Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins

Abstract

CRISPR loci and Cas proteins provide adaptive immunity in prokaryotes against invading bacteriophages and plasmids. In response, bacteriophages have evolved a broad spectrum of anti-CRISPR proteins (anti-CRISPRs) to counteract and overcome this immunity pathway. Numerous anti-CRISPRs have been identified to date, which suppress single-subunit Cas effectors (in CRISPR class 2, type II, V and VI systems) and multisubunit Cascade effectors (in CRISPR class 1, type I and III systems). Crystallography and cryo-electron microscopy structural studies of anti-CRISPRs bound to effector complexes, complemented by functional experiments in vitro and in vivo, have identified four major CRISPR–Cas suppression mechanisms: inhibition of CRISPR–Cas complex assembly, blocking of target binding, prevention of target cleavage, and degradation of cyclic oligonucleotide signalling molecules. In this Review, we discuss novel mechanistic insights into anti-CRISPR function that have emerged from X-ray crystallography and cryo-electron microscopy studies, and how these structures in combination with function studies provide valuable tools for the ever-growing CRISPR–Cas biotechnology toolbox, to be used for precise and robust genome editing and other applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional mechanisms of type I anti-CRISPRs.
Fig. 2: Functional mechanisms of type III anti-CRISPRs.
Fig. 3: Functional mechanisms of type II anti-CRISPRs.
Fig. 4: Functional mechanisms of type V anti-CRISPRs.
Fig. 5: Functional mechanisms of type VI anti-CRISPRs.
Fig. 6: Anti-CRISPR biotechnology applications.

Similar content being viewed by others

References

  1. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Eaglesham, J. B. & Kranzusch, P. J. Conserved strategies for pathogen evasion of cGAS-STING immunity. Curr. Opin. Immunol. 66, 27–34 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheng, Z. et al. The interactions between cGAS-STING pathway and pathogens. Signal. Transduct. Target. Ther. 5, 91 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tock, M. R. & Dryden, D. T. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Mendoza, S. D. et al. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 577, 244–248 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Malone, L. M. et al. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat. Microbiol. 5, 48–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Samson, J. E., Magadan, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432 (2013). This groundbreaking article reports on the first anti-CRISPR in the phages of P. aeruginosa.

    Article  CAS  PubMed  Google Scholar 

  14. Makarova, K. S. et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van der Oost, J., Westra, E. R., Jackson, R. N. & Wiedenheft, B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12, 479–492 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Marraffini, L. A. CRISPR-Cas immunity in prokaryotes. Nature 526, 55–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Childs, L. M., England, W. E., Young, M. J., Weitz, J. S. & Whitaker, R. J. CRISPR-induced distributed immunity in microbial populations. PLoS ONE 9, e101710 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Paez-Espino, D. et al. CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. mBio 6, e00262-15 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bondy-Denomy, J. et al. A unified resource for tracking anti-CRISPR names. CRISPR J. 1, 304–305 (2018).

    Article  PubMed  Google Scholar 

  22. Maji, B. et al. A high-throughput platform to identify small-molecule inhibitors of CRISPR-Cas9. Cell 177, 1067–1079 e1019 (2019). This article demonstrates the first identification of small-molecule CRISPR–Cas9 inhibitors using a high-throughput screening platform.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hwang, S. & Maxwell, K. L. Meet the anti-CRISPRs: widespread protein inhibitors of CRISPR-Cas systems. CRISPR J. 2, 23–30 (2019).

    Article  PubMed  Google Scholar 

  24. Davidson, A. R. et al. Anti-CRISPRs: protein inhibitors of CRISPR-Cas systems. Annu. Rev. Biochem. 89, 309–332 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Wiegand, T., Karambelkar, S., Bondy-Denomy, J. & Wiedenheft, B. Structures and strategies of anti-CRISPR-mediated immune suppression. Annu. Rev. Microbiol. 74, 21–37 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, F., Song, G. & Tian, Y. Anti-CRISPRs: the natural inhibitors for CRISPR-Cas systems. Anim. Model. Exp. Med. 2, 69–75 (2019).

    Article  Google Scholar 

  27. Zhu, Y., Zhang, F. & Huang, Z. Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. BMC Biol. 16, 32 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Stanley, S. Y. & Maxwell, K. L. Phage-encoded anti-CRISPR defenses. Annu. Rev. Genet. 52, 445–464 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Sontheimer, E. J. & Davidson, A. R. Inhibition of CRISPR-Cas systems by mobile genetic elements. Curr. Opin. Microbiol. 37, 120–127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Borges, A. L., Davidson, A. R. & Bondy-Denomy, J. The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu. Rev. Virol. 4, 37–59 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trasanidou, D. et al. Keeping CRISPR in check: diverse mechanisms of phage-encoded anti-CRISPRs. FEMS Microbiol. Lett. 366, fnz098 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marino, N. D., Pinilla-Redondo, R., Csorgo, B. & Bondy-Denomy, J. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nat. Methods 17, 471–479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shivram, H., Cress, B. F., Knott, G. J. & Doudna, J. A. Controlling and enhancing CRISPR systems. Nat. Chem. Biol. 17, 10–19 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Li, Y. & Bondy-Denomy, J. Anti-CRISPRs go viral: the infection biology of CRISPR-Cas inhibitors. Cell Host Microbe https://doi.org/10.1016/j.chom.2020.12.007 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kempton, H. R. & Qi, L. S. When genome editing goes off-target. Science 364, 234–236 (2019).

    CAS  PubMed  Google Scholar 

  44. Li, C. et al. HDAd5/35(++) adenovirus vector expressing anti-CRISPR peptides decreases CRISPR/Cas9 toxicity in human hematopoietic stem cells. Mol. Ther. Methods Clin. Dev. 9, 390–401 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, X., Bai, X. C. & Chen, Z. J. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity 53, 43–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jore, M. M. et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 18, 529–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Wiedenheft, B. et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl Acad. Sci. USA 108, 10092–10097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sashital, D. G., Wiedenheft, B. & Doudna, J. A. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell 46, 606–615 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Sinkunas, T. et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J. 30, 1335–1342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sinkunas, T. et al. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 32, 385–394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mulepati, S. & Bailey, S. In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target. J. Biol. Chem. 288, 22184–22192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hochstrasser, M. L. et al. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc. Natl Acad. Sci. USA 111, 6618–6623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huo, Y. et al. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat. Struct. Mol. Biol. 21, 771–777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leon, L. M., Park, A. E., Borges, A. L., Zhang, J. Y. & Bondy-Denomy, J. Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa. Nucleic Acids Res. 49, 2114–2125 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bondy-Denomy, J. et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526, 136–139 (2015). This article provides the first glimpse of anti-CRISPR-mediated inhibition mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chowdhury, S. et al. Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell 169, 47–57 e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo, T. W. et al. Cryo-EM structures reveal mechanism and inhibition of DNA targeting by a CRISPR-Cas surveillance complex. Cell 171, 414–426 e412 (2017). Chowdhury et al. (2017) and Guo et al. (2017) report the first cryo-EM structures of anti-CRISPRs of the type I multisubunit Cascade complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peng, R. et al. Alternate binding modes of anti-CRISPR viral suppressors AcrF1/2 to Csy surveillance complex revealed by cryo-EM structures. Cell Res. 27, 853–864 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maxwell, K. L. et al. The solution structure of an anti-CRISPR protein. Nat. Commun. 7, 13134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gabel, C., Li, Z., Zhang, H. & Chang, L. Structural basis for inhibition of the type I-F CRISPR-Cas surveillance complex by AcrIF4, AcrIF7 and AcrIF14. Nucleic Acids Res. 49, 584–594 (2021).

    Article  PubMed  Google Scholar 

  64. Zhang, K. et al. Inhibition mechanisms of AcrF9, AcrF8, and AcrF6 against type I-F CRISPR-Cas complex revealed by cryo-EM. Proc. Natl Acad. Sci. USA 117, 7176–7182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hirschi, M. et al. AcrIF9 tethers non-sequence specific dsDNA to the CRISPR RNA-guided surveillance complex. Nat. Commun. 11, 2730 (2020). This article outlines an anti-CRISPR strategy of promoting non-specific dsDNA binding by the Cascade complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu, W. T., Trost, C. N., Muller-Esparza, H., Randau, L. & Davidson, A. R. Anti-CRISPR AcrIF9 functions by inducing the CRISPR-Cas complex to bind DNA non-specifically. Nucleic Acids Res. 49, 3381–3393 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kim, I. et al. Structural and mechanistic insights into the CRISPR inhibition of AcrIF7. Nucleic Acids Res. 48, 9959–9968 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Niu, Y. et al. A type I-F Anti-CRISPR protein inhibits the CRISPR-Cas surveillance complex by ADP-ribosylation. Mol. Cell 80, 512–524 e515 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, X. et al. Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Nat. Struct. Mol. Biol. 23, 868–870 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, J. et al. A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses. Cell Res. 26, 1165–1168 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. McGinn, J. & Marraffini, L. A. Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat. Rev. Microbiol. 17, 7–12 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Pawluk, A. et al. Disabling a type I-E CRISPR-Cas nuclease with a bacteriophage-encoded anti-CRISPR protein. mBio https://doi.org/10.1128/mBio.01751-17 (2017).

  73. Lin, J. et al. DNA targeting by subtype I-D CRISPR-Cas shows type I and type III features. Nucleic Acids Res. 48, 10470–10478 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. He, F. et al. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nat. Microbiol. 3, 461–469 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Manav, M. C. et al. Structural basis for inhibition of an archaeal CRISPR-Cas type I-D large subunit by an anti-CRISPR protein. Nat. Commun. 11, 5993 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mahendra, C. et al. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nat. Microbiol. 5, 620–629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mejdani, M., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Anti-CRISPR AcrIE2 binds the type I-E CRISPR-Cas complex but does not block DNA binding. J. Mol. Biol. 433, 166759 (2020).

    Article  PubMed  CAS  Google Scholar 

  78. Jia, N. et al. Type III-A CRISPR-Cas Csm complexes: assembly, periodic RNA cleavage, DNase activity regulation, and autoimmunity. Mol. Cell 73, 264–277 e265 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. You, L. et al. Structure studies of the CRISPR-Csm complex reveal mechanism of Co-transcriptional Interference. Cell 176, 239–253 e216 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Huo, Y. et al. Cryo-EM structure of type III-A CRISPR effector complex. Cell Res. 28, 1195–1197 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Guo, M. et al. Coupling of ssRNA cleavage with DNase activity in type III-A CRISPR-Csm revealed by cryo-EM and biochemistry. Cell Res. 29, 305–312 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sofos, N. et al. Structures of the Cmr-beta complex reveal the regulation of the immunity mechanism of type III-B CRISPR-Cas. Mol. Cell 79, 741–757 e747 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Carte, J., Wang, R., Li, H., Terns, R. M. & Terns, M. P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489–3496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945–956 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Samai, P. et al. Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161, 1164–1174 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kazlauskiene, M., Tamulaitis, G., Kostiuk, G., Venclovas, C. & Siksnys, V. Spatiotemporal control of type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition. Mol. Cell 62, 295–306 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Kazlauskiene, M., Kostiuk, G., Venclovas, C., Tamulaitis, G. & Siksnys, V. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357, 605–609 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Niewoehner, O. et al. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 548, 543–548 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Tamulaitis, G. et al. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol. Cell 56, 506–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Elmore, J. R. et al. Bipartite recognition of target RNAs activates DNA cleavage by the type III-B CRISPR-Cas system. Genes Dev. 30, 447–459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rouillon, C., Athukoralage, J. S., Graham, S., Gruschow, S. & White, M. F. Control of cyclic oligoadenylate synthesis in a type III CRISPR system. eLife 7, e36734 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Jia, N., Jones, R., Sukenick, G. & Patel, D. J. Second messenger cA4 formation within the composite Csm1 palm pocket of type III-A CRISPR-Cas Csm complex and its release path. Mol. Cell 75, 933–943 e936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Foster, K., Kalter, J., Woodside, W., Terns, R. M. & Terns, M. P. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems. RNA Biol. 16, 449–460 (2019).

    Article  PubMed  Google Scholar 

  94. Hatoum-Aslan, A., Maniv, I., Samai, P. & Marraffini, L. A. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system. J. Bacteriol. 196, 310–317 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Rostøl, J. T. & Marraffini, L. A. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity. Nat. Microbiol. 4, 656–662 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Jia, N., Jones, R., Yang, G., Ouerfelli, O. & Patel, D. J. CRISPR-Cas III-A Csm6 CARF domain is a ring nuclease triggering stepwise cA4 cleavage with ApA>p formation terminating RNase activity. Mol. Cell 75, 944–956 e946 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Molina, R. et al. Structure of Csx1-cOA4 complex reveals the basis of RNA decay in type III-B CRISPR-Cas. Nat. Commun. 10, 4302 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Garcia-Doval, C. et al. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6. Nat. Commun. 11, 1596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Smalakyte, D. et al. Type III-A CRISPR-associated protein Csm6 degrades cyclic hexa-adenylate activator using both CARF and HEPN domains. Nucleic Acids Res. 48, 9204–9217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cohen, D. et al. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Lowey, B. et al. CBASS immunity uses CARF-related effectors to sense 3′-5′- and 2′-5′-linked cyclic oligonucleotide signals and protect bacteria from phage infection. Cell 182, 38–49 e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bhoobalan-Chitty, Y., Johansen, T. B., Di Cianni, N. & Peng, X. Inhibition of type III CRISPR-Cas immunity by an archaeal virus-encoded anti-CRISPR protein. Cell 179, 448–458 e411 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, J. J. et al. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe 18, 333–344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, J. et al. Species-specific deamidation of cGAS by herpes simplex virus UL37 protein facilitates viral replication. Cell Host Microbe 24, 234–248 e235 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Athukoralage, J. S. et al. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577, 572–575 (2020). This article describes a viral ring nuclease that degrades cOA second messengers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Eaglesham, J. B., Pan, Y., Kupper, T. S. & Kranzusch, P. J. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling. Nature 566, 259–263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yan, N., Regalado-Magdos, A. D., Stiggelbout, B., Lee-Kirsch, M. A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Aguirre, S. et al. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat. Microbiol. 2, 17037 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Aguirre, S. et al. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog. 8, e1002934 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39, 9275–9282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhu, Y. et al. Diverse mechanisms of CRISPR-Cas9 inhibition by type IIC anti-CRISPR proteins. Mol. Cell 74, 296–309 e297 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Thavalingam, A. et al. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2. Nat. Commun. 10, 2806 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Osuna, B. A. et al. Listeria phages induce Cas9 degradation to protect lysogenic genomes. Cell Host Microbe 28, 31–40 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Osuna, B. A. et al. Critical anti-CRISPR locus repression by a bi-functional Cas9 inhibitor. Cell Host Microbe 28, 23–30 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Birkholz, N., Fagerlund, R. D., Smith, L. M., Jackson, S. A. & Fineran, P. C. The autoregulator Aca2 mediates anti-CRISPR repression. Nucleic Acids Res. 47, 9658–9665 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Stanley, S. Y. et al. Anti-CRISPR-associated proteins are crucial repressors of anti-CRISPR transcription. Cell 178, 1452–1464 e1413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Watters, K. E. et al. Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes. Proc. Natl Acad. Sci. USA 117, 6531–6539 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Harrington, L. B. et al. A broad-spectrum inhibitor of CRISPR-Cas9. Cell 170, 1224–1233 e1215 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. I Jiang, F. et al. Temperature-responsive competitive inhibition of CRISPR-Cas9. Mol. Cell 73, 601–610 e605 (2019).

    Article  PubMed  CAS  Google Scholar 

  123. Liu, L., Yin, M., Wang, M. & Wang, Y. Phage AcrIIA2 DNA mimicry: structural basis of the CRISPR and anti-CRISPR arms race. Mol. Cell 73, 611–620 e613 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Dong et al. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature 546, 436–439 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Yang, H. & Patel, D. J. Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 Targeting SpyCas9. Mol. Cell 67, 117–127 e115 (2017). Dong et al. (2017) and Yang and Patel (2017) present the first structures of anti-CRISPRs bound to Cas effector complexes, thereby providing mechanistic insights into how anti-CRISPRs function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shin, J. et al. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci. Adv. 3, e1701620 (2017). This article demonstrates that timed delivery of anti-CRISPRs reduces off-target editing in human cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Kim, I. et al. Solution structure and dynamics of anti-CRISPR AcrIIA4, the Cas9 inhibitor. Sci. Rep. 8, 3883 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Rauch, B. J. et al. Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168, 150–158 e110 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Fuchsbauer, O. et al. Cas9 allosteric inhibition by the anti-CRISPR protein AcrIIA6. Mol. Cell 76, 922–937 e927 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Hynes, A. P. et al. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat. Commun. 9, 2919 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Lee, J. et al. Potent Cas9 inhibition in bacterial and human cells by AcrIIC4 and AcrIIC5 anti-CRISPR proteins. mBio 9, e02321-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Sun, W. et al. Structures of neisseria meningitidis Cas9 complexes in catalytically poised and anti-CRISPR-inhibited states. Mol. Cell 76, 938–952 e935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kim, Y. et al. Anti-CRISPR AcrIIC3 discriminates between Cas9 orthologs via targeting the variable surface of the HNH nuclease domain. FEBS J. 286, 4661–4674 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Forsberg, K. J. et al. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome. eLife 8, e46540 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Varble, A. et al. Integration of prophages into CRISPR loci remodels viral immunity in Streptococcus pyogenes. bioRxiv https://doi.org/10.1101/2020.10.09.333658 (2020).

    Article  Google Scholar 

  136. Song, G. et al. AcrIIA5 inhibits a broad range of Cas9 orthologs by preventing DNA target cleavage. Cell Rep. 29, 2579–2589 e2574 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Garcia, B. et al. Anti-CRISPR AcrIIA5 potently inhibits all Cas9 homologs used for genome editing. Cell Rep. 29, 1739–1746 e1735 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. An, S. Y. et al. Intrinsic disorder is essential for Cas9 inhibition of anti-CRISPR AcrIIA5. Nucleic Acids Res. 48, 7584–7594 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Forsberg, K. J. et al. AcrIIA22 is a novel anti-CRISPR that impairs SpyCas9 activity by relieving DNA torsion of target plasmids. bioRxiv https://doi.org/10.1101/2020.09.28.317578 (2020).

    Article  Google Scholar 

  140. Yan, W. X. et al. Functionally diverse type V CRISPR-Cas systems. Science 363, 88–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Swarts, D. C. & Jinek, M. Mechanistic Insights into the cis- and trans-acting DNase activities of Cas12a. Mol. Cell 73, 589–600 e584 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dong, D. et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532, 522–526 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Garcia-Doval, C. & Jinek, M. Molecular architectures and mechanisms of Class 2 CRISPR-associated nucleases. Curr. Opin. Struct. Biol. 47, 157–166 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Gao, P., Yang, H., Rajashankar, K. R., Huang, Z. & Patel, D. J. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 26, 901–913 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Watters, K. E., Fellmann, C., Bai, H. B., Ren, S. M. & Doudna, J. A. Systematic discovery of natural CRISPR-Cas12a inhibitors. Science 362, 236–239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Marino, N. D. et al. Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science 362, 240–242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Knott, G. J. et al. Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nat. Struct. Mol. Biol. 26, 315–321 (2019). This article describes an anti-CRISPR that degrades the crRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, H. et al. Structural basis for the inhibition of CRISPR-Cas12a by anti-CRISPR proteins. Cell Host Microbe 25, 815–826 e814 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Dong, L. et al. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat. Struct. Mol. Biol. 26, 308–314 (2019). This article describes an anti-CRISPR that acetylates residue Lys635 of Cas12.

    Article  CAS  PubMed  Google Scholar 

  152. Knott, G. J. et al. Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. eLife 8, e49110 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Peng, R. et al. Structural insight into multistage inhibition of CRISPR-Cas12a by AcrVA4. Proc. Natl Acad. Sci. USA 116, 18928–18936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Liu, L. et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170, 714–726 e710 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241–245 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Meeske, A. J. et al. A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Science 369, 54–59 (2020). This article provides the first detailed molecular mechanisms of an anti-CRISPR targeting type VI CRISPR–Cas systems associated with the complete evasion of CRISPR–Cas13 immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lin, P. et al. CRISPR-Cas13 inhibitors block RNA editing in bacteria and mammalian cells. Mol. Cell 78, 850–861 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Aschenbrenner, S. et al. Coupling Cas9 to artificial inhibitory domains enhances CRISPR-Cas9 target specificity. Sci. Adv. 6, eaay0187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    CAS  PubMed  Google Scholar 

  163. Liang, M. et al. AcrIIA5 suppresses base editors and reduces their off-target effects. Cells 9, 1786 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  164. Hoffmann, M. D. et al. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res. 47, e75 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hirosawa, M., Fujita, Y. & Saito, H. Cell-type-specific CRISPR activation with MicroRNA-responsive AcrllA4 switch. ACS Synth. Biol. 8, 1575–1582 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Lee, J. et al. Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 25, 1421–1431 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Palmer, D. J., Turner, D. L. & Ng, P. Production of CRISPR/Cas9-mediated self-cleaving helper-dependent adenoviruses. Mol. Ther. Methods Clin. Dev. 13, 432–439 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gantz, V. M. et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl Acad. Sci. USA 112, E6736–E6743 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kyrou, K. et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36, 1062–1066 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Champer, J. et al. Molecular safeguarding of CRISPR gene drive experiments. eLife 8, e41439 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Basgall, E. M. et al. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology 164, 464–474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, J., Xu, Z., Chupalov, A. & Marchisio, M. A. Anti-CRISPR-based biosensors in the yeast S. cerevisiae. J. Biol. Eng. 12, 11 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Nakamura, M. et al. Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat. Commun. 10, 194 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Liu, X. S. et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172, 979–992 e976 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Luo, M. L., Mullis, A. S., Leenay, R. T. & Beisel, C. L. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res. 43, 674–681 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Bubeck, F. et al. Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9. Nat. Methods 15, 924–927 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Johnston, R. K. et al. Use of anti-CRISPR protein AcrIIA4 as a capture ligand for CRISPR/Cas9 detection. Biosens. Bioelectron. 141, 111361 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Phaneuf, C. R. et al. Ultrasensitive multi-species detection of CRISPR-Cas9 by a portable centrifugal microfluidic platform. Anal. Methods 11, 559–565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nobrega, F. L., Costa, A. R., Kluskens, L. D. & Azeredo, J. Revisiting phage therapy: new applications for old resources. Trends Microbiol. 23, 185–191 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Smargon, A. A. et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 65, 618–630 e617 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Danna, K. & Nathans, D. Specific cleavage of simian virus 40 DNA by restriction endonuclease of hemophilus influenzae. Proc. Natl Acad. Sci. USA 68, 2913–2917 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was supported by NIH grant GM129430 to D.J.P. and by the Memorial Sloan Kettering Cancer Center Core Grant P30 CA008748.

Author information

Authors and Affiliations

Authors

Contributions

N.J. wrote the first draft of the Review. Both authors contributed to several rounds of manuscript editing.

Corresponding authors

Correspondence to Ning Jia or Dinshaw J. Patel.

Ethics declarations

Competing interests

D.J.P. is a consultant for Ventus Therapeutics. N.J. declares no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Joseph Bondy-Denomy, Zhiwei Huang and Min Wu for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Restriction–modification

A system in prokaryotes that typically contains a restriction endonuclease and a methylase that target pathogenic DNA.

Second messenger

An intracellular signalling molecule that transmits and amplifies the signal generated by extracellular signalling molecules (the first messengers).

R-loop

An RNA–DNA hybrid structure in which RNA pairs with a complementary DNA strand, causing the non-complementary DNA strand to loop out.

Primed spacer acquisition

The preferential acquisition of new spacers from a target recognized by a CRISPR-derived RNA-guided effector complex.

CRISPR interference

(CRISPRi). A technique that typically exploits a catalytically dead CRISPR–Cas effector complex to block transcription and thereby silence genes.

Single guide RNA

(sgRNA). A synthetic fusion of the trans-activating CRISPR RNA (tracrRNA) and the CRISPR-derived RNA (crRNA), which functions similarly to the native crRNA–tracrRNA duplex in guiding Cas9 to a DNA target site.

Gene drive

A genetic engineering technique for rapidly spreading a particular suite of genes through a population.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, N., Patel, D.J. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat Rev Mol Cell Biol 22, 563–579 (2021). https://doi.org/10.1038/s41580-021-00371-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00371-9

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology