Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms and consequences of mitochondrial permeability transition

Abstract

Mitochondrial permeability transition (mPT) is a phenomenon that abruptly causes the flux of low molecular weight solutes (molecular weight up to 1,500) across the generally impermeable inner mitochondrial membrane. The mPT is mediated by the so-called mitochondrial permeability transition pore (mPTP), a supramolecular entity assembled at the interface of the inner and outer mitochondrial membranes. In contrast to mitochondrial outer membrane permeabilization, which mostly activates apoptosis, mPT can trigger different cellular responses, from the physiological regulation of mitophagy to the activation of apoptosis or necrosis. Although there are several molecular candidates for the mPTP, its molecular nature remains contentious. This lack of molecular data was a significant setback that prevented mechanistic insight into the mPTP, pharmacological targeting and the generation of informative animal models. In recent years, experimental evidence has highlighted mitochondrial F1Fo ATP synthase as a participant in mPTP formation, although a molecular model for its transition to the mPTP is still lacking. Recently, the resolution of the F1Fo ATP synthase structure by cryogenic electron microscopy led to a model for mPTP gating. The elusive molecular nature of the mPTP is now being clarified, marking a turning point for understanding mitochondrial biology and its pathophysiological ramifications. This Review provides an up-to-date reference for the understanding of the mammalian mPTP and its cellular functions. We review current insights into the molecular mechanisms of mPT and validated observations — from studies in vivo or in artificial membranes — on mPTP activity and functions. We end with a discussion of the contribution of the mPTP to human disease. Throughout the Review, we highlight the multiple unanswered questions and, when applicable, we also provide alternative interpretations of the recent discoveries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ATP synthase structure and mechanism of mPTP opening.
Fig. 2: Mitochondrial consequences of mPT.
Fig. 3: Cellular roles of mPT.
Fig. 4: Pathological consequences of mitochondrial permeability transition.

Similar content being viewed by others

References

  1. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nakamura-Ishizu, A., Ito, K. & Suda, T. Hematopoietic stem cell metabolism during development and aging. Dev. Cell 54, 239–255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giorgi, C., Marchi, S. & Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19, 713–730 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, F., Zhang, L., Qi, Y. & Xu, H. Mitochondrial cAMP signaling. Cell Mol. Life Sci. 73, 4577–4590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Hansen, K. G. & Herrmann, J. M. Transport of proteins into mitochondria. Protein J. 38, 330–342 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Rosencrans, W. M., Rajendran, M., Bezrukov, S. M. & Rostovtseva, T. K. VDAC regulation of mitochondrial calcium flux: from channel biophysics to disease. Cell Calcium 94, 102356 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haworth, R. A. & Hunter, D. R. The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch. Biochem. Biophys. 195, 460–467 (1979).

    Article  CAS  PubMed  Google Scholar 

  10. Hunter, D. R. & Haworth, R. A. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch. Biochem. Biophys. 195, 468–477 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Hunter, D. R. & Haworth, R. A. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch. Biochem. Biophys. 195, 453–459 (1979). This work, together with workfrom Haworth and Hunter (1979) and Hunter and Haworth (1979), formallydefines the properties of mPT from isolated mitochondria.

    Article  CAS  PubMed  Google Scholar 

  12. Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Giorgio, V. et al. Cyclophilin D in mitochondrial pathophysiology. Biochim. Biophys. Acta 1797, 1113–1118 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Bonora, M. et al. Physiopathology of the permeability transition pore: molecular mechanisms in human pathology. Biomolecules 10, 998 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  15. Spikes, T. E., Montgomery, M. G. & Walker, J. E. Structure of the dimeric ATP synthase from bovine mitochondria. Proc. Natl Acad. Sci. USA 117, 23519–23526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alavian, K. N. et al. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc. Natl Acad. Sci. USA 111, 10580–10585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giorgio, V. et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl Acad. Sci. USA 110, 5887–5892 (2013). Together with Alavian et al. (2014), this study is the firstto demonstrate that purified ATP synthase can generate mPTP-like currents inartificial membrane systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Urbani, A. et al. Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat. Commun. 10, 4341 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mnatsakanyan, N. et al. A mitochondrial megachannel resides in monomeric F1FO ATP synthase. Nat. Commun. 10, 5823 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bonora, M. et al. Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12, 674–683 (2013). This work proposes for the first time the involvement of ATP synthase in mPTP composition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bonora, M. et al. Mitochondrial permeability transition involves dissociation of F1FO ATP synthase dimers and C-ring conformation. EMBO Rep. 18, 1077–1089 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Galber, C. et al. The f subunit of human ATP synthase is essential for normal mitochondrial morphology and permeability transition. Cell Rep. 35, 109111 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Carraro, M. et al. Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J. Biol. Chem. 289, 15980–15985 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carraro, M. et al. The unique cysteine of F-ATP synthase OSCP subunit participates in modulation of the permeability transition pore. Cell Rep. 32, 108095 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Giorgio, V. et al. Ca2+ binding to F-ATP synthase beta subunit triggers the mitochondrial permeability transition. EMBO Rep. 18, 1065–1076 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Antoniel, M. et al. The unique histidine in OSCP subunit of F-ATP synthase mediates inhibition of the permeability transition pore by acidic pH. EMBO Rep. 19, 257–268 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Guo, L. et al. Arginine 107 of yeast ATP synthase subunit g mediates sensitivity of the mitochondrial permeability transition to phenylglyoxal. J. Biol. Chem. 293, 14632–14645 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ichas, F. & Mazat, J. P. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim. Biophys. Acta 1366, 33–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Szabo, I. & Zoratti, M. The mitochondrial megachannel is the permeability transition pore. J. Bioenerg. Biomembr. 24, 111–117 (1992). This study describes for the first time the electrophysiological properties of the mPTP.

    Article  CAS  PubMed  Google Scholar 

  30. Savage, M. K. & Reed, D. J. Release of mitochondrial glutathione and calcium by a cyclosporin A-sensitive mechanism occurs without large amplitude swelling. Arch. Biochem. Biophys. 315, 142–152 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Neginskaya, M. A. et al. ATP synthase c-subunit-deficient mitochondria have a small cyclosporine a-sensitive channel, but lack the permeability transition pore. Cell Rep. 26, 11–17 e12 (2019). This work describes an mPTP-like low-conductance current attributable to ANT in cells deprived of the c-ring of ATP synthase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Szabo, I. & Zoratti, M. The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett. 330, 201–205 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Boyman, L. et al. Dynamics of the mitochondrial permeability transition pore: transient and permanent opening events. Arch. Biochem. Biophys. 666, 31–39 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petronilli, V. et al. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys. J. 76, 725–734 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elrod, J. W. et al. Cyclophilin D controls mitochondrial pore-dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. J. Clin. Invest. 120, 3680–3687 (2010). This study describes cellular metabolism in Ppif−/− mouse models, providing the first evidence for a role of the mPTP in the physiological regulation of metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Giorgio, V., Guo, L., Bassot, C., Petronilli, V. & Bernardi, P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 70, 56–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Karch, J. et al. Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Sci. Adv. 5, eaaw4597 (2019). The complete knockdown of all mouse ANT isoforms confirms the role of ANT in mPT and provides additional evidence for two independent pores.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carrer, A. et al. Defining the molecular mechanisms of the mitochondrial permeability transition through genetic manipulation of F-ATP synthase. Nat. Commun. 12, 4835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pinke, G., Zhou, L. & Sazanov, L. A. Cryo-EM structure of the entire mammalian F-type ATP synthase. Nat. Struct. Mol. Biol. 27, 1077–1085 (2020). This study describes for the first time the structure of ATP synthase in conditions of mPTP opening, providing solid confirmation of the c-ring model.

    Article  CAS  PubMed  Google Scholar 

  40. Algieri, C. et al. Mitochondrial Ca2+ -activated F1FO-ATPase hydrolyzes ATP and promotes the permeability transition pore. Ann. NY Acad. Sci. 1457, 142–157 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Carroll, J., He, J., Ding, S., Fearnley, I. M. & Walker, J. E. Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase. Proc. Natl Acad. Sci. USA 116, 12816–12821 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He, J. et al. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc. Natl Acad. Sci. USA 114, 3409–3414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, W., Marinelli, F., Nief, C. & Faraldo-Gomez, J. D. Atomistic simulations indicate the c-subunit ring of the F1Fo ATP synthase is not the mitochondrial permeability transition pore. eLife 6, e23781 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gerle, C. Mitochondrial F-ATP synthase as the permeability transition pore. Pharmacol. Res. 160, 105081 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Hunter, D. R., Haworth, R. A. & Southard, J. H. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J. Biol. Chem. 251, 5069–5077 (1976).

    Article  CAS  PubMed  Google Scholar 

  46. Kokoszka, J. E. et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427, 461–465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Petronilli, V., Nicolli, A., Costantini, P., Colonna, R. & Bernardi, P. Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. Biochim. Biophys. Acta 1187, 255–259 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Linder, M. D., Morkunaite-Haimi, S., Kinnunen, P. K., Bernardi, P. & Eriksson, O. Ligand-selective modulation of the permeability transition pore by arginine modification. Opposing effects of p-hydroxyphenylglyoxal and phenylglyoxal. J. Biol. Chem. 277, 937–942 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Zorov, D. B., Kinnally, K. W., Perini, S. & Tedeschi, H. Multiple conductance levels in rat heart inner mitochondrial membranes studied by patch clamping. Biochim. Biophys. Acta 1105, 263–270 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Halestrap, A. P., Connern, C. P., Griffiths, E. J. & Kerr, P. M. Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol. Cell Biochem. 174, 167–172 (1997). This work identifies CypD as the target of CsA in mPTP inhibition.

    Article  CAS  PubMed  Google Scholar 

  51. Kanno, T. et al. Oxidative stress underlies the mechanism for Ca2+-induced permeability transition of mitochondria. Free Radic. Res. 38, 27–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Kowaltowski, A. J., Netto, L. E. & Vercesi, A. E. The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism. J. Biol. Chem. 273, 12766–12769 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Costantini, P., Chernyak, B. V., Petronilli, V. & Bernardi, P. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J. Biol. Chem. 271, 6746–6751 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Halestrap, A. P., Woodfield, K. Y. & Connern, C. P. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J. Biol. Chem. 272, 3346–3354 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Kaludercic, N. & Giorgio, V. The dual function of reactive oxygen/nitrogen species in bioenergetics and cell death: the role of ATP synthase. Oxid. Med. Cell Longev. 2016, 3869610 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vercesi, A. E., Kowaltowski, A. J., Grijalba, M. T., Meinicke, A. R. & Castilho, R. F. The role of reactive oxygen species in mitochondrial permeability transition. Biosci. Rep. 17, 43–52 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Kowaltowski, A. J., Castilho, R. F. & Vercesi, A. E. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett. 378, 150–152 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Kowaltowski, A. J., Vercesi, A. E., Rhee, S. G. & Netto, L. E. Catalases and thioredoxin peroxidase protect Saccharomyces cerevisiae against Ca2+-induced mitochondrial membrane permeabilization and cell death. FEBS Lett. 473, 177–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Samovski, D., Kalderon, B., Yehuda-Shnaidman, E. & Bar-Tana, J. Gating of the mitochondrial permeability transition pore by long chain fatty acyl analogs in vivo. J. Biol. Chem. 285, 6879–6890 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Betaneli, V., Petrov, E. P. & Schwille, P. The role of lipids in VDAC oligomerization. Biophys. J. 102, 523–531 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wieckowski, M. R., Brdiczka, D. & Wojtczak, L. Long-chain fatty acids promote opening of the reconstituted mitochondrial permeability transition pore. FEBS Lett. 484, 61–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Furuno, T. et al. Roles of long chain fatty acids and carnitine in mitochondrial membrane permeability transition. Biochem. Pharmacol. 62, 1037–1046 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Oyanagi, E., Yano, H., Uchida, M., Utsumi, K. & Sasaki, J. Protective action of L-carnitine on cardiac mitochondrial function and structure against fatty acid stress. Biochem. Biophys. Res. Commun. 412, 61–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Kang, B. H. et al. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131, 257–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Ghosh, J. C., Siegelin, M. D., Dohi, T. & Altieri, D. C. Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res. 70, 8988–8993 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sinha, D. & D’Silva, P. Chaperoning mitochondrial permeability transition: regulation of transition pore complex by a J-protein, DnaJC15. Cell Death Dis. 5, e1101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Margineantu, D. H., Emerson, C. B., Diaz, D. & Hockenbery, D. M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2, e1066 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hafner, A. V. et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging 2, 914–923 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bochaton, T. et al. Inhibition of myocardial reperfusion injury by ischemic postconditioning requires sirtuin 3-mediated deacetylation of cyclophilin D. J. Mol. Cell Cardiol. 84, 61–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, W. et al. Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 167, 985–1000.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, C. F. et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation 134 (2016).

  72. Rasola, A. et al. Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proc. Natl Acad. Sci. USA 107, 726–731 (2010). This study demonstrates for the first time that signalling pathways can have a direct effect on mPTP activity.

    Article  CAS  PubMed  Google Scholar 

  73. Hurst, S. et al. Phosphorylation of cyclophilin D at serine 191 regulates mitochondrial permeability transition pore opening and cell death after ischemia-reperfusion. Cell Death Dis. 11, 661 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nishihara, M. et al. Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection. J. Mol. Cell Cardiol. 43, 564–570 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, S. et al. Mitochondrial PKC-epsilon deficiency promotes I/R-mediated myocardial injury via GSK3beta-dependent mitochondrial permeability transition pore opening. J. Cell Mol. Med. 21, 2009–2021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tanno, M. et al. Translocation of glycogen synthase kinase-3beta (GSK-3beta), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2). J. Biol. Chem. 289, 29285–29296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gomez, L. et al. The SR/ER-mitochondria calcium crosstalk is regulated by GSK3beta during reperfusion injury. Cell Death Differ. 23, 313–322 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, K. et al. The key roles of GSK-3beta in regulating mitochondrial activity. Cell Physiol. Biochem. 44, 1445–1459 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Ghosh, J. C. et al. Adaptive mitochondrial reprogramming and resistance to PI3K therapy. J. Natl Cancer Inst. 107, dju502 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Whittington, H. J. et al. Over-expression of mitochondrial creatine kinase in the murine heart improves functional recovery and protects against injury following ischaemia-reperfusion. Cardiovasc. Res. 114, 858–869 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Datler, C. et al. CKMT1 regulates the mitochondrial permeability transition pore in a process that provides evidence for alternative forms of the complex. J. Cell Sci. 127, 1816–1828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Woldetsadik, A. D., Vogel, M. C., Rabeh, W. M. & Magzoub, M. Hexokinase II-derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells. FASEB J. 31, 2168–2184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Baines, C. P. et al. Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ. Res. 92, 873–880 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pediaditakis, P. et al. Inhibition of the mitochondrial permeability transition by protein kinase A in rat liver mitochondria and hepatocytes. Biochem. J. 431, 411–421 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Karch, J. et al. Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. eLife 2, e00772 (2013). This study reveals that OMM remodelling during mPT-induced mitochondrial swelling is dependent on BAX and BAK.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Whelan, R. S. et al. Bax regulates primary necrosis through mitochondrial dynamics. Proc. Natl Acad. Sci. USA 109, 6566–6571 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roy, S. S. et al. Bad targets the permeability transition pore independent of Bax or Bak to switch between Ca2+-dependent cell survival and death. Mol. Cell 33, 377–388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alavian, K. N. et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol. 13, 1224–1233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Park, H. A. et al. Inhibition of Bcl-xL prevents pro-death actions of DeltaN-Bcl-xL at the mitochondrial inner membrane during glutamate excitotoxicity. Cell Death Differ. 24, 1963–1974 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L. & Sollott, S. J. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 192, 1001–1014 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dumas, J. F. et al. Effect of transient and permanent permeability transition pore opening on NAD(P)H localization in intact cells. J. Biol. Chem. 284, 15117–15125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Di Lisa, F., Menabo, R., Canton, M., Barile, M. & Bernardi, P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem. 276, 2571–2575 (2001).

    Article  PubMed  Google Scholar 

  93. Jang, S. et al. Elucidating mitochondrial electron transport chain supercomplexes in the heart during ischemia-reperfusion. Antioxid. Redox Signal. 27, 57–69 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Batandier, C., Leverve, X. & Fontaine, E. Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I. J. Biol. Chem. 279, 17197–17204 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

    Article  PubMed  Google Scholar 

  96. Tavecchio, M., Lisanti, S., Bennett, M. J., Languino, L. R. & Altieri, D. C. Deletion of cyclophilin D impairs beta-oxidation and promotes glucose metabolism. Sci. Rep. 5, 15981 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Taddeo, E. P. et al. Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Mol. Metab. 3, 124–134 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Laker, R. C. et al. The mitochondrial permeability transition pore regulator cyclophilin D exhibits tissue-specific control of metabolic homeostasis. PLoS ONE 11, e0167910 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Menazza, S. et al. CypD-/- hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism. J. Mol. Cell Cardiol. 56, 81–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, X. et al. Cyclophilin D deficiency attenuates mitochondrial perturbation and ameliorates hepatic steatosis. Hepatology 68, 62–77 (2018).

    Article  PubMed  Google Scholar 

  101. Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bonora, M. et al. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34, 1608 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Bauer, T. M. & Murphy, E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ. Res. 126, 280–293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Borutaite, V., Jekabsone, A., Morkuniene, R. & Brown, G. C. Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia. J. Mol. Cell Cardiol. 35, 357–366 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Precht, T. A. et al. The permeability transition pore triggers Bax translocation to mitochondria during neuronal apoptosis. Cell Death Differ. 12, 255–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Kim, J. S., He, L. & Lemasters, J. J. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun. 304, 463–470 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Rodriguez-Enriquez, S., Kim, I., Currin, R. T. & Lemasters, J. J. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2, 39–46 (2006). This work describes for the first time that mPTP opening can trigger mitophagy.

    Article  CAS  PubMed  Google Scholar 

  109. Elmore, S. P., Qian, T., Grissom, S. F. & Lemasters, J. J. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J. 15, 2286–2287 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Carreira, R. S., Lee, Y., Ghochani, M., Gustafsson, A. B. & Gottlieb, R. A. Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy 6, 462–472 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Rimessi, A. et al. Perturbed mitochondrial Ca2+ signals as causes or consequences of mitophagy induction. Autophagy 9, 1677–1686 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Medina, D. L. & Ballabio, A. Lysosomal calcium regulates autophagy. Autophagy 11, 970–971 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Palikaras, K., Lionaki, E. & Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 20, 1013–1022 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Song, M., Mihara, K., Chen, Y., Scorrano, L. & Dorn, G. W. II Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 21, 273–286 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Baechler, B. L., Bloemberg, D. & Quadrilatero, J. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation. Autophagy 15, 1606–1619 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gautier, C. A. et al. Regulation of mitochondrial permeability transition pore by PINK1. Mol. Neurodegener. 7, 22 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Sun, T. et al. Parkin regulates programmed necrosis and myocardial ischemia/reperfusion injury by targeting cyclophilin-D. Antioxid. Redox Signal. 31, 1177–1193 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Hom, J. R. et al. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev. Cell 21, 469–478 (2011). This work provides the first evidence that the mPTP is important for mammalian development, especially in heart formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lingan, J. V., Alanzalon, R. E. & Porter, G. A. Jr. Preventing permeability transition pore opening increases mitochondrial maturation, myocyte differentiation and cardiac function in the neonatal mouse heart. Pediatr. Res. 81, 932–941 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Gong, G. et al. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350, aad2459 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cho, S. W. et al. Dual modulation of the mitochondrial permeability transition pore and redox signaling synergistically promotes cardiomyocyte differentiation from pluripotent stem cells. J. Am. Heart Assoc. 3, e000693 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ying, Z. et al. Short-term mitochondrial permeability transition pore opening modulates histone lysine methylation at the early phase of somatic cell reprogramming. Cell Metab. 28, 935–945 e935 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Tiemeier, G. L. et al. Closing the mitochondrial permeability transition pore in hiPSC-derived endothelial cells induces glycocalyx formation and functional maturation. Stem Cell Rep. 13, 803–816 (2019).

    Article  CAS  Google Scholar 

  125. Ito, K., Bonora, M. & Ito, K. Metabolism as master of hematopoietic stem cell fate. Int. J. Hematol. 109, 18–27 (2019).

    Article  PubMed  Google Scholar 

  126. Folmes, C. D., Ma, H., Mitalipov, S. & Terzic, A. Mitochondria in pluripotent stem cells: stemness regulators and disease targets. Curr. Opin. Genet. Dev. 38, 1–7 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Garcia-Prat, L. et al. Autophagy maintains stemness by preventing senescence. Nature 529, 37–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Liu, X. et al. Cyclophilin D deficiency protects against the development of mitochondrial ROS and cellular inflammation in aorta. Biochem. Biophys. Res. Commun. 508, 1202–1208 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Priber, J. et al. Cyclophilin D disruption attenuates lipopolysaccharide-induced inflammatory response in primary mouse macrophages. Biochem. Cell Biol. 93, 241–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Veres, B. et al. Cyclophilin D-dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia. FEBS Open Bio 11, 684–704 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dubinin, M. V. et al. Alisporivir improves mitochondrial function in skeletal muscle of mdx mice but suppresses mitochondrial dynamics and biogenesis. Int. J. Mol. Sci. 22, 9780 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gao, J. et al. Mitochondrial permeability transition pore in inflammatory apoptosis of human conjunctival epithelial cells and T cells: effect of cyclosporin A. Invest. Ophthalmol. Vis. Sci. 54, 4717–4733 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Alvarez, V. M., Rama Rao, K. V., Brahmbhatt, M. & Norenberg, M. D. Interaction between cytokines and ammonia in the mitochondrial permeability transition in cultured astrocytes. J. Neurosci. Res. 89, 2028–2040 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Roca, F. J., Whitworth, L. J., Redmond, S., Jones, A. A. & Ramakrishnan, L. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial-lysosomal-endoplasmic reticulum circuit. Cell 178, 1344–1361 e1311 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Garcia, N. & Chavez, E. Mitochondrial DNA fragments released through the permeability transition pore correspond to specific gene size. Life Sci. 81, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Patrushev, M. et al. Release of mitochondrial DNA fragments from brain mitochondria of irradiated mice. Mitochondrion 6, 43–47 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Allam, R. et al. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep. 15, 982–990 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zamudio, F. et al. TDP-43 mediated blood-brain barrier permeability and leukocyte infiltration promote neurodegeneration in a low-grade systemic inflammation mouse model. J. Neuroinflammation 17, 283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Spiller, K. J. et al. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat. Neurosci. 21, 329–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Leal-Lasarte, M. M., Franco, J. M., Labrador-Garrido, A., Pozo, D. & Roodveldt, C. Extracellular TDP-43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspase-3/IL-18 signaling in microglia. FASEB J. 31, 2797–2816 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Yu, C. H. et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183, 636–649.e18 (2020). This study describes the participation of the mPTP in the release of mtDNA as an initiator of inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hausenloy, D. J. et al. Mitochondrial ion channels as targets for cardioprotection. J. Cell Mol. Med. 24, 7102–7114 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Halestrap, A. P. & Richardson, A. P. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J. Mol. Cell Cardiol. 78, 129–141 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Ong, S. G. et al. HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc. Res. 104, 24–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Cheung, E. C., Ludwig, R. L. & Vousden, K. H. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc. Natl Acad. Sci. USA 109, 20491–20496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, R. R. & Murphy, T. H. Reversible cyclosporin A-sensitive mitochondrial depolarization occurs within minutes of stroke onset in mouse somatosensory cortex in vivo: a two-photon imaging study. J. Biol. Chem. 284, 36109–36117 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Adachi, M., Takahashi, K., Nishikawa, M., Miki, H. & Uyama, M. High intraocular pressure-induced ischemia and reperfusion injury in the optic nerve and retina in rats. Graefes Arch. Clin. Exp. Ophthalmol. 234, 445–451 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Hwang, J. H. et al. Cyclosporine A attenuates hypoxic-ischemic brain injury in newborn rats. Brain Res. 1359, 208–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Granger, D. N. & Kvietys, P. R. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 6, 524–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Crompton, M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233–249 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Griffiths, E. J. & Halestrap, A. P. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem. J. 307, 93–98 (1995). This work provides the first report of the pathological manifestation of the mPTP: cardiac reperfusion injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Morciano, G. et al. Mechanistic role of mPTP in ischemia-reperfusion injury. Adv. Exp. Med. Biol. 982, 169–189 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Upadhaya, S. et al. Impact of cyclosporine A use in the prevention of reperfusion injury in acute myocardial infarction: a meta-analysis. Cardiol. J. 24, 43–50 (2017).

    Article  PubMed  Google Scholar 

  155. Pottecher, J. et al. Skeletal muscle ischemia-reperfusion injury and cyclosporine A in the aging rat. Fundam. Clin. Pharmacol. 30, 216–225 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Uchino, H. et al. Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol. Dis. 10, 219–233 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Konukoglu, D., Tasci, I. & Cetinkale, O. Effects of cyclosporin A and ibuprofen on liver ischemia-reperfusion injury in the rat. Clin. Chim. Acta 275, 1–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Li, J., Yan, Z. & Fang, Q. A mechanism study underlying the protective effects of cyclosporine-a on lung ischemia-reperfusion injury. Pharmacology 100, 83–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Yazdani, I., Majdani, R., Ghasemnejad-Berenji, M. & Dehpour, A. R. Comparison of multiple doses of cyclosporine A on germ cell apoptosis and epididymal sperm parameters after testicular ischemia/reperfusion in rats. Exp. Mol. Pathol. 110, 104271 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Ruiz-Meana, M. et al. The role of mitochondrial permeability transition in reperfusion-induced cardiomyocyte death depends on the duration of ischemia. Basic. Res. Cardiol. 106, 1259–1268 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Imahashi, K. et al. Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against ischemia/reperfusion injury. Circ. Res. 97, 916–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Imahashi, K., Schneider, M. D., Steenbergen, C. & Murphy, E. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ. Res. 95, 734–741 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Luongo, T. S. et al. The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+homeostasis and viability. Nature 545, 93–97 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhao, Q. et al. The role of the mitochondrial calcium uniporter in cerebral ischemia/reperfusion injury in rats involves regulation of mitochondrial energy metabolism. Mol. Med. Rep. 7, 1073–1080 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Luongo, T. S. et al. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep. 12, 23–34 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mammucari, C., Raffaello, A., Vecellio Reane, D. & Rizzuto, R. Molecular structure and pathophysiological roles of the mitochondrial calcium uniporter. Biochim. Biophys. Acta 1863, 2457–2464 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Morciano, G. et al. A naturally occurring mutation in ATP synthase subunit c is associated with increased damage following hypoxia/reoxygenation in STEMI patients. Cell Rep. 35, 108983 (2021). This study identifies for the first time a mutation in a molecular component of the mPTP associated with negative outcome of heart infarction.

    Article  CAS  PubMed  Google Scholar 

  168. Cardenas, M. E., Zhu, D. & Heitman, J. Molecular mechanisms of immunosuppression by cyclosporine, FK506, and rapamycin. Curr. Opin. Nephrol. Hypertens. 4, 472–477 (1995).

    Article  CAS  PubMed  Google Scholar 

  169. El Baradie, K. B. Y. et al. The cyclophilin inhibitor NIM-811 increases muscle cell survival with hypoxia in vitro and improves gait performance following ischemia-reperfusion in vivo. Sci. Rep. 11, 6152 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Gomez, L. et al. Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice. Am. J. Physiol. Heart Circ. Physiol. 293, H1654–H1661 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Panel, M. et al. Small-molecule inhibitors of cyclophilins block opening of the mitochondrial permeability transition pore and protect mice from hepatic ischemia/reperfusion injury. Gastroenterology 157, 1368–1382 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Fancelli, D. et al. Cinnamic anilides as new mitochondrial permeability transition pore inhibitors endowed with ischemia-reperfusion injury protective effect in vivo. J. Med. Chem. 57, 5333–5347 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Antonucci, S. et al. A novel class of cardioprotective small-molecule PTP inhibitors. Pharmacol. Res. 151, 104548 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Morciano, G. et al. Discovery of novel 1,3,8-triazaspiro[4.5]decane derivatives that target the c subunit of F1/FO-adenosine triphosphate (ATP) synthase for the treatment of reperfusion damage in myocardial infarction. J. Med. Chem. 61, 7131–7143 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Botker, H. E., Cabrera-Fuentes, H. A., Ruiz-Meana, M., Heusch, G. & Ovize, M. Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J. Cell Mol. Med. 24, 2717–2729 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Linkermann, A., De Zen, F., Weinberg, J., Kunzendorf, U. & Krautwald, S. Programmed necrosis in acute kidney injury. Nephrol. Dial. Transpl. 27, 3412–3419 (2012).

    Article  CAS  Google Scholar 

  177. Mulay, S. R. et al. Mitochondria permeability transition versus necroptosis in oxalate-induced AKI. JASN 30, 1857–1869 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ishimoto, Y. & Inagi, R. Mitochondria: a therapeutic target in acute kidney injury. Nephrol. Dial. Transpl. 31, 1062–1069 (2016).

    Article  CAS  Google Scholar 

  179. Bao, H. et al. Inhibition of glycogen synthase kinase-3beta prevents NSAID-induced acute kidney injury. Kidney Int. 81, 662–673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang, Z. et al. Redox-sensitive glycogen synthase kinase 3beta-directed control of mitochondrial permeability transition: rheostatic regulation of acute kidney injury. Free Radic. Biol. Med. 65, 849–858 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 110, 12024–12029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Beck, S. J. et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer’s disease. Nat. Commun. 7, 11483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Du, H. et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat. Med. 14, 1097–1105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gomez-Lazaro, M. et al. 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J. Neurochem. 104, 1599–1612 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Martin, L. J., Semenkow, S., Hanaford, A. & Wong, M. Mitochondrial permeability transition pore regulates Parkinson’s disease development in mutant alpha-synuclein transgenic mice. Neurobiol. Aging 35, 1132–1152 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Sun, A. et al. Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice. J. Am. Heart Assoc. 3, e000779 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Manczak, M. & Reddy, P. H. Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease. Hum. Mol. Genet. 21, 5131–5146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Devi, L., Raghavendran, V., Prabhu, B. M., Avadhani, N. G. & Anandatheerthavarada, H. K. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 283, 9089–9100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yao, J. et al. Inhibition of amyloid-beta (Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer’s disease. J. Neurosci. 31, 2313–2320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Liu, G. et al. α-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neurosci. Lett. 454, 187–192 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Zhu, Y. et al. α-Synuclein overexpression impairs mitochondrial function by associating with adenylate translocator. Int. J. Biochem. Cell Biol. 43, 732–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Sileikyte, J. & Forte, M. The mitochondrial permeability transition in mitochondrial disorders. Oxid. Med. Cell Longev. 2019, 3403075 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Dagda, R. K., Das Banerjee, T. & Janda, E. How Parkinsonian toxins dysregulate the autophagy machinery. Int. J. Mol. Sci. 14, 22163–22189 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Rasheed, M. Z., Tabassum, H. & Parvez, S. Mitochondrial permeability transition pore: a promising target for the treatment of Parkinson’s disease. Protoplasma 254, 33–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Tillement, L., Lecanu, L., Yao, W., Greeson, J. & Papadopoulos, V. The spirostenol (22R, 25R)-20alpha-spirost-5-en-3beta-yl hexanoate blocks mitochondrial uptake of Abeta in neuronal cells and prevents Abeta-induced impairment of mitochondrial function. Steroids 71, 725–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Xie, H. et al. Mitochondrial alterations near amyloid plaques in an Alzheimer’s disease mouse model. J. Neurosci. 33, 17042–17051 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Atlante, A. et al. A peptide containing residues 26–44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator. Biochim. Biophys. Acta 1777, 1289–1300 (2008).

    Article  CAS  PubMed  Google Scholar 

  198. Ludtmann, M. H. R. et al. alpha-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat. Commun. 9, 2293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Du, F. et al. PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer’s disease. Brain 140, 3233–3251 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Fang, E. F. et al. Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 22, 401–412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Haroon, M. F. et al. Minocycline, a possible neuroprotective agent in Leber’s hereditary optic neuropathy (LHON): studies of cybrid cells bearing 11,778 mutation. Neurobiol. Dis. 28, 237–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Cotan, D. et al. Secondary coenzyme Q10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts. FASEB J. 25, 2669–2687 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Wong, A. & Cortopassi, G. mtDNA mutations confer cellular sensitivity to oxidant stress that is partially rescued by calcium depletion and cyclosporin A. Biochem. Biophys. Res. Commun. 239, 139–145 (1997).

    Article  CAS  PubMed  Google Scholar 

  204. Burelle, Y. et al. Mitochondrial vulnerability and increased susceptibility to nutrient-induced cytotoxicity in fibroblasts from leigh syndrome French Canadian patients. PLoS ONE 10, e0120767 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Martin, L. J. et al. GNX-4728, a novel small molecule drug inhibitor of mitochondrial permeability transition, is therapeutic in a mouse model of amyotrophic lateral sclerosis. Front. Cell Neurosci. 8, 433 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Valasani, K. R. et al. Identification of a small molecule cyclophilin D inhibitor for rescuing Aβ-mediated mitochondrial dysfunction. ACS Med. Chem. Lett. 7, 294–299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Parone, P. A. et al. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J. Neurosci. 33, 4657–4671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rottenberg, H. & Wu, S. Mitochondrial dysfunction in lymphocytes from old mice: enhanced activation of the permeability transition. Biochem. Biophys. Res. Commun. 240, 68–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  209. Goodell, S. & Cortopassi, G. Analysis of oxygen consumption and mitochondrial permeability with age in mice. Mech. Ageing Dev. 101, 245–256 (1998).

    Article  CAS  PubMed  Google Scholar 

  210. Mather, M. & Rottenberg, H. Aging enhances the activation of the permeability transition pore in mitochondria. Biochem. Biophys. Res. Commun. 273, 603–608 (2000).

    Article  CAS  PubMed  Google Scholar 

  211. Shen, E. Z. et al. Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature 508, 128–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  212. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lautrup, S., Sinclair, D. A., Mattson, M. P. & Fang, E. F. NAD+ in brain aging and neurodegenerative disorders. Cell Metab. 30, 630–655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Schriewer, J. M., Peek, C. B., Bass, J. & Schumacker, P. T. ROS-mediated PARP activity undermines mitochondrial function after permeability transition pore opening during myocardial ischemia-reperfusion. J. Am. Heart Assoc. 2, e000159 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Gauba, E., Guo, L. & Du, H. Cyclophilin D promotes brain mitochondrial F1FO ATP synthase dysfunction in aging mice. J. Alzheimers Dis. 55, 1351–1362 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Vereczki, V. et al. Cyclophilin D regulates lifespan and protein expression of aging markers in the brain of mice. Mitochondrion 34, 115–126 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Diot, A., Morten, K. & Poulton, J. Mitophagy plays a central role in mitochondrial ageing. Mamm. Genome 27, 381–395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Markaki, M., Palikaras, K. & Tavernarakis, N. Novel insights into the anti-aging role of mitophagy. Int. Rev. Cell Mol. Biol. 340, 169–208 (2018).

    Article  CAS  PubMed  Google Scholar 

  219. Sun, N., Youle, R. J. & Finkel, T. The mitochondrial basis of aging. Mol. Cell 61, 654–666 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Madeo, F., Zimmermann, A., Maiuri, M. C. & Kroemer, G. Essential role for autophagy in life span extension. J. Clin. Invest. 125, 85–93 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Hansen, M., Rubinsztein, D. C. & Walker, D. W. Autophagy as a promoter of longevity: insights from model organisms. Nat. Rev. Mol. Cell Biol. 19, 579–593 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Fernandez, A. F. et al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558, 136–140 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Aspernig, H. et al. Mitochondrial perturbations couple mTORC2 to autophagy in C.elegans. Cell Rep. 29, 1399–1409.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  224. Zhou, B. et al. Mitochondrial permeability uncouples elevated autophagy and lifespan extension. Cell 177, 299–314.e16 (2019). This study provides evidence that the mPTP can determine the impact of autophagy on lifespan.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Aggarwal, V. et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 9, 735 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  226. Giorgi, C. et al. Mitochondria and reactive oxygen species in aging and age-related diseases. Int. Rev. Cell Mol. Biol. 340, 209–344 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Marchi, S. et al. Akt-mediated phosphorylation of MICU1 regulates mitochondrial Ca2+ levels and tumor growth. EMBO J. 38, e99435 (2019).

    Article  PubMed  Google Scholar 

  228. Bittremieux, M., Parys, J. B., Pinton, P. & Bultynck, G. ER functions of oncogenes and tumor suppressors: modulators of intracellular Ca2+ signaling. Biochim. Biophys. Acta 1863, 1364–1378 (2016).

    Article  CAS  PubMed  Google Scholar 

  229. Rimessi, A., Marchi, S., Patergnani, S. & Pinton, P. H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene 33, 2329–2340 (2014).

    Article  CAS  PubMed  Google Scholar 

  230. Bononi, A. et al. Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ. 20, 1631–1643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Giorgi, C. et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc. Natl Acad. Sci. USA 112, 1779–1784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Giorgi, C. et al. Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling. Oncotarget 6, 1435–1445 (2015).

    Article  PubMed  Google Scholar 

  233. Bononi, A. et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546, 549–553 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Giorgi, C. et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330, 1247–1251 (2010). This work, together with Marchi et al. (2019), Bittremieux et al. (2016), Rimessi et al. (2014), Bononi et al. (2013), both Giorgi et al. (2015) and Bononi et al. (2017), demonstrate roles for oncogenes and oncosuppressor genes in the regulation of mitochondrial Ca2+ and the regulation of cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Vaseva, A. V. et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536–1548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Bergeaud, M. et al. Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F1F0-ATP synthase. Cell Cycle 12, 2781–2793 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lebedev, I. et al. A novel in vitro CypD-mediated p53 aggregation assay suggests a model for mitochondrial permeability transition by chaperone systems. J. Mol. Biol. 428, 4154–4167 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Hagn, F. et al. Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nat. Struct. Mol. Biol. 18, 1086–1093 (2011).

    Article  CAS  PubMed  Google Scholar 

  239. Giorgio, V., Fogolari, F., Lippe, G. & Bernardi, P. OSCP subunit of mitochondrial ATP synthase: role in regulation of enzyme function and of its transition to a pore. Br. J. Pharmacol. 176, 4247–4257 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Dolder, M., Walzel, B., Speer, O., Schlattner, U. & Wallimann, T. Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation. J. Biol. Chem. 278, 17760–17766 (2003).

    Article  CAS  PubMed  Google Scholar 

  241. Chappell, J. B. & Crofts, A. R. Calcium ion accumulation and volume changes of isolated liver mitochondria. calcium ion-induced swelling. Biochem. J. 95, 378–386 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Azzi, A. & Azzone, G. F. Swelling and shrinkage phenomena in liver mitochondria. III. Irreversible swelling induced by inorganic phosphate and Ca2+. Biochim. Biophys. Acta 113, 438–444 (1966).

    Article  CAS  PubMed  Google Scholar 

  243. Sambri, I. et al. Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia. EBioMedicine 61, 103050 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Shore, E. R. et al. Small molecule inhibitors of cyclophilin D to protect mitochondrial function as a potential treatment for acute pancreatitis. J. Med. Chem. 59, 2596–2611 (2016).

    Article  CAS  PubMed  Google Scholar 

  245. Irwin, W. A. et al. Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat. Genet. 35, 367–371 (2003).

    Article  CAS  PubMed  Google Scholar 

  246. Davis, T. L. et al. Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. PLoS Biol. 8, e1000439 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Masubuchi, Y., Suda, C. & Horie, T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J. Hepatol. 42, 110–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  248. Hansson, M. J. et al. The nonimmunosuppressive cyclosporin analogs NIM811 and UNIL025 display nanomolar potencies on permeability transition in brain-derived mitochondria. J. Bioenerg. Biomembr. 36, 407–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  249. Chen, V. M. et al. Collagen VII deficient mice show morphologic and histologic corneal changes that phenotypically mimic human dystrophic epidermolysis bullosa of the eye. Exp. Eye Res. 175, 133–141 (2018).

    Article  CAS  PubMed  Google Scholar 

  250. Tiepolo, T. et al. The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in Col6a1−/− myopathic mice. Br. J. Pharmacol. 157, 1045–1052 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Reutenauer, J., Dorchies, O. M., Patthey-Vuadens, O., Vuagniaux, G. & Ruegg, U. T. Investigation of Debio 025, a cyclophilin inhibitor, in the dystrophic mdx mouse, a model for Duchenne muscular dystrophy. Br. J. Pharmacol. 155, 574–584 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Alavian, K. N. et al. The mitochondrial complex V-associated large-conductance inner membrane current is regulated by cyclosporine and dexpramipexole. Mol. Pharmacol. 87, 1–8 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Kang, B. H. et al. Preclinical characterization of mitochondria-targeted small molecule hsp90 inhibitors, gamitrinibs, in advanced prostate cancer. Clin. Cancer Res. 16, 4779–4788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Richardson, A. P. & Halestrap, A. P. Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity. Biochem. J. 473, 1129–1140 (2016).

    Article  CAS  PubMed  Google Scholar 

  255. Warne, J. et al. Selective inhibition of the mitochondrial permeability transition pore protects against neurodegeneration in experimental multiple sclerosis. J. Biol. Chem. 291, 4356–4373 (2016).

    Article  CAS  PubMed  Google Scholar 

  256. Sileikyte, J. etal. in Probe Reports from the NIH Molecular Libraries Program (National Center for Biotechnology Information, 2010).

  257. Waldmeier, P. C., Feldtrauer, J. J., Qian, T. & Lemasters, J. J. Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol. Pharmacol. 62, 22–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  258. Shares, B. H. et al. Inhibition of the mitochondrial permeability transition improves bone fracture repair. Bone 137, 115391 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Garbaisz, D. et al. Attenuation of skeletal muscle and renal injury to the lower limb following ischemia-reperfusion using mPTP inhibitor NIM-811. PLoS ONE 9, e101067 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Korde, A. S. et al. Protective effects of NIM811 in transient focal cerebral ischemia suggest involvement of the mitochondrial permeability transition. J. Neurotrauma 24, 895–908 (2007).

    Article  PubMed  Google Scholar 

  261. Clarke, S. J., McStay, G. P. & Halestrap, A. P. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J. Biol. Chem. 277, 34793–34799 (2002).

    Article  CAS  PubMed  Google Scholar 

  262. Tanaka, T. et al. Glycogen synthase kinase-3beta opens mitochondrial permeability transition pore through mitochondrial hexokinase II dissociation. J. Physiol. Sci. 68, 865–871 (2018).

    Article  CAS  PubMed  Google Scholar 

  263. Shteinfer-Kuzmine, A., Amsalem, Z., Arif, T., Zooravlov, A. & Shoshan-Barmatz, V. Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy. Mol. Oncol. 12, 1077–1103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Miyamoto, S., Murphy, A. N. & Brown, J. H. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ. 15, 521–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  265. Sun, J. et al. Desensitizing mitochondrial permeability transition by ERK-cyclophilin D axis contributes to the neuroprotective effect of gallic acid against cerebral ischemia/reperfusion injury. Front. Pharmacol. 8, 184 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Wu, R. et al. Hexokinase II knockdown results in exaggerated cardiac hypertrophy via increased ROS production. EMBO Mol. Med. 4, 633–646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Pravdic, D. et al. Anesthetic-induced preconditioning delays opening of mitochondrial permeability transition pore via protein kinase C-epsilon-mediated pathway. Anesthesiology 111, 267–274 (2009).

    Article  CAS  PubMed  Google Scholar 

  268. Shanmughapriya, S. et al. SPG7 Is an essential and conserved component of the mitochondrial permeability transition pore. Mol. Cell 60, 47–62 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Hurst, S., Baggett, A., Csordas, G. & Sheu, S. S. SPG7 targets the m-AAA protease complex to process MCU for uniporter assembly, Ca2+ influx, and regulation of mitochondrial permeability transition pore opening. J. Biol. Chem. 294, 10807–10818 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Valasani, K. R., Vangavaragu, J. R., Day, V. W. & Yan, S. S. Structure based design, synthesis, pharmacophore modeling, virtual screening, and molecular docking studies for identification of novel cyclophilin D inhibitors. J. Chem. Inf. Model. 54, 902–912 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Ni, S. et al. Discovering potent small molecule inhibitors of cyclophilin A using de novo drug design approach. J. Med. Chem. 52, 5295–5298 (2009).

    Article  CAS  PubMed  Google Scholar 

  272. Guichou, J. F. et al. Structure-based design, synthesis, and biological evaluation of novel inhibitors of human cyclophilin A. J. Med. Chem. 49, 900–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  273. Schinzel, A. C. et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl Acad. Sci. USA 102, 12005–12010 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Ades, L., Itzykson, R. & Fenaux, P. Myelodysplastic syndromes. Lancet 383, 2239–2252 (2014).

    Article  PubMed  Google Scholar 

  275. Yu, W. et al. Cyclosporine a suppressed glucose oxidase induced p53 mitochondrial translocation and hepatic cell apoptosis through blocking mitochondrial permeability transition. Int. J. Biol. Sci. 12, 198–209 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Baines, C. P., Kaiser, R. A., Sheiko, T., Craigen, W. J. & Molkentin, J. D. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell Biol. 9, 550–555 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. McEnery, M. W., Snowman, A. M., Trifiletti, R. R. & Snyder, S. H. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc. Natl Acad. Sci. USA 89, 3170–3174 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Marzo, I. et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027–2031 (1998).

    Article  CAS  PubMed  Google Scholar 

  279. Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J. & Korsmeyer, S. J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  280. Kinnally, K. W. et al. Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc. Natl Acad. Sci. USA 90, 1374–1378 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Beutner, G., Ruck, A., Riede, B. & Brdiczka, D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim. Biophys. Acta 1368, 7–18 (1998).

    Article  CAS  PubMed  Google Scholar 

  282. Ruck, A., Dolder, M., Wallimann, T. & Brdiczka, D. Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Lett. 426, 97–101 (1998).

    Article  CAS  PubMed  Google Scholar 

  283. Sileikyte, J. et al. Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (translocator protein of 18kDa (TSPO)). J. Biol. Chem. 289, 13769–13781 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Herick, K., Kramer, R. & Luhring, H. Patch clamp investigation into the phosphate carrier from Saccharomyces cerevisiae mitochondria. Biochim. Biophys. Acta 1321, 207–220 (1997).

    Article  CAS  PubMed  Google Scholar 

  285. Leung, A. W., Varanyuwatana, P. & Halestrap, A. P. The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J. Biol. Chem. 283, 26312–26323 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Gutierrez-Aguilar, M. et al. Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. J. Mol. Cell Cardiol. 72, 316–325 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Klutho, P. J., Dashek, R. J., Song, L. & Baines, C. P. Genetic manipulation of SPG7 or NipSnap2 does not affect mitochondrial permeability transition. Cell Death Discov. 6, 5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Porter, G. A. Jr. & Beutner, G. Cyclophilin D, somehow a master regulator of mitochondrial function. Biomolecules 8, 176 (2018).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Signal Transduction Laboratory is supported by the Italian Association for Cancer Research (IG-23670 to P.P. and IG-19803 to C.G.), A-ROSE, Progetti di Rilevante Interesse Nazionale (PRIN2017E5L5P3 to P.P and PRIN20177E9EPY to C.G.), the Italian Ministry of Health (GR-2013-02356747 to C.G.), the European Research Council (853057-InflaPML to C.G.) and local funds from the University of Ferrara to M.B., C.G. and P.P. P.P. is grateful to C. degli Scrovegni for her continuous support.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed to discussion of the content, wrote the article and edited the manuscript.

Corresponding authors

Correspondence to Massimo Bonora or Paolo Pinton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Valentina Giorgio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Voltage-dependent anion channel

(VDAC). A pore-forming protein of the outer mitochondrial membrane which allows the exchange of metabolites and ions.

Cyclosporine A

(CsA). A cyclic polypeptide able to bind and inhibit cyclophilins, including the mitochondrial permeability transition pore regulator cyclophilin D (CypD).

Adenine nucleotide translocator

(ANT). An integral membrane protein that exchanges ATP for ADP across the inner mitochondrial membrane.

Mitochondrial inorganic phosphate carrier

(PiC). An integral carrier solute that delivers phosphate across the inner mitochondrial membrane.

c-ring

A portion of the ATP synthase rotor (composed of an octamer of subunit c) responsible for the coupling of proton transport across the inner mitochondrial membrane to a rotative movement required for catalysis.

Cristae

Foldings of the inner membrane that create specialized compartments required to optimize mitochondrial functions.

Cyclophilin D

(CypD). A peptidyl-prolyl cistrans isomerase located in the mitochondrial matrix. By binding to mitochondrial ATP synthase, it functions as a positive regulator of mitochondrial permeability transition pore (mPTP) opening and the target of the mPTP inhibitor cyclosporine A (CsA).

Mitoplasts

Mitochondria artificially deprived of the outer mitochondrial membrane.

Mitochondrial membrane potential

The electric potential generated across inner mitochondrial membrane by the proton pumping activity of respiratory complexes.

BCL-2 family

A group of evolutionarily conserved proteins that harbour a BCL-2 homology domain. Mostly known for their regulatory role in regulated cell death, mostly apoptosis.

Sirtuin

Member of a family of NAD-dependent protein deacetylases or (ADP-ribosyl)transferases able to respond to nutrient stress, potentiating mitochondrial biogenesis and activity.

ERK-mediated signalling

A signal transduction pathway regulating cellular processes that includes proliferation, differentiation, apoptosis and stress responses, having a major impact in tumour development.

Respiratory chain

A group of multimeric protein complexes in the inner mitochondrial membrane, carrying mitochondrial respiration.

Necrosis

A form of poorly regulated cell death characterized by energetic crisis and its consequent chaotic disruption of intracellular structures.

Mitophagy

The selective degradation of a mitochondrion via the lysosomal machinery.

PINK1–parkin system

A kinase/ubiquitinase system required for the tagging of outer mitochondrial membrane proteins, which in turn label mitochondria to be cleared via lysosomal degradation.

Damage-associated molecular pattern

A molecule released from a damaged or diseased cell able to stimulate a sterile immune or inflammatory response.

Inflammasome

A group of intracellular multimeric protein complexes that activate inflammatory caspase 1.

Amyotrophic lateral sclerosis

A progressive neurological disease that primarily affects the neurons responsible for controlling voluntary muscle movement.

Ischaemia

The deficient supply of blood to a tissue due to obstruction of the inflow of arterial blood.

Reperfusion injury

Type of tissue damage that is caused by the restoration of blood supply after a prolonged period of ischaemia.

Necroptosis

A form of regulated cell death initiated by death receptors and dependent on RIPK1, RIPK3 and MLKL.

Ullrich congenital muscular dystrophy

A rare hereditary muscle condition characterized by abnormalities in collagen type VI, resulting in impaired progressive muscle weakness.

Free radical theory of ageing

A theory of ageing proposing that organisms age because they accumulate oxidative damage.

NAD+

A molecule that carries reduced equivalents between enzymes to run redox reactions. Decline in its level is associated with ageing and ageing-related mitochondrial dysfunction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonora, M., Giorgi, C. & Pinton, P. Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol 23, 266–285 (2022). https://doi.org/10.1038/s41580-021-00433-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00433-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing