

(ACLY). A synthase found in the nucleus and cytoplasm that converts citrate into acetyl-CoA and oxaloacetate.

Pyruvate dehydrogenase complex

A complex that produces acetyl-CoA from the pyruvate precursor. It is normally found in mitochondria, but can translocate to the nucleus according to the cell cycle stage and in response to certain stimuli.

Pathological tau transformation

The process by which hyperphosphorylated tau facilitates aggregation and disengagement of soluble tau protein from microtubules to form tau tangles.

Tau tangles

Aggregates or inclusions of hyperphosphorylated tau, also known as neurofibrillary tangles. The presence of tau tangles is a characteristic feature of Alzheimer disease.

Chromothripsis

A large-scale mutational process that generates extensive chromosomal rearrangements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvedunova, M., Akhtar, A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 23, 329–349 (2022). https://doi.org/10.1038/s41580-021-00441-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00441-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing