Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The regulation and functions of DNA and RNA G-quadruplexes

Abstract

DNA and RNA can adopt various secondary structures. Four-stranded G-quadruplex (G4) structures form through self-recognition of guanines into stacked tetrads, and considerable biophysical and structural evidence exists for G4 formation in vitro. Computational studies and sequencing methods have revealed the prevalence of G4 sequence motifs at gene regulatory regions in various genomes, including in humans. Experiments using chemical, molecular and cell biology methods have demonstrated that G4s exist in chromatin DNA and in RNA, and have linked G4 formation with key biological processes ranging from transcription and translation to genome instability and cancer. In this Review, we first discuss the identification of G4s and evidence for their formation in cells using chemical biology, imaging and genomic technologies. We then discuss possible functions of DNA G4s and their interacting proteins, particularly in transcription, telomere biology and genome instability. Roles of RNA G4s in RNA biology, especially in translation, are also discussed. Furthermore, we consider the emerging relationships of G4s with chromatin and with RNA modifications. Finally, we discuss the connection between G4 formation and synthetic lethality in cancer cells, and recent progress towards considering G4s as therapeutic targets in human diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structure and topologies of G-quadruplexes.
Fig. 2: Approaches to detect and map DNA and RNA G-quadruplexes.
Fig. 3: Regulation of G-quadruplex structure formation.
Fig. 4: Models of G-quadruplex involvement in transcription.
Fig. 5: G-quadruplexes in RNA biology.
Fig. 6: The involvement of G-quadruplexes in epigenetic control.

Similar content being viewed by others

References

  1. Bang, I. Untersuchungen über die Guanylsäure. Biochemische 26, 293–311 (1910).

    CAS  Google Scholar 

  2. Gellert, M., Lipsett, M. N. & Davies, D. R. Helix formation by guanylic acid. Proc. Natl Acad. Sci. USA 48, 2013–2018 (1962).

    CAS  PubMed  Google Scholar 

  3. Sen, D. & Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334, 364–366 (1988). This paper is an early demonstration of a G4 comprising stacked tetrads with interconnecting loop sequences performed using chemical mapping and providing biological insight.

    CAS  PubMed  Google Scholar 

  4. Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K. & Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402–5415 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kwok, C. K. & Merrick, C. J. G-Quadruplexes: prediction, characterization, and biological application. Trends Biotechnol. 35, 997–1013 (2017).

    CAS  PubMed  Google Scholar 

  6. Lane, A. N., Chaires, J. B., Gray, R. D. & Trent, J. O. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res. 36, 5482–5515 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lerner, L. K. & Sale, J. E. Replication of G Quadruplex DNA. Genes 10, 95 (2019).

    CAS  PubMed Central  Google Scholar 

  8. Maizels, N. G4-associated human diseases. EMBO Rep. 16, 910–922 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Neidle, S. Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem. 59, 5987–6011 (2016).

    CAS  PubMed  Google Scholar 

  10. Mergny, J. L. & Lacroix, L. UV melting of G-quadruplexes. Curr. Protoc. Nucleic Acid Chem. 37, 17.1.1–17.1.15 (2009).

    Google Scholar 

  11. Huppert, J. L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005). This work presents the earliest computational predictions showing that sequences encoding G4s are widespread in the human genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Todd, A. K., Johnston, M. & Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 33, 2901–2907 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Huppert, J. L. & Balasubramanian, S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 35, 406–413 (2007).

    CAS  PubMed  Google Scholar 

  14. Eddy, J. & Maizels, N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 34, 3887–3896 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Varizhuk, A. et al. The expanding repertoire of G4 DNA structures. Biochimie 135, 54–62 (2017).

    CAS  PubMed  Google Scholar 

  16. Stegle, O., Payet, L., Mergny, J. L., MacKay, D. J. & Leon, J. H. Predicting and understanding the stability of G-quadruplexes. Bioinformatics 25, i374–i382 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bedrat, A., Lacroix, L. & Mergny, J. L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 44, 1746–1759 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Belmonte-Reche, E. & Morales, J. C. G4-iM Grinder: when size and frequency matter. G-Quadruplex, i-Motif and higher order structure search and analysis tool. NAR Genom. Bioinform. 2, 1–12 (2020).

    Google Scholar 

  19. Sahakyan, A. B. et al. Machine learning model for sequence-driven DNA G-quadruplex formation. Sci. Rep. 7, 14535 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Garant, J. M., Perreault, J. P. & Scott, M. S. Motif independent identification of potential RNA G-quadruplexes by G4RNA screener. Bioinformatics 33, 3532–3537 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Woodford, K. J., Howell, R. M. & Usdin, K. A novel K+-dependent DNA synthesis arrest site in a commonly occurring sequence motif in eukaryotes. J. Biol. Chem. 269, 27029–27035 (1994).

    CAS  PubMed  Google Scholar 

  22. Han, H., Hurley, L. H. & Salazar, M. A DNA polymerase stop assay for G-quadruplex-interactive compounds. Nucleic Acids Res. 27, 537–542 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kwok, C. K. & Balasubramanian, S. Targeted detection of G-quadruplexes in cellular RNAs. Angew. Chem. Int. Ed. Engl. 54, 6751–6754 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chambers, V. S. et al. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33, 877–881 (2015).

    PubMed  Google Scholar 

  25. Marsico, G. et al. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 47, 3862–3874 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo, J. U. & Bartel, D. P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353, aaf5371 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. Kwok, C. K., Marsico, G., Sahakyan, A. B., Chambers, V. S. & Balasubramanian, S. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods 13, 841–844 (2016).

    CAS  PubMed  Google Scholar 

  28. Kouzine, F. et al. Permanganate/S1 nuclease footprinting reveals non-B DNA structures with regulatory potential across a mammalian genome. Cell Syst. 4, 344–356 (2017).

    CAS  PubMed  Google Scholar 

  29. Williamson, J. R., Raghuraman, M. K. & Cech, T. R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59, 871–880 (1989).

    CAS  PubMed  Google Scholar 

  30. Wilkinson, K. A., Merino, E. J. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat. Protoc. 1, 1610–1616 (2006).

    CAS  PubMed  Google Scholar 

  31. Kwok, C. K., Sahakyan, A. B. & Balasubramanian, S. Structural analysis using SHALiPE to reveal RNA G-quadruplex formation in human precursor microRNA. Angew. Chem. Int. Ed. Engl. 55, 8958–8961 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kwok, C. K., Marsico, G. & Balasubramanian, S. Detecting RNA G-quadruplexes (rG4s) in the transcriptome. Cold Spring Harb. Perspect. Biol. 10, a032284 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Schaffitzel, C. et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl Acad. Sci. USA 98, 8572–8577 (2001).

    CAS  PubMed  Google Scholar 

  34. Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013). This work is the first demonstration of G4s in human cells by imaging using a structure-specific antibody.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Henderson, A. et al. Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res. 42, 860–869 (2014).

    CAS  PubMed  Google Scholar 

  36. Liu, H. Y. et al. Conformation selective antibody enables genome profiling and leads to discovery of parallel G-quadruplex in human telomeres. Cell Chem. Biol. 23, 1261–1270 (2016).

    CAS  PubMed  Google Scholar 

  37. Biffi, G., Di Antonio, M., Tannahill, D. & Balasubramanian, S. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat. Chem. 6, 75–80 (2014).

    CAS  PubMed  Google Scholar 

  38. Wang, Y. et al. G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma. Nat. Commun. 10, 943 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. Zhang, M. et al. Mammalian CST averts replication failure by preventing G-quadruplex accumulation. Nucleic Acids Res. 47, 5243–5259 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, W. et al. HERC2 facilitates BLM and WRN helicase complex interaction with RPA to suppress G-quadruplex DNA. Cancer Res. 78, 6371–6385 (2018).

    CAS  PubMed  Google Scholar 

  41. Xu, H. et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun. 8, 14432 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kazemier, H. G., Paeschke, K. & Lansdorp, P. M. Guanine quadruplex monoclonal antibody 1H6 cross-reacts with restrained thymidine-rich single stranded DNA. Nucleic Acids Res. 45, 5913–5919 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8, 301–310 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lefebvre, J., Guetta, C., Poyer, F., Mahuteau-Betzer, F. & Teulade-Fichou, M. P. Copper–alkyne complexation responsible for the nucleolar localization of quadruplex nucleic acid drugs labeled by click reactions. Angew. Chem. Int. Ed. Engl. 56, 11365–11369 (2017).

    CAS  PubMed  Google Scholar 

  45. Shivalingam, A. et al. The interactions between a small molecule and G-quadruplexes are visualized by fluorescence lifetime imaging microscopy. Nat. Commun. 6, 8178 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hansel-Hertsch, R. et al. G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 48, 1267–1272 (2016). This paper presents the first maps of G4s generated in an endogenous chromatin context using G4 ChIP-seq and demonstrating G4 enrichment in active promoters linked with elevated transcription.

    CAS  PubMed  Google Scholar 

  47. Hansel-Hertsch, R., Spiegel, J., Marsico, G., Tannahill, D. & Balasubramanian, S. Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat. Protoc. 13, 551–564 (2018).

    CAS  PubMed  Google Scholar 

  48. Law, M. J. et al. ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143, 367–378 (2010).

    CAS  PubMed  Google Scholar 

  49. Gray, L. T., Vallur, A. C., Eddy, J. & Maizels, N. G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nat. Chem. Biol. 10, 313–318 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Paeschke, K., Capra, J. A. & Zakian, V. A. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145, 678–691 (2011). This paper presents genetic experiments in yeast showing that the helicase Pif1 resolves G4s in vivo to prevent replication-fork stalling and DNA breaks.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gotz, S., Pandey, S., Bartsch, S., Juranek, S. & Paeschke, K. A novel G-quadruplex binding protein in yeast-Slx9. Molecules 24, 1774 (2019).

    PubMed Central  Google Scholar 

  52. Kanoh, Y. et al. Rif1 binds to G quadruplexes and suppresses replication over long distances. Nat. Struct. Mol. Biol. 22, 889–897 (2015).

    CAS  PubMed  Google Scholar 

  53. Meyer, C. A. & Liu, X. S. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat. Rev. Genet. 15, 709–721 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Herdy, B. et al. Analysis of NRAS RNA G-quadruplex binding proteins reveals DDX3X as a novel interactor of cellular G-quadruplex containing transcripts. Nucleic Acids Res. 46, 11592–11604 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Murat, P. et al. RNA G-quadruplexes at upstream open reading frames cause DHX36- and DHX9-dependent translation of human mRNAs. Genome Biol. 19, 229 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sauer, M. et al. DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions. Nat. Commun. 10, 2421 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. Joachimi, A., Benz, A. & Hartig, J. S. A comparison of DNA and RNA quadruplex structures and stabilities. Bioorg. Med. Chem. 17, 6811–6815 (2009).

    CAS  PubMed  Google Scholar 

  58. Bugaut, A. & Balasubramanian, S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 47, 689–697 (2008).

    CAS  PubMed  Google Scholar 

  59. Hazel, P., Huppert, J., Balasubramanian, S. & Neidle, S. Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc. 126, 16405–16415 (2004).

    CAS  PubMed  Google Scholar 

  60. Sen, D. & Gilbert, W. A sodium–potassium switch in the formation of four-stranded G4-DNA. Nature 344, 410–414 (1990).

    CAS  PubMed  Google Scholar 

  61. Zoroddu, M. A. et al. The essential metals for humans: a brief overview. J. Inorg. Biochem. 195, 120–129 (2019).

    CAS  PubMed  Google Scholar 

  62. Selvam, S., Koirala, D., Yu, Z. & Mao, H. Quantification of topological coupling between DNA superhelicity and G-quadruplex formation. J. Am. Chem. Soc. 136, 13967–13970 (2014).

    CAS  PubMed  Google Scholar 

  63. Shrestha, P. et al. Confined space facilitates G-quadruplex formation. Nat. Nanotechnol. 12, 582–588 (2017).

    CAS  PubMed  Google Scholar 

  64. Fry, M. & Loeb, L. A. Human werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. J. Biol. Chem. 274, 12797–12802 (1999).

    CAS  PubMed  Google Scholar 

  65. Mohaghegh, P., Karow, J. K., Brosh, R. M. Jr, Bohr, V. A. & Hickson, I. D. The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res. 29, 2843–2849 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Creacy, S. D. et al. G4 resolvase 1 binds both DNA and RNA tetramolecular quadruplex with high affinity and is the major source of tetramolecular quadruplex G4-DNA and G4-RNA resolving activity in HeLa cell lysates. J. Biol. Chem. 283, 34626–34634 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chatterjee, S. et al. Mechanistic insight into the interaction of BLM helicase with intra-strand G-quadruplex structures. Nat. Commun. 5, 5556 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, M. C. et al. Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36. Nature 558, 465–469 (2018). This work presents the first X-ray crystallography structure of a G4-resolving helicase bound to a G4, proposing a structural mechanism for G4 unfolding.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tippana, R., Hwang, H., Opresko, P. L., Bohr, V. A. & Myong, S. Single-molecule imaging reveals a common mechanism shared by G-quadruplex-resolving helicases. Proc. Natl Acad. Sci. USA 113, 8448–8453 (2016).

    CAS  PubMed  Google Scholar 

  70. Tippana, R., Chen, M. C., Demeshkina, N. A., Ferre-D’Amare, A. R. & Myong, S. RNA G-quadruplex is resolved by repetitive and ATP-dependent mechanism of DHX36. Nat. Commun. 10, 1855 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Byrd, A. K. & Raney, K. D. Structure and function of Pif1 helicase. Biochem. Soc. Trans. 45, 1159–1171 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu, Y., Shin-ya, K. & Brosh, R. M. Jr FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol. Cell Biol. 28, 4116–4128 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Benhalevy, D. et al. The human CCHC-type zinc finger nucleic acid-binding protein binds G-rich elements in target mRNA coding sequences and promotes translation. Cell Rep. 18, 2979–2990 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pietras, Z. et al. Dedicated surveillance mechanism controls G-quadruplex forming non-coding RNAs in human mitochondria. Nat. Commun. 9, 2558 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Ray, S., Bandaria, J. N., Qureshi, M. H., Yildiz, A. & Balci, H. G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding. Proc. Natl Acad. Sci. USA 111, 2990–2995 (2014).

    CAS  PubMed  Google Scholar 

  76. Zaug, A. J., Podell, E. R. & Cech, T. R. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc. Natl Acad. Sci. USA 102, 10864–10869 (2005).

    CAS  PubMed  Google Scholar 

  77. Gonzalez, V., Guo, K., Hurley, L. & Sun, D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J. Biol. Chem. 284, 23622–23635 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Niu, K. et al. Identification of LARK as a novel and conserved G-quadruplex binding protein in invertebrates and vertebrates. Nucleic Acids Res. 47, 7306–7320 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Serikawa, T. et al. Comprehensive identification of proteins binding to RNA G-quadruplex motifs in the 5′ UTR of tumor-associated mRNAs. Biochimie 144, 169–184 (2018).

    CAS  PubMed  Google Scholar 

  80. Kouzine, F., Liu, J., Sanford, S., Chung, H. J. & Levens, D. The dynamic response of upstream DNA to transcription-generated torsional stress. Nat. Struct. Mol. Biol. 11, 1092–1100 (2004).

    CAS  PubMed  Google Scholar 

  81. Duquette, M. L., Handa, P., Vincent, J. A., Taylor, A. F. & Maizels, N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes. Dev. 18, 1618–1629 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, L. et al. R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters. Mol. Cell 68, 745–757 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gehring, K., Leroy, J. L. & Gueron, M. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature 363, 561–565 (1993).

    CAS  PubMed  Google Scholar 

  84. Zeraati, M. et al. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 10, 631–637 (2018).

    CAS  PubMed  Google Scholar 

  85. Cui, Y., Kong, D., Ghimire, C., Xu, C. & Mao, H. Mutually exclusive formation of G-quadruplex and i-motif is a general phenomenon governed by steric hindrance in duplex DNA. Biochemistry 55, 2291–2299 (2016).

    CAS  PubMed  Google Scholar 

  86. Hoffmann, R. F. et al. Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Res. 44, 152–163 (2016).

    CAS  PubMed  Google Scholar 

  87. Sen, D. & Poon, L. C. RNA and DNA complexes with hemin [Fe(III) heme] are efficient peroxidases and peroxygenases: how do they do it and what does it mean? Crit. Rev. Biochem. Mol. Biol. 46, 478–492 (2011).

    CAS  PubMed  Google Scholar 

  88. Gray, L. T. et al. G-quadruplexes sequester free heme in living cells. Cell Chem. Biol. 26, 1681–1691 (2019).

    CAS  PubMed  Google Scholar 

  89. Fouquerel, E. et al. Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere loss and crisis. Mol. Cell 75, 117–130 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Fleming, A. M., Zhu, J., Ding, Y. & Burrows, C. J. 8-Oxo-7,8-dihydroguanine in the context of a gene promoter G-quadruplex is an on–off switch for transcription. ACS Chem. Biol. 12, 2417–2426 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Shay, J. W. & Wright, W. E. Telomeres and telomerase: three decades of progress. Nat. Rev. Genet. 20, 299–309 (2019).

    CAS  PubMed  Google Scholar 

  92. Paeschke, K., Simonsson, T., Postberg, J., Rhodes, D. & Lipps, H. J. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat. Struct. Mol. Biol. 12, 847–854 (2005).

    CAS  PubMed  Google Scholar 

  93. de Lange, T. T-loops and the origin of telomeres. Nat. Rev. Mol. Cell Biol. 5, 323–329 (2004).

    PubMed  Google Scholar 

  94. Biffi, G., Tannahill, D. & Balasubramanian, S. An intramolecular G-quadruplex structure is required for binding of telomeric repeat-containing RNA to the telomeric protein TRF2. J. Am. Chem. Soc. 134, 11974–11976 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Smith, J. S. et al. Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 18, 478–485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Takahama, K. et al. Regulation of telomere length by G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUS. Chem. Biol. 20, 341–350 (2013).

    CAS  PubMed  Google Scholar 

  97. Takahama, K., Kino, K., Arai, S., Kurokawa, R. & Oyoshi, T. Identification of Ewing’s sarcoma protein as a G-quadruplex DNA- and RNA-binding protein. FEBS J. 278, 988–998 (2011).

    CAS  PubMed  Google Scholar 

  98. Vannier, J. B., Pavicic-Kaltenbrunner, V., Petalcorin, M. I., Ding, H. & Boulton, S. J. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149, 795–806 (2012).

    CAS  PubMed  Google Scholar 

  99. Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zahler, A. M., Williamson, J. R., Cech, T. R. & Prescott, D. M. Inhibition of telomerase by G-quartet DNA structures. Nature 350, 718–720 (1991). This paper is the earliest demonstration that the activity of telomerase can be affected by a G4 structure in its telomere DNA substrate, suggesting that G4s might regulate telomere elongation.

    CAS  PubMed  Google Scholar 

  101. Moye, A. L. et al. Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat. Commun. 6, 7643 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. Zhang, M. L. et al. Yeast telomerase subunit Est1p has guanine quadruplex-promoting activity that is required for telomere elongation. Nat. Struct. Mol. Biol. 17, 202–209 (2010).

    CAS  PubMed  Google Scholar 

  103. Hwang, H., Buncher, N., Opresko, P. L. & Myong, S. POT1–TPP1 regulates telomeric overhang structural dynamics. Structure 20, 1872–1880 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jansson, L. I. et al. Telomere DNA G-quadruplex folding within actively extending human telomerase. Proc. Natl Acad. Sci. USA 116, 9350–9359 (2019).

    CAS  PubMed  Google Scholar 

  105. Booy, E. P. et al. The RNA helicase RHAU (DHX36) unwinds a G4-quadruplex in human telomerase RNA and promotes the formation of the P1 helix template boundary. Nucleic Acids Res. 40, 4110–4124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sun, D. et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem. 40, 2113–2116 (1997).

    CAS  PubMed  Google Scholar 

  107. Neidle, S. Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J. 277, 1118–1125 (2010).

    CAS  PubMed  Google Scholar 

  108. Clynes, D. et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat. Commun. 6, 7538 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Gowan, S. M., Heald, R., Stevens, M. F. & Kelland, L. R. Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes. Mol. Pharmacol. 60, 981–988 (2001).

    CAS  PubMed  Google Scholar 

  110. Simonsson, T., Pecinka, P. & Kubista, M. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res. 26, 1167–1172 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Siddiqui-Jain, A., Grand, C. L., Bearss, D. J. & Hurley, L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl Acad. Sci. USA 99, 11593–11598 (2002). This study of the G4 structure in the MYC promoter shows that a small-molecule G4 ligand can inhibit transcription.

    CAS  PubMed  Google Scholar 

  112. Cogoi, S. & Xodo, L. E. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res. 34, 2536–2549 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bejugam, M. et al. Trisubstituted isoalloxazines as a new class of G-quadruplex binding ligands: small molecule regulation of c-kit oncogene expression. J. Am. Chem. Soc. 129, 12926–12927 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Marchetti, C. et al. Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. J. Med. Chem. 61, 2500–2517 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kumar, P. et al. Zinc-finger transcription factors are associated with guanine quadruplex motifs in human, chimpanzee, mouse and rat promoters genome-wide. Nucleic Acids Res. 39, 8005–8016 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hou, Y. et al. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure. Epigenetics 14, 894–911 (2019).

    PubMed  PubMed Central  Google Scholar 

  117. Thakur, R. K. et al. Metastases suppressor NM23–H2 interaction with G-quadruplex DNA within c-MYC promoter nuclease hypersensitive element induces c-MYC expression. Nucleic Acids Res. 37, 172–183 (2009).

    CAS  PubMed  Google Scholar 

  118. Borgognone, M., Armas, P. & Calcaterra, N. B. Cellular nucleic-acid-binding protein, a transcriptional enhancer of c-Myc, promotes the formation of parallel G-quadruplexes. Biochem. J. 428, 491–498 (2010).

    CAS  PubMed  Google Scholar 

  119. Raiber, E. A., Kranaster, R., Lam, E., Nikan, M. & Balasubramanian, S. A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Res. 40, 1499–1508 (2012).

    CAS  PubMed  Google Scholar 

  120. Li, P. T. et al. Expression of the human telomerase reverse transcriptase gene is modulated by quadruplex formation in its first exon due to DNA methylation. J. Biol. Chem. 292, 20859–20870 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Agarwal, T., Roy, S., Kumar, S., Chakraborty, T. K. & Maiti, S. In the sense of transcription regulation by G-quadruplexes: asymmetric effects in sense and antisense strands. Biochemistry 53, 3711–3718 (2014).

    CAS  PubMed  Google Scholar 

  122. Holder, I. T. & Hartig, J. S. A matter of location: influence of G-quadruplexes on Escherichia coli gene expression. Chem. Biol. 21, 1511–1521 (2014).

    CAS  PubMed  Google Scholar 

  123. Belotserkovskii, B. P., Soo Shin, J. H. & Hanawalt, P. C. Strong transcription blockage mediated by R-loop formation within a G-rich homopurine-homopyrimidine sequence localized in the vicinity of the promoter. Nucleic Acids Res. 45, 6589–6599 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Eddy, J. et al. G4 motifs correlate with promoter-proximal transcriptional pausing in human genes. Nucleic Acids Res. 39, 4975–4983 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Du, Z., Zhao, Y. & Li, N. Genome-wide analysis reveals regulatory role of G4 DNA in gene transcription. Genome Res. 18, 233–241 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wanrooij, P. H. et al. A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop. Nucleic Acids Res. 40, 10334–10344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zheng, K. W. et al. Co-transcriptional formation of DNA:RNA hybrid G-quadruplex and potential function as constitutional cis element for transcription control. Nucleic Acids Res. 41, 5533–5541 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Puget, N., Miller, K. M. & Legube, G. Non-canonical DNA/RNA structures during transcription-coupled double-strand break repair: roadblocks or bona fide repair intermediates? DNA Repair. 81, 102661 (2019).

    PubMed  Google Scholar 

  129. Techer, H., Koundrioukoff, S., Nicolas, A. & Debatisse, M. The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat. Rev. Genet. 18, 535–550 (2017).

    CAS  PubMed  Google Scholar 

  130. De, S. & Michor, F. DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat. Struct. Mol. Biol. 18, 950–955 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Georgakopoulos-Soares, I., Morganella, S., Jain, N., Hemberg, M. & Nik-Zainal, S. Noncanonical secondary structures arising from non-B DNA motifs are determinants of mutagenesis. Genome Res. 28, 1264–1271 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kruisselbrink, E. et al. Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr. Biol. 18, 900–905 (2008).

    CAS  PubMed  Google Scholar 

  133. Castillo Bosch, P. et al. FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J. 33, 2521–2533 (2014).

    PubMed  PubMed Central  Google Scholar 

  134. Lemmens, B., van Schendel, R. & Tijsterman, M. Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers. Nat. Commun. 6, 8909 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Paeschke, K. et al. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497, 458–462 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Piazza, A. et al. Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae. Nucleic Acids Res. 38, 4337–4348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Piazza, A. et al. Non-canonical G-quadruplexes cause the hCEB1 minisatellite instability in Saccharomyces cerevisiae. eLife 6, e26884 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. Piazza, A. et al. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J. 34, 1718–1734 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. van Wietmarschen, N. et al. BLM helicase suppresses recombination at G-quadruplex motifs in transcribed genes. Nat. Commun. 9, 271 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Pladevall-Morera, D. et al. Proteomic characterization of chromosomal common fragile site (CFS)-associated proteins uncovers ATRX as a regulator of CFS stability. Nucleic Acids Res. 47, 8004–8018 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Zyner, K. G. et al. Genetic interactions of G-quadruplexes in humans. eLife 8, e46793 (2019).

    PubMed  PubMed Central  Google Scholar 

  142. Muller, S. et al. Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells. Org. Biomol. Chem. 10, 6537–6546 (2012).

    PubMed  PubMed Central  Google Scholar 

  143. Sanz, L. A. et al. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63, 167–178 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ginno, P. A., Lim, Y. W., Lott, P. L., Korf, I. & Chedin, F. GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res. 23, 1590–1600 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. De Magis, A. et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc. Natl Acad. Sci. USA 116, 816–825 (2019).

    PubMed  Google Scholar 

  146. Nguyen, D. T. et al. The chromatin remodelling factor ATRX suppresses R-loops in transcribed telomeric repeats. EMBO Rep. 18, 914–928 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Schaeffer, C. et al. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J. 20, 4803–4813 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kumari, S., Bugaut, A., Huppert, J. L. & Balasubramanian, S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol. 3, 218–221 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Shahid, R., Bugaut, A. & Balasubramanian, S. The BCL-2 5′ untranslated region contains an RNA G-quadruplex-forming motif that modulates protein expression. Biochemistry 49, 8300–8306 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lammich, S. et al. Translational repression of the disintegrin and metalloprotease ADAM10 by a stable G-quadruplex secondary structure in its 5′-untranslated region. J. Biol. Chem. 286, 45063–45072 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Khateb, S., Weisman-Shomer, P., Hershco-Shani, I., Ludwig, A. L. & Fry, M. The tetraplex (CGG)n destabilizing proteins hnRNP A2 and CBF-A enhance the in vivo translation of fragile X premutation mRNA. Nucleic Acids Res. 35, 5775–5788 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kumari, S., Bugaut, A. & Balasubramanian, S. Position and stability are determining factors for translation repression by an RNA G-quadruplex-forming sequence within the 5′ UTR of the NRAS proto-oncogene. Biochemistry 47, 12664–12669 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Huppert, J. L., Bugaut, A., Kumari, S. & Balasubramanian, S. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 36, 6260–6268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Hinnebusch, A. G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83, 779–812 (2014).

    CAS  PubMed  Google Scholar 

  155. Wolfe, A. L. et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513, 65–70 (2014). This study presents a comprehensive investigation into the control of translation by the helicase eIF4A–RNA G4 interactions in the 5′ UTR of mRNAs.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Modelska, A. et al. The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape. Cell Death Dis. 6, e1603 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Bonnal, S. et al. A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J. Biol. Chem. 278, 39330–39336 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Koukouraki, P. & Doxakis, E. Constitutive translation of human alpha-synuclein is mediated by the 5′-untranslated region. Open. Biol. 6, 160022 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. Morris, M. J., Negishi, Y., Pazsint, C., Schonhoft, J. D. & Basu, S. An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES. J. Am. Chem. Soc. 132, 17831–17839 (2010).

    CAS  PubMed  Google Scholar 

  160. Bhattacharyya, D., Diamond, P. & Basu, S. An independently folding RNA G-quadruplex domain directly recruits the 40S ribosomal subunit. Biochemistry 54, 1879–1885 (2015).

    CAS  PubMed  Google Scholar 

  161. Cammas, A. et al. Stabilization of the G-quadruplex at the VEGF IRES represses cap-independent translation. RNA Biol. 12, 320–329 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. Wu, Y. et al. Stabilization of VEGF G-quadruplex and inhibition of angiogenesis by quindoline derivatives. Biochim. Biophys. Acta 1840, 2970–2977 (2014).

    CAS  PubMed  Google Scholar 

  163. Endoh, T., Kawasaki, Y. & Sugimoto, N. Suppression of gene expression by G-quadruplexes in open reading frames depends on G-quadruplex stability. Angew. Chem. Int. Ed. Engl. 52, 5522–5526 (2013).

    CAS  PubMed  Google Scholar 

  164. Mirihana Arachchilage, G., Hetti Arachchilage, M., Venkataraman, A., Piontkivska, H. & Basu, S. Stable G-quadruplex enabling sequences are selected against by the context-dependent codon bias. Gene 696, 149–161 (2019).

    CAS  PubMed  Google Scholar 

  165. Hagerman, R. J. et al. Fragile X syndrome. Nat. Rev. Dis. Prim. 3, 17065 (2017).

    PubMed  Google Scholar 

  166. Agarwala, P., Pandey, S., Mapa, K. & Maiti, S. The G-quadruplex augments translation in the 5′ untranslated region of transforming growth factor β2. Biochemistry 52, 1528–1538 (2013).

    CAS  PubMed  Google Scholar 

  167. Serikawa, T., Eberle, J. & Kurreck, J. Effects of genomic disruption of a guanine quadruplex in the 5′ UTR of the Bcl-2 mRNA in melanoma cells. FEBS Lett. 591, 3649–3659 (2017).

    CAS  PubMed  Google Scholar 

  168. Bhattacharyya, D. et al. Engineered domain swapping indicates context dependent functional role of RNA G-quadruplexes. Biochimie 137, 147–150 (2017).

    CAS  PubMed  Google Scholar 

  169. Endoh, T. & Sugimoto, N. Conformational dynamics of the RNA G-quadruplex and its effect on translation efficiency. Molecules 24, 1613 (2019).

    CAS  PubMed Central  Google Scholar 

  170. Bugaut, A., Murat, P. & Balasubramanian, S. An RNA hairpin to G-quadruplex conformational transition. J. Am. Chem. Soc. 134, 19953–19956 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Subramanian, M. et al. G-quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep. 12, 697–704 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Darnell, J. C. et al. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107, 489–499 (2001).

    CAS  PubMed  Google Scholar 

  173. Valentin-Vega, Y. A. et al. Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Sci. Rep. 6, 25996 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Chalupnikova, K. et al. Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain. J. Biol. Chem. 283, 35186–35198 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Fay, M. M., Anderson, P. J. & Ivanov, P. ALS/FTD-associated C9ORF72 repeat RNA promotes phase transitions in vitro and in cells. Cell Rep. 21, 3573–3584 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Khong, A. et al. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol. Cell 68, 808–820 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Tao, E. W., Cheng, W. Y., Li, W. L., Yu, J. & Gao, Q. Y. tiRNAs: a novel class of small noncoding RNAs that helps cells respond to stressors and plays roles in cancer progression. J. Cell Physiol. 235, 683–690 (2020).

    CAS  PubMed  Google Scholar 

  178. Lyons, S. M., Achorn, C., Kedersha, N. L., Anderson, P. J. & Ivanov, P. YB-1 regulates tiRNA-induced stress granule formation but not translational repression. Nucleic Acids Res. 44, 6949–6960 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Lyons, S. M., Gudanis, D., Coyne, S. M., Gdaniec, Z. & Ivanov, P. Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs. Nat. Commun. 8, 1127 (2017).

    PubMed  PubMed Central  Google Scholar 

  180. Ivanov, P. et al. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc. Natl Acad. Sci. USA 111, 18201–18206 (2014).

    CAS  PubMed  Google Scholar 

  181. Conlon, E. G. et al. The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. eLife 5, e17820 (2016).

    PubMed  PubMed Central  Google Scholar 

  182. Huang, H., Zhang, J., Harvey, S. E., Hu, X. & Cheng, C. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF. Genes. Dev. 31, 2296–2309 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Didiot, M. C. et al. The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer. Nucleic Acids Res. 36, 4902–4912 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Marcel, V. et al. G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis 32, 271–278 (2011).

    CAS  PubMed  Google Scholar 

  185. Ribeiro, M. M. et al. G-quadruplex formation enhances splicing efficiency of PAX9 intron 1. Hum. Genet. 134, 37–44 (2015).

    CAS  PubMed  Google Scholar 

  186. Fisette, J. F., Montagna, D. R., Mihailescu, M. R. & Wolfe, M. S. A G-rich element forms a G-quadruplex and regulates BACE1 mRNA alternative splicing. J. Neurochem. 121, 763–773 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhang, J., Harvey, S. E. & Cheng, C. A high-throughput screen identifies small molecule modulators of alternative splicing by targeting RNA G-quadruplexes. Nucleic Acids Res. 47, 3667–3679 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Kharel, P., Balaratnam, S., Beals, N. & Basu, S. The role of RNA G-quadruplexes in human diseases and therapeutic strategies. Wiley Interdiscip. Rev. RNA 11, e1568 (2020).

    CAS  PubMed  Google Scholar 

  189. Cree, S. L. et al. DNA G-quadruplexes show strong interaction with DNA methyltransferases in vitro. FEBS Lett. 590, 2870–2883 (2016).

    CAS  PubMed  Google Scholar 

  190. Mao, S. Q. et al. DNA G-quadruplex structures mold the DNA methylome. Nat. Struct. Mol. Biol. 25, 951–957 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Saha, D. et al. Epigenetic suppression of human telomerase (hTERT) is mediated by the metastasis suppressor NME2 in a G-quadruplex-dependent fashion. J. Biol. Chem. 292, 15205–15215 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Hussain, T. et al. Transcription regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 is epigenetically controlled through the REST repressor complex. Sci. Rep. 7, 11541 (2017).

    PubMed  PubMed Central  Google Scholar 

  193. Sarkies, P. et al. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res. 40, 1485–1498 (2012).

    CAS  PubMed  Google Scholar 

  194. Sarkies, P., Reams, C., Simpson, L. J. & Sale, J. E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell 40, 703–713 (2010). This paper presents genetic experiments that provide the first demonstration of a link between G4s and cellular epigenetic inheritance.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Papadopoulou, C., Guilbaud, G., Schiavone, D. & Sale, J. E. Nucleotide pool depletion induces G-quadruplex-dependent perturbation of gene expression. Cell Rep. 13, 2491–2503 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Guilbaud, G. et al. Local epigenetic reprogramming induced by G-quadruplex ligands. Nat. Chem. 9, 1110–1117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Mirihana Arachchilage, G., Dassanayake, A. C. & Basu, S. A potassium ion-dependent RNA structural switch regulates human pre-miRNA 92b maturation. Chem. Biol. 22, 262–272 (2015).

    CAS  PubMed  Google Scholar 

  198. Pandey, S., Agarwala, P., Jayaraj, G. G., Gargallo, R. & Maiti, S. The RNA stem-loop to G-quadruplex equilibrium controls mature microRNA production inside the cell. Biochemistry 54, 7067–7078 (2015).

    CAS  PubMed  Google Scholar 

  199. Pandolfini, L. et al. METTL1 promotes let-7 microRNA processing via m7G methylation. Mol. Cell 74, 1278–1290.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Chan, K. L. et al. Structural analysis reveals the formation and role of RNA G-quadruplex structures in human mature microRNAs. Chem. Commun. 54, 10878–10881 (2018).

    CAS  Google Scholar 

  201. Rouleau, S., Glouzon, J. S., Brumwell, A., Bisaillon, M. & Perreault, J. P. 3′ UTR G-quadruplexes regulate miRNA binding. RNA 23, 1172–1179 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Wang, X. et al. Targeting of polycomb repressive complex 2 to RNA by short repeats of consecutive guanines. Mol. Cell 65, 1056–1067.e5 (2017).

    CAS  PubMed  Google Scholar 

  203. Fleming, A. M., Nguyen, N. L. B. & Burrows, C. J. Colocalization of m6A and G-quadruplex-forming sequences in viral RNA (HIV, Zika, hepatitis B, and SV40) suggests topological control of adenosine N 6-methylation. ACS Cent. Sci. 5, 218–228 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Sahakyan, A. B., Murat, P., Mayer, C. & Balasubramanian, S. G-quadruplex structures within the 3′ UTR of LINE-1 elements stimulate retrotransposition. Nat. Struct. Mol. Biol. 24, 243–247 (2017).

    CAS  PubMed  Google Scholar 

  205. Hegyi, H. Enhancer–promoter interaction facilitated by transiently forming G-quadruplexes. Sci. Rep. 5, 9165 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Silverman, R. B. & Holladay, M. W. The Organic Chemistry of Drug Design and Drug Action 3rd edn (Academic, 2015).

  207. Neidle, S. Quadruplex nucleic acids as targets for anticancer therapeutics. Nat. Rev. Chem. 1, 0041 (2017).

    CAS  Google Scholar 

  208. Neidle, S. & Parkinson, G. Telomere maintenance as a target for anticancer drug discovery. Nat. Rev. Drug. Discov. 1, 383–393 (2002).

    CAS  PubMed  Google Scholar 

  209. Salvati, E. et al. PARP1 is activated at telomeres upon G4 stabilization: possible target for telomere-based therapy. Oncogene 29, 6280–6293 (2010).

    CAS  PubMed  Google Scholar 

  210. Biffi, G., Tannahill, D., Miller, J., Howat, W. J. & Balasubramanian, S. Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PLOS ONE 9, e102711 (2014).

    PubMed  PubMed Central  Google Scholar 

  211. O’Neil, N. J., Bailey, M. L. & Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 18, 613–623 (2017).

    PubMed  Google Scholar 

  212. Zimmer, J. et al. Targeting BRCA1 and BRCA2 deficiencies with G-quadruplex-interacting compounds. Mol. Cell 61, 449–460 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. McLuckie, K. I. et al. G-quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells. J. Am. Chem. Soc. 135, 9640–9643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Parkinson, G. N., Lee, M. P. & Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417, 876–880 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Balasubramanian laboratory is supported by Cancer Research UK core and programme award funding (C14303/A17197; C9681/A18618), S.B. is a Senior Investigator of the Wellcome Trust (099232/Z/12/Z) and D.V. is a Herchel Smith postdoctoral fellow. J.S. gratefully acknowledges EU H2020 Framework Programme funding (H2020-MSCA-IF-2016, ID: 747297-QAPs).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Shankar Balasubramanian.

Ethics declarations

Competing interests

S.B. is a founder and shareholder of Cambridge Epigenetix Ltd.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Cyril Dominguez, Sua Myong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Circular dichroism

A spectroscopic technique to investigate structure based on the interaction of plane-polarized light with a structurally asymmetric molecule.

Bayesian predictions

Statistical methods to infer probabilities for a hypothesis, which can be updated when new information becomes available.

G-fraction

The proportion of G bases in a sequence, that is, G-richness.

G-skew

The under-representation or over-representation of G bases in a sequence.

Polytene chromosomes

Giant chromosomes found in particular tissues of various eukaryotes, which are formed following several rounds of DNA replication without cell division.

Fragile telomeres

Aberrant or discontinuous appearance of telomere chromatin in metaphase chromosomes, identified by fluorescence in situ hybridization and indicative of telomere replication defects.

Common fragile sites

Specific chromosomal regions that are intrinsically hard to replicate and preferentially form chromatin gaps or breaks during metaphase following replication stress.

Stress granules

Cytoplasmic membraneless bodies of proteins and RNAs that appear in response to conditions of cellular stress.

CpG island

A genomic region with CG:GC content higher than 60%.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, D., Spiegel, J., Zyner, K. et al. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol 21, 459–474 (2020). https://doi.org/10.1038/s41580-020-0236-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-0236-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing