Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization

A Publisher Correction to this article was published on 19 February 2021

This article has been updated

Abstract

The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the ‘telomere replisome’) and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1–STN1–TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Telomere DNA structures at chromosome ends.
Fig. 2: Molecular architecture of the human shelterin complex.
Fig. 3: CST and pol α-primase coordination of telomere C-strand fill-in.
Fig. 4: Assembling the telomeres.

Change history

References

  1. 1.

    Moyzis, R. K. et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl Acad. Sci. USA 85, 6622–6626 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Meyne, J., Ratliff, R. L. & Moyzis, R. K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl Acad. Sci. USA 86, 7049–7053 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Makarov, V. L., Hirose, Y. & Langmore, J. P. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88, 657–666 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Lansdorp, P. M. et al. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 5, 685–691 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Vaziri, H. et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am. J. Hum. Genet. 52, 661–667 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA 89, 10114–10118 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol. Cell 14, 501–513 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Mitchell, J. R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Vulliamy, T. J., Knight, S. W., Mason, P. J. & Dokal, I. Very short telomeres in the peripheral blood of patients with X-linked and autosomal dyskeratosis congenita. Blood Cell Mol. Dis. 27, 353–357 (2001).

    CAS  Google Scholar 

  11. 11.

    Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Shay, J. W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ye, J. Z. et al. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J. Biol. Chem. 279, 47264–47271 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Liu, D., O’Connor, M. S., Qin, J. & Songyang, Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem. 279, 51338–51342 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    O’Connor, M. S., Safari, A., Xin, H., Liu, D. & Songyang, Z. A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc. Natl Acad. Sci. USA 103, 11874–11879 (2006). Together with Liu et al. (J. Biol. Chem. 2004), this study identifies the full six-member shelterin complex, showing TIN2 binding both TRF1 and TRF2.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lei, M., Podell, E. R. & Cech, T. R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol. 11, 1223–1229 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999). This study reports that a substantial fraction of mammalian telomeres form a dsDNA loop to protect chromosome ends.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Stansel, R. M., de Lange, T. & Griffith, J. D. T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J. 20, 5532–5540 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Nikitina, T. & Woodcock, C. L. Closed chromatin loops at the ends of chromosomes. J. Cell Biol. 166, 161–165 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Doksani, Y., Wu, J. Y., de Lange, T. & Zhuang, X. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155, 345–356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Marcand, S., Gilson, E. & Shore, D. A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986–990 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Li, J. S. et al. TZAP: a telomere-associated protein involved in telomere length control. Science 355, 638–641 (2017). This study reports a telomeric DNA-binding protein that initiates trimming of long telomeres.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Greider, C. W. & Blackburn, E. H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997). This study and Greider and Blackburn (1989) report the first cloning of genes for the RNA and the catalytic (TERT) subunits of telomerase in ciliated protozoa, which led to the identification of the corresponding human factors.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Greider, C. W. Telomerase is processive. Mol. Cell Biol. 11, 4572–4580 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Roake, C. M. & Artandi, S. E. Regulation of human telomerase in homeostasis and disease. Nat. Rev. Mol. Cell Biol. 21, 384–397 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Schmidt, J. C. & Cech, T. R. Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes Dev. 29, 1095–1105 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Hockemeyer, D. & Collins, K. Control of telomerase action at human telomeres. Nat. Struct. Mol. Biol. 22, 848–852 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W. & Shay, J. W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18, 173–179 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Nandakumar, J. et al. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492, 285–289 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Zhong, F. L. et al. TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150, 481–494 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Sexton, A. N., Youmans, D. T. & Collins, K. Specificity requirements for human telomere protein interaction with telomerase holoenzyme. J. Biol. Chem. 287, 34455–34464 (2012). Together with Nandakumar et. al. (2012) and Zhong et. al. (2012), this study identifies specific amino acids of the TPP1 OB fold that recruit telomerase and enhance its enzymatic processivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Chen, L. Y., Redon, S. & Lingner, J. The human CST complex is a terminator of telomerase activity. Nature 488, 540–544 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Gao, H., Cervantes, R. B., Mandell, E. K., Otero, J. H. & Lundblad, V. RPA-like proteins mediate yeast telomere function. Nat. Struct. Mol. Biol. 14, 208–214 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Miyake, Y. et al. RPA-like mammalian Ctc1–Stn1–Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol. Cell 36, 193–206 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Surovtseva, Y. V. et al. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell 36, 207–218 (2009). Together with Miyake et al. (2009), this study shows that the RPA-like CST complex, previously characterized in yeast telomeres, has mammalian and plant counterparts with telomeric functions.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Casteel, D. E. et al. A DNA polymerase-α primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells. J. Biol. Chem. 284, 5807–5818 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998). This study shows that interfering with TRF2 accumulation at telomeres causes dramatic chromosome end fusions.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Smogorzewska, A. et al. Control of human telomere length by TRF1 and TRF2. Mol. Cell Biol. 20, 1659–1668 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Kim, S. H., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nat. Genet. 23, 405–412 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Li, B. & de Lange, T. Rap1 affects the length and heterogeneity of human telomeres. Mol. Biol. Cell 14, 5060–5068 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ye, J. Z. et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 18, 1649–1654 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Liu, D. et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat. Cell Biol. 6, 673–680 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Colgin, L. M., Baran, K., Baumann, P., Cech, T. R. & Reddel, R. R. Human POT1 facilitates telomere elongation by telomerase. Curr. Biol. 13, 942–946 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Bianchi, A., Smith, S., Chong, L., Elias, P. & de Lange, T. TRF1 is a dimer and bends telomeric DNA. EMBO J. 16, 1785–1794 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 17, 231–235 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Bilaud, T. et al. Telomeric localization of TRF2, a novel human telobox protein. Nat. Genet. 17, 236–239 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Lim, C., Zaug, A. J., Kim, H. J. & Cech, T. R. Reconstitution of human shelterin complexes reveals unexpected stoichiometry and dual pathways to enhance telomerase processivity. Nat. Commun. 8, 1075 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Rai, R., Chen, Y., Lei, M. & Chang, S. TRF2–RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nat. Commun. 7, 10881 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Sfeir, A., Kabir, S., van Overbeek, M., Celli, G. B. & de Lange, T. Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327, 1657–1661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Lototska, L. et al. Human RAP1 specifically protects telomeres of senescent cells from DNA damage. EMBO Rep. 21, e49076 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Wang, F. et al. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Xin, H. et al. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445, 559–562 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Lei, M., Zaug, A. J., Podell, E. R. & Cech, T. R. Switching human telomerase on and off with hPOT1 protein in vitro. J. Biol. Chem. 280, 20449–20456 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Rice, C. et al. Structural and functional analysis of the human POT1–TPP1 telomeric complex. Nat. Commun. 8, 14928 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Chen, C. et al. Structural insights into POT1–TPP1 interaction and POT1 C-terminal mutations in human cancer. Nat. Commun. 8, 14929 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Kar, A., Willcox, S. & Griffith, J. D. Transcription of telomeric DNA leads to high levels of homologous recombination and T-loops. Nucleic Acids Res. 44, 9369–9380 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Hu, C. et al. Structural and functional analyses of the mammalian TIN2–TPP1–TRF2 telomeric complex. Cell Res. 27, 1485–1502 (2017). This study reports the crystal structure of the key ‘bridge’ region of mammalian shelterin, which connects its dsDNA-binding and ssDNA-binding subunits.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Chen, L. Y. et al. Mitochondrial localization of telomeric protein TIN2 links telomere regulation to metabolic control. Mol. Cell 47, 839–850 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Chen, Y. et al. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science 319, 1092–1096 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Fairall, L., Chapman, L., Moss, H., de Lange, T. & Rhodes, D. Structure of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2. Mol. Cell 8, 351–361 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Bianchi, A. et al. TRF1 binds a bipartite telomeric site with extreme spatial flexibility. EMBO J. 18, 5735–5744 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Nishikawa, T., Nagadoi, A., Yoshimura, S., Aimoto, S. & Nishimura, Y. Solution structure of the DNA-binding domain of human telomeric protein, hTRF1. Structure 6, 1057–1065 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Court, R., Chapman, L., Fairall, L. & Rhodes, D. How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures. EMBO Rep. 6, 39–45 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Smith, S. & de Lange, T. TRF1, a mammalian telomeric protein. Trends Genet. 13, 21–26 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Griffith, J., Bianchi, A. & de Lange, T. TRF1 promotes parallel pairing of telomeric tracts in vitro. J. Mol. Biol. 278, 79–88 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Seimiya, H., Muramatsu, Y., Smith, S. & Tsuruo, T. Functional subdomain in the ankyrin domain of tankyrase 1 required for poly(ADP-ribosyl)ation of TRF1 and telomere elongation. Mol. Cell Biol. 24, 1944–1955 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Poulet, A. et al. The N-terminal domains of TRF1 and TRF2 regulate their ability to condense telomeric DNA. Nucleic Acids Res. 40, 2566–2576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Saint-Leger, A. et al. The basic N-terminal domain of TRF2 limits recombination endonuclease action at human telomeres. Cell Cycle 13, 2469–2474 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Necasova, I., Janouskova, E., Klumpler, T. & Hofr, C. Basic domain of telomere guardian TRF2 reduces D-loop unwinding whereas Rap1 restores it. Nucleic Acids Res. 45, 12599 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Schmutz, I., Timashev, L., Xie, W., Patel, D. J. & de Lange, T. TRF2 binds branched DNA to safeguard telomere integrity. Nat. Struct. Mol. Biol. 24, 734–742 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Konishi, A., Izumi, T. & Shimizu, S. TRF2 protein interacts with core histones to stabilize chromosome ends. J. Biol. Chem. 291, 20798–20810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Wang, R. C., Smogorzewska, A. & de Lange, T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119, 355–368 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Fouche, N. et al. The basic domain of TRF2 directs binding to DNA junctions irrespective of the presence of TTAGGG repeats. J. Biol. Chem. 281, 37486–37495 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Williamson, J. R., Raghuraman, M. K. & Cech, T. R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59, 871–880 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Sundquist, W. I. & Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342, 825–829 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Pedroso, I. M., Hayward, W. & Fletcher, T. M. The effect of the TRF2 N-terminal and TRFH regions on telomeric G-quadruplex structures. Nucleic Acids Res. 37, 1541–1554 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Janouskova, E. et al. Human Rap1 modulates TRF2 attraction to telomeric DNA. Nucleic Acids Res. 43, 2691–2700 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Choi, K. H., Farrell, A. S., Lakamp, A. S. & Ouellette, M. M. Characterization of the DNA binding specificity of Shelterin complexes. Nucleic Acids Res. 39, 9206–9223 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Erdel, F. et al. Telomere recognition and assembly mechanism of mammalian shelterin. Cell Rep. 18, 41–53 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Hanaoka, S., Nagadoi, A. & Nishimura, Y. Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities. Protein Sci. 14, 119–130 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Nishikawa, T. et al. Structure of the DNA-binding domain of human telomeric protein, TRF1 and its interaction with telomeric DNA. Nucleic Acids Res. Suppl. 1, 273–274 (2001).

    Google Scholar 

  88. 88.

    Takai, K. K., Hooper, S., Blackwood, S., Gandhi, R. & de Lange, T. In vivo stoichiometry of shelterin components. J. Biol. Chem. 285, 1457–1467 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Pike, A. M., Strong, M. A., Ouyang, J. P. T. & Greider, C. W. TIN2 functions with TPP1/POT1 to stimulate telomerase processivity. Mol. Cell Biol. 39, e00593-18 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Nelson, N. D. et al. The C-terminal extension unique to the long isoform of the shelterin component TIN2 enhances its interaction with TRF2 in a phosphorylation- and dyskeratosis congenita cluster-dependent fashion. Mol. Cell Biol. 38, e00025-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Grill, S. et al. Two separation-of-function isoforms of human TPP1 dictate telomerase regulation in somatic and germ cells. Cell Rep. 27, 3511–3521.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Zemp, I. & Lingner, J. The shelterin component TPP1 is a binding partner and substrate for the deubiquitinating enzyme USP7. J. Biol. Chem. 289, 28595–28606 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Bhanot, M. & Smith, S. TIN2 stability is regulated by the E3 ligase Siah2. Mol. Cell Biol. 32, 376–384 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Janovic, T., Stojaspal, M., Veverka, P., Horakova, D. & Hofr, C. Human telomere repeat binding factor TRF1 replaces TRF2 bound to shelterin core hub TIN2 when TPP1 is absent. J. Mol. Biol. 431, 3289–3301 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Kim, J. K. et al. Structural basis for shelterin bridge assembly. Mol. Cell 68, 698–714.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Zhang, Y. et al. Phosphorylation of TPP1 regulates cell cycle-dependent telomerase recruitment. Proc. Natl Acad. Sci. USA 110, 5457–5462 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Gray, J. T., Celander, D. W., Price, C. M. & Cech, T. R. Cloning and expression of genes for the Oxytricha telomere-binding protein: specific subunit interactions in the telomeric complex. Cell 67, 807–814 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Yang, Q., Zheng, Y. L. & Harris, C. C. POT1 and TRF2 cooperate to maintain telomeric integrity. Mol. Cell Biol. 25, 1070–1080 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Timashev, L. A. & de Lange, T. Characterization of T-loop formation by TRF2. Nucleus 11, 164–177 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Amiard, S. et al. A topological mechanism for TRF2-enhanced strand invasion. Nat. Struct. Mol. Biol. 14, 147–154 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Subramaniam, S. The cryo-EM revolution: fueling the next phase. IUCrJ 6, 1–2 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Cheng, Y. Single-particle cryo-EM — how did it get here and where will it go. Science 361, 876–880 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Jiang, J. et al. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. Science 350, aab4070 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Nguyen, T. H. D. et al. Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature 557, 190–195 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Schmidt, J. C., Zaug, A. J. & Cech, T. R. Live cell imaging reveals the dynamics of telomerase recruitment to telomeres. Cell 166, 1188–1197.e9 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Schmidt, J. C., Zaug, A. J., Kufer, R. & Cech, T. R. Dynamics of human telomerase recruitment depend on template-telomere base pairing. Mol. Biol. Cell 29, 869–880 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Laprade, H. et al. Single-molecule imaging of telomerase RNA reveals a recruitment-retention model for telomere elongation. Mol. Cell 79, 115–126.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Lin, J. et al. TRF1 and TRF2 use different mechanisms to find telomeric DNA but share a novel mechanism to search for protein partners at telomeres. Nucleic Acids Res. 42, 2493–2504 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Hockemeyer, D., Sfeir, A. J., Shay, J. W., Wright, W. E. & de Lange, T. POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J. 24, 2667–2678 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Denchi, E. L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007). This study establishes roles of shelterin components in subduing specific signalling pathways that detect DNA damage but need to be repressed at natural chromosome ends.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Flynn, R. L. et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471, 532–536 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Wang, H., Nora, G. J., Ghodke, H. & Opresko, P. L. Single molecule studies of physiologically relevant telomeric tails reveal POT1 mechanism for promoting G-quadruplex unfolding. J. Biol. Chem. 286, 7479–7489 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Zaug, A. J., Podell, E. R. & Cech, T. R. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc. Natl Acad. Sci. USA 102, 10864–10869 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Zahler, A. M., Williamson, J. R., Cech, T. R. & Prescott, D. M. Inhibition of telomerase by G-quartet DNA structures. Nature 350, 718–720 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Hwang, H., Buncher, N., Opresko, P. L. & Myong, S. POT1–TPP1 regulates telomeric overhang structural dynamics. Structure 20, 1872–1880 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Jansson, L. I. et al. Telomere DNA G-quadruplex folding within actively extending human telomerase. Proc. Natl Acad. Sci. USA 116, 9350–9359 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Patrick, E. M., Slivka, J. D., Payne, B., Comstock, M. J. & Schmidt, J. C. Observation of processive telomerase catalysis using high-resolution optical tweezers. Nat. Chem. Biol. 16, 801–809 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Latrick, C. M. & Cech, T. R. POT1–TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J. 29, 924–933 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Paudel, B. P. et al. A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. eLife 9, e56428 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Wang, F. et al. Human CST has independent functions during telomere duplex replication and C-strand fill-in. Cell Rep. 2, 1096–1103 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Huang, C., Dai, X. & Chai, W. Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in. Cell Res. 22, 1681–1695 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Wang, Y., Brady, K. S., Caiello, B. P., Ackerson, S. M. & Stewart, J. A. Human CST suppresses origin licensing and promotes AND-1/Ctf4 chromatin association. Life Sci. Alliance 2, e201800270 (2019).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Stewart, J. A. et al. Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J. 31, 3537–3549 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Zhang, M. et al. Mammalian CST averts replication failure by preventing G-quadruplex accumulation. Nucleic Acids Res. 47, 5243–5259 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Wang, F., Stewart, J. & Price, C. M. Human CST abundance determines recovery from diverse forms of DNA damage and replication stress. Cell Cycle 13, 3488–3498 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Barazas, M. et al. The CST complex mediates end protection at double-strand breaks and promotes PARP inhibitor sensitivity in BRCA1-deficient cells. Cell Rep. 23, 2107–2118 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Mirman, Z. et al. 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nature 560, 112–116 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Bochkareva, E., Korolev, S., Lees-Miller, S. P. & Bochkarev, A. Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J. 21, 1855–1863 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Bochkareva, E., Belegu, V., Korolev, S. & Bochkarev, A. Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding. EMBO J. 20, 612–618 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Shastrula, P. K., Rice, C. T., Wang, Z., Lieberman, P. M. & Skordalakes, E. Structural and functional analysis of an OB-fold in human Ctc1 implicated in telomere maintenance and bone marrow syndromes. Nucleic Acids Res. 46, 972–984 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Bryan, C., Rice, C., Harkisheimer, M., Schultz, D. C. & Skordalakes, E. Structure of the human telomeric Stn1–Ten1 capping complex. PLoS ONE 8, e66756 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Lim, C. et al. The structure of human CST reveals a decameric assembly bound to telomeric DNA. Science 368, 1081–1085 (2020). This study uses cryo-EM to solve the structure of the CST complex and reveals that ssDNA binding can trigger its assembly into a 2-MDa decameric supercomplex.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Bhattacharjee, A., Wang, Y., Diao, J. & Price, C. M. Dynamic DNA binding, junction recognition and G4 melting activity underlie the telomeric and genome-wide roles of human CST. Nucleic Acids Res. 45, 12311–12324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Hom, R. A. & Wuttke, D. S. Human CST prefers G-rich but not necessarily telomeric sequences. Biochemistry 56, 4210–4218 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Chen, L. Y., Majerska, J. & Lingner, J. Molecular basis of telomere syndrome caused by CTC1 mutations. Genes Dev. 27, 2099–2108 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Gu, P. et al. CTC1–STN1 coordinates G- and C-strand synthesis to regulate telomere length. Aging Cell 17, e12783 (2018).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Feng, X. et al. CTC1–STN1 terminates telomerase while STN1–TEN1 enables C-strand synthesis during telomere replication in colon cancer cells. Nat. Commun. 9, 2827 (2018).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Fan, J. & Pavletich, N. P. Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev. 26, 2337–2347 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Gao, Y. et al. Structures and operating principles of the replisome. Science 363, eaav7003 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Ge, Y. et al. Structural insights into telomere protection and homeostasis regulation by yeast CST complex. Nat. Struct. Mol. Biol. 27, 752–762 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Wan, B. et al. The Tetrahymena telomerase p75–p45–p19 subcomplex is a unique CST complex. Nat. Struct. Mol. Biol. 22, 1023–1026 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Lue, N. F. et al. The telomere capping complex CST has an unusual stoichiometry, makes multipartite interaction with G-tails, and unfolds higher-order G-tail structures. PLoS Genet. 9, e1003145 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Gelinas, A. D. et al. Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain. Proc. Natl Acad. Sci. USA 106, 19298–19303 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Sun, J. et al. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α. Cell Res. 21, 258–274 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Rice, C. & Skordalakes, E. Structure and function of the telomeric CST complex. Comput. Struct. Biotechnol. J. 14, 161–167 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Zeng, Z. et al. Structural basis for Tetrahymena telomerase processivity factor Teb1 binding to single-stranded telomeric-repeat DNA. Proc. Natl Acad. Sci. USA 108, 20357–20361 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Goulian, M., Heard, C. J. & Grimm, S. L. Purification and properties of an accessory protein for DNA polymerase α/primase. J. Biol. Chem. 265, 13221–13230 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Zhao, Y. et al. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 138, 463–475 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Kratz, K. & de Lange, T. Protection of telomeres 1 proteins POT1a and POT1b can repress ATR signaling by RPA exclusion, but binding to CST limits ATR repression by POT1b. J. Biol. Chem. 293, 14384–14392 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Wan, M., Qin, J., Songyang, Z. & Liu, D. OB fold-containing protein 1 (OBFC1), a human homolog of yeast Stn1, associates with TPP1 and is implicated in telomere length regulation. J. Biol. Chem. 284, 26725–26731 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Tesmer, V. M., Smith, E. M., Danciu, O., Padmanaban, S. & Nandakumar, J. Combining conservation and species-specific differences to determine how human telomerase binds telomeres. Proc. Natl Acad. Sci. USA 116, 26505–26515 (2019).

    CAS  Google Scholar 

  152. 152.

    Wu, P., Takai, H. & de Lange, T. Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150, 39–52 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Feng, X., Hsu, S. J., Kasbek, C., Chaiken, M. & Price, C. M. CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance. Nucleic Acids Res. 45, 4281–4293 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Diotti, R., Kalan, S., Matveyenko, A. & Loayza, D. DNA-directed polymerase subunits play a vital role in human telomeric overhang processing. Mol. Cancer Res. 13, 402–410 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Porcella, S. Y. et al. Separable, Ctf4-mediated recruitment of DNA polymerase α for initiation of DNA synthesis at replication origins and lagging-strand priming during replication elongation. PLoS Genet. 16, e1008755 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Kilkenny, M. L. et al. The human CTF4-orthologue AND-1 interacts with DNA polymerase α/primase via its unique C-terminal HMG box. Open. Biol. 7, 170217 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    Nakaoka, H., Nishiyama, A., Saito, M. & Ishikawa, F. Xenopus laevis Ctc1–Stn1–Ten1 (xCST) protein complex is involved in priming DNA synthesis on single-stranded DNA template in Xenopus egg extract. J. Biol. Chem. 287, 619–627 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Ganduri, S. & Lue, N. F. STN1–POLA2 interaction provides a basis for primase-pol α stimulation by human STN1. Nucleic Acids Res. 45, 9455–9466 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Nunez-Ramirez, R. et al. Flexible tethering of primase and DNA pol α in the eukaryotic primosome. Nucleic Acids Res. 39, 8187–8199 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Leteurtre, F. et al. Accelerated telomere shortening and telomerase activation in Fanconi’s anaemia. Br. J. Haematol. 105, 883–893 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Ball, S. E. et al. Progressive telomere shortening in aplastic anemia. Blood 91, 3582–3592 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Shay, J. W. & Wright, W. E. Telomeres and telomerase: three decades of progress. Nat. Rev. Genet. 20, 299–309 (2019).

    CAS  PubMed  Google Scholar 

  163. 163.

    Savage, S. A. Beginning at the ends: telomeres and human disease. F1000Res https://doi.org/10.12688/f1000research.14068.1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Podlevsky, J. D., Bley, C. J., Omana, R. V., Qi, X. & Chen, J. J. The telomerase database. Nucleic Acids Res. 36, D339–D343 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Guo, Y. et al. Inherited bone marrow failure associated with germline mutation of ACD, the gene encoding telomere protein TPP1. Blood 124, 2767–2774 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Bisht, K., Smith, E. M., Tesmer, V. M. & Nandakumar, J. Structural and functional consequences of a disease mutation in the telomere protein TPP1. Proc. Natl Acad. Sci. USA 113, 13021–13026 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Keller, R. B. et al. CTC1 mutations in a patient with dyskeratosis congenita. Pediatr. Blood Cancer 59, 311–314 (2012).

    PubMed  PubMed Central  Google Scholar 

  168. 168.

    Anderson, B. H. et al. Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat. Genet. 44, 338–342 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Simon, A. J. et al. Mutations in STN1 cause Coats plus syndrome and are associated with genomic and telomere defects. J. Exp. Med. 213, 1429–1440 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Gu, P. & Chang, S. Functional characterization of human CTC1 mutations reveals novel mechanisms responsible for the pathogenesis of the telomere disease Coats plus. Aging Cell 12, 1100–1109 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Wang, Y. & Chai, W. Pathogenic CTC1 mutations cause global genome instabilities under replication stress. Nucleic Acids Res. 46, 3981–3992 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Maciejowski, J. & de Lange, T. Telomeres in cancer: tumour suppression and genome instability. Nat. Rev. Mol. Cell Biol. 18, 175–186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Makarov, V. L., Lejnine, S., Bedoyan, J. & Langmore, J. P. Nucleosomal organization of telomere-specific chromatin in rat. Cell 73, 775–787 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Tommerup, H., Dousmanis, A. & de Lange, T. Unusual chromatin in human telomeres. Mol. Cell. Biol. 14, 5777–5785 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Wu, P. & de Lange, T. No overt nucleosome eviction at deprotected telomeres. Mol. Cell. Biol. 28, 5724–5735 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Galati, A. et al. The human telomeric protein TRF1 specifically recognizes nucleosomal binding sites and alters nucleosome structure. J. Mol. Biol. 360, 377–385 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Galati, A. et al. TRF2 controls telomeric nucleosome organization in a cell cycle phase-dependent manner. PLoS ONE 7, e34386 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Soman, A. et al. The human telomeric nucleosome displays distinct structural and dynamic properties. Nucleic Acids Res. 48, 5383–5396 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Ichikawa, Y., Morohashi, N., Nishimura, Y., Kurumizaka, H. & Shimizu, M. Telomeric repeats act as nucleosome-disfavouring sequences in vivo. Nucleic Acids Res. 42, 1541–1552 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    James, T. C. et al. Distribution patterns of Hp1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur. J. Cell Biol. 50, 170–180 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres—reversible repression of Pol II transcription. Cell 63, 751–762 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Garcia-Cao, M., O’Sullivan, R., Peters, A. H., Jenuwein, T. & Blasco, M. A. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 36, 94–99 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Arnoult, N., Van Beneden, A. & Decottignies, A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α. Nat. Struct. Mol. Biol. 19, 948–956 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Blasco, M. A. The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet. 8, 299–309 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Dejardin, J. & Kingston, R. E. Purification of proteins associated with specific genomic loci. Cell 136, 175–186 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Grolimund, L. et al. A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nat. Commun. 4, 2848 (2013).

    PubMed  PubMed Central  Google Scholar 

  187. 187.

    Pfeiffer, V., Crittin, J., Grolimund, L. & Lingner, J. The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO J. 32, 2861–2871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Ribes-Zamora, A., Indiviglio, S. M., Mihalek, I., Williams, C. L. & Bertuch, A. A. TRF2 interaction with Ku heterotetramerization interface gives insight into c-NHEJ prevention at human telomeres. Cell Rep. 5, 194–206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Fisher, T. S. & Zakian, V. A. Ku: a multifunctional protein involved in telomere maintenance. DNA Repair 4, 1215–1226 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Celli, G. B., Denchi, E. L. & de Lange, T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol. 8, 885–U162 (2006).

    PubMed  PubMed Central  Google Scholar 

  191. 191.

    McKay, S. J. & Cooke, H. hnRNP A2/B1 binds specifically to single stranded vertebrate telomeric repeat TTAGGGn. Nucleic Acids Res. 20, 6461–6464 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Ishikawa, F., Matunis, M. J., Dreyfuss, G. & Cech, T. R. Nuclear proteins that bind the pre-mRNA 3′ splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol. Cell Biol. 13, 4301–4310 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    LaBranche, H. et al. Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nat. Genet. 19, 199–202 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Potjer, T. P. et al. Multigene panel sequencing of established and candidate melanoma susceptibility genes in a large cohort of Dutch non-CDKN2A/CDK4 melanoma families. Int. J. Cancer 144, 2453–2464 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Pelusi, S. et al. Rare pathogenic variants predispose to hepatocellular carcinoma in nonalcoholic fatty liver disease. Sci. Rep. 9, 3682 (2019).

    PubMed  PubMed Central  Google Scholar 

  196. 196.

    Guacci, A. et al. Identification of a novel truncating mutation in PALB2 gene by a multigene sequencing panel for mutational screening of breast cancer risk-associated and related genes. J. Clin. Laboratory Anal. 32, e22418 (2018).

    Google Scholar 

  197. 197.

    Aoude, L. G. et al. Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. J. Natl Cancer Inst. 107, dju408 (2015).

    PubMed  PubMed Central  Google Scholar 

  198. 198.

    Vulliamy, T. et al. Telomere length measurement can distinguish pathogenic from non-pathogenic variants in the shelterin component, TIN2. Clin. Genet. 81, 76–81 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. 199.

    Sasa, G. S., Ribes-Zamora, A., Nelson, N. D. & Bertuch, A. A. Three novel truncating TINF2 mutations causing severe dyskeratosis congenita in early childhood. Clin. Genet. 81, 470–478 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Vulliamy, T. J. et al. Differences in disease severity but similar telomere lengths in genetic subgroups of patients with telomerase and shelterin mutations. PLoS ONE 6, e24383 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. 201.

    Robles-Espinoza, C. D. et al. POT1 loss-of-function variants predispose to familial melanoma. Nat. Genet. 46, 478–481 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Polvi, A. et al. Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts. Am. J. Hum. Genet. 90, 540–549 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Netravathi, M. et al. Whole exome sequencing in an Indian family links Coats plus syndrome and dextrocardia with a homozygous novel CTC1 and a rare HES7 variation. BMC Med. Genet. 16, 5 (2015).

    PubMed  PubMed Central  Google Scholar 

  204. 204.

    Walne, A. J. et al. Mutations in the telomere capping complex in bone marrow failure and related syndromes. Haematologica 98, 334–338 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank T. de Lange for helpful comments and suggestions. C.L. thanks the members of the Cech laboratory for their support and advice during his postdoctoral years at the University of Colorado Boulder. This work was funded in part by the National Institutes of Health (NIH; R00GM131023) and the Steenbock Career Award from the University of Wisconsin-Madison to C.L. T.R.C. is an investigator at the Howard Hughes Medical Institute.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Ci Ji Lim or Thomas R. Cech.

Ethics declarations

Competing interests

T.R.C. is on the board of directors of Merck and a consultant for STORM Therapeutics and Eikon Therapeutics.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Ming Lei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Human Gene Mutation Database: http://www.hgmd.cf.ac.uk/

Telomerase Database: http://telomerase.asu.edu

Glossary

G-overhang

A telomeric single-stranded DNA 3′ tail consisting of TTAGGG repeats, which is the substrate of telomerase.

Telomerase

A ribonucleoprotein that uses its RNA as a template to synthesize TTAGGG repeats, thereby extending telomeres.

Processive

The ability of an enzyme to perform multiple catalytic reactions without releasing its substrate.

Telomeric repeat-containing RNA

(TERRA). A long non-coding RNA involved in regulating telomerase activity at telomeres.

Holliday junction

A branched DNA structure comprising four double-stranded arms.

TEL patch

(TPP1 glutamate (E) and leucine (L)-rich patch). A small group of amino acids on the surface of the shelterin protein TPP1. The TEL patch directly recruits telomerase to telomeres and then stimulates its activity.

G-quadruplexes

(G4s). Tertiary structures in which groups of four guanines in single-stranded DNA form tetrads through hydrogen bonds.

Replication protein A

(RPA). A eukaryotic single-stranded DNA-binding protein complex involved in DNA replication and repair.

Telomeric C-strand

The telomeric DNA strand consisting of CCCTAA repeats, which pair with the telomerase-synthesized TTAGGG repeats.

Replisome

A multisubunit protein complex that carries out replication of DNA.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, C.J., Cech, T.R. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol 22, 283–298 (2021). https://doi.org/10.1038/s41580-021-00328-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing