Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reactive oxygen species (ROS) as pleiotropic physiological signalling agents

Abstract

‘Reactive oxygen species’ (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as ‘oxidative distress’. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as ‘oxidative eustress’. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·−), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Estimated ranges of H2O2 concentration with regard to cellular responses: oxidative eustress and oxidative distress.
Fig. 2: Key modulators and targets of H2O2.
Fig. 3: Pleiotropy of redox signalling in cell biology.
Fig. 4: H2O2 drives different cellular outcomes depending on its concentrations.
Fig. 5: Prospects for redox medicine.

Similar content being viewed by others

References

  1. Halliwell, B., Gutteridge & J. M. C. in Free radicals in biology and medicine (Oxford University Press, 2015).

  2. Hawkins, C. L. & Davies, M. J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem. 294, 19683–19708 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017). Concept of oxidative stress: physiological (eustress) and supraphysiological (distress).

    Article  CAS  PubMed  Google Scholar 

  4. Murphy, M. P. et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 13, 361–366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brandes, R. P., Rezende, F. & Schröder, K. Redox regulation beyond ROS: why ROS should not be measured as often. Circ. Res. 123, 326–328 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rhee, S. G. Redox signaling: hydrogen peroxide as intracellular messenger. Exp. Mol. Med. 31, 53–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Thannickal, V. J. & Fanburg, B. L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L1005-L1028 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Sauer, H., Wartenberg, M. & Hescheler, J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol. Biochem. 11, 173–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Stone, J. R. & Yang, S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal. 8, 243–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. D’Autreaux, B. & Toledano, M. B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007). Fundamental perspectives on ROS signalling.

    Article  PubMed  Google Scholar 

  11. Forman, H. J., Maiorino, M. & Ursini, F. Signaling functions of reactive oxygen species. Biochemistry 49, 835–842 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Sies, H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 289, 8735–8741 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holmström, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15, 411–421 (2014).

    Article  PubMed  Google Scholar 

  14. Reczek, C. R. & Chandel, N. S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 33, 8–13 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Winterbourn, C. C. Biological production, detection, and fate of hydrogen peroxide. Antioxid. Redox Signal. 29, 541–551 (2018). Comprehensive overview on H2O2 in biology.

    Article  CAS  PubMed  Google Scholar 

  16. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Bagur, R. & Hajnoczky, G. Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling. Mol. Cell 66, 780–788 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sies, H. & Chance, B. The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett. 11, 172–176 (1970). First detection of H2O2 in normal aerobic eukaryotic metabolism.

    Article  CAS  PubMed  Google Scholar 

  19. Parvez, S., Long, M. J. C., Poganik, J. R. & Aye, Y. Redox signaling by reactive electrophiles and oxidants. Chem. Rev. 118, 8798–8888 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jones, D. P. & Sies, H. The redox code. Antioxid. Redox Signal. 23, 734–746 (2015). The ‘redox code’ as a set of principles by which redox biology is organized.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, L. et al. Biochemical basis and metabolic interplay of redox regulation. Redox Biol. 26, 101284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sies, H. Oxidative stress: eustress and distress (Academic, 2020).

  23. Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11, 613–619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chance, B., Sies, H. & Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605 (1979). Role and significance of hydroperoxides in metabolism.

    Article  CAS  PubMed  Google Scholar 

  25. Zeida, A. et al. Catalysis of peroxide reduction by fast reacting protein thiols. Chem. Rev. 119, 10829–10855 (2019). Comprehensive review of thiol-based redox chemistry.

    Article  CAS  PubMed  Google Scholar 

  26. Kaya, A., Lee, B. C. & Gladyshev, V. N. Regulation of protein function by reversible methionine oxidation and the role of selenoprotein MsrB1. Antioxid. Redox Signal. 23, 814–822 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brigelius-Flohé, R. & Flohé, L. Selenium and redox signaling. Arch. Biochem. Biophys. 617, 48–59 (2017).

    Article  PubMed  Google Scholar 

  28. Santos, C. X. et al. Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2alpha-mediated stress signaling. EMBO J. 35, 319–334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Poli, G., Leonarduzzi, G., Biasi, F. & Chiarpotto, E. Oxidative stress and cell signalling. Curr. Med. Chem. 11, 1163–1182 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Sobotta, M. C. et al. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11, 64–70 (2015). Prototypical example of redox relay in H2O2 signalling.

    Article  CAS  PubMed  Google Scholar 

  31. Tapia, P. C. Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: “mitohormesis” for health and vitality. Med. Hypotheses. 66, 832–843 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Ristow, M. & Zarse, K. How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol. 45, 410–418 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Ristow, M. & Schmeisser, K. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose Response 12, 288–341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ursini, F., Maiorino, M. & Forman, H. J. Redox homeostasis: the golden mean of healthy living. Redox Biol. 8, 205–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sies, H. Biochemistry of oxidative stress. Angew. Chem. Int. Ed. Engl. 25, 1058–1071 (1986).

    Article  Google Scholar 

  36. Zhang, H. & Forman, H. J. 4-Hydroxynonenal-mediated signaling and aging. Free Radic. Biol. Med. 111, 219–225 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kreuz, S. & Fischle, W. Oxidative stress signaling to chromatin in health and disease. Epigenomics 8, 843–862 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poulsen, H. E. et al. Oxidatively generated modifications to nucleic acids in vivo: measurement in urine and plasma. Free Radic. Biol. Med. 145, 336–341 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Lambeth, J. D. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic. Biol. Med. 43, 332–347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Santolini, J., Wootton, S. A., Jackson, A. A. & Feelisch, M. The redox architecture of physiological function. Curr. Opin. Physiol. 9, 34–47 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Go, Y. M., Chandler, J. D. & Jones, D. P. The cysteine proteome. Free Radic. Biol. Med. 84, 227–245 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bedard, K. & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Knock, G. NADPH oxidase in the vasculature: expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic. Biol. Med. 145, 385–427 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Parascandolo, A. & Laukkanen, M. O. Carcinogenesis and reactive oxygen species signaling: interaction of the NADPH oxidase NOX1-5 and superoxide dismutase 1-3 signal transduction pathways. Antioxid. Redox Signal. 30, 443–486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009). A comprehensive account of mitochondrial ROS production.

    Article  CAS  PubMed  Google Scholar 

  47. Spencer, N. Y. & Engelhardt, J. F. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry 53, 1551–1564 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Mishina, N. M. et al. Imaging H2O2 microdomains in receptor tyrosine kinases signaling. Methods Enzymol. 526, 175–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Bleier, L. et al. Generator-specific targets of mitochondrial reactive oxygen species. Free Radic. Biol. Med. 78, 1–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Brand, M. D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 100, 14–31 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Higdon, A., Diers, A. R., Oh, J. Y., Landar, A. & Darley-Usmar, V. M. Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem. J. 442, 453–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Hitzel, J. et al. Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nat. Commun. 9, 2292–04602 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kagan, V. E. et al. Redox phospholipidomics of enzymatically generated oxygenated phospholipids as specific signals of programmed cell death. Free Radic. Biol. Med. 147, 231–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Spickett, C. M. & Pitt, A. R. Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid. Redox Signal. 22, 1646–1666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tyurina, Y. Y. et al. “Only a life lived for others is worth living”: redox signaling by oxygenated phospholipids in cell fate decisions. Antioxid. Redox Signal. 29, 1333–1358 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Czapski, G. A., Czubowicz, K., Strosznajder, J. B. & Strosznajder, R. P. The lipoxygenases: their regulation and implication in Alzheimer’s disease. Neurochem. Res. 41, 243–257 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Wong, H. S., Benoit, B. & Brand, M. D. Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. Free Radic. Biol. Med. 130, 140–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Niedzwiecki, M. M. et al. The exposome: molecules to populations. Annu. Rev. Pharmacol. Toxicol. 59, 107–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Rhee, S. G. & Kil, I. S. Multiple functions and regulation of mammalian peroxiredoxins. Annu. Rev. Biochem. 86, 749–775 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Brigelius-Flohé, R. & Flohé,L. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid. Redox Signal. https://doi.org/10.1089/ars.2019.7905 (2019).

  61. Winterbourn, C. C., Kettle, A. J. & Hampton, M. B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 85, 765–792 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Barata, A. G. & Dick, T. P. A role for peroxiredoxins in H2O2- and MEKK-dependent activation of the p38 signaling pathway. Redox Biol. 28, 101340 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mailloux, R. J. Mitochondrial antioxidants and the maintenance of cellular hydrogen peroxide levels. Oxid. Med. Cell Longev. 2018, 7857251 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hanschmann, E. M., Godoy, J. R., Berndt, C., Hudemann, C. & Lillig, C. H. Thioredoxins, glutaredoxins, and peroxiredoxins–molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid. Redox Signal. 19, 1539–1605 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lyublinskaya, O. & Antunes, F. Measuring intracellular concentration of hydrogen peroxide with the use of genetically encoded H2O2 biosensor HyPer. Redox Biol. 24, 101200 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lim, J. B., Huang, B. K., Deen, W. M. & Sikes, H. D. Analysis of the lifetime and spatial localization of hydrogen peroxide generated in the cytosol using a reduced kinetic model. Free Radic. Biol. Med. 89, 47–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Gao, C., Tian, Y., Zhang, R., Jing, J. & Zhang, X. Endoplasmic reticulum-directed ratiometric fluorescent probe for quantitive detection of basal H2O2. Anal. Chem. 89, 12945–12950 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Forman, H. J., Bernardo, A. & Davies, K. J. What is the concentration of hydrogen peroxide in blood and plasma? Arch. Biochem. Biophys. 603, 48–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Mishina, N. M. et al. Which antioxidant system shapes intracellular H2O2 gradients? Antioxid. Redox Signal. 31, 664–670 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fransen, M. & Lismont, C. Redox signaling from and to peroxisomes: progress, challenges, and prospects. Antioxid. Redox Signal. 30, 95–112 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Lismont, C., Revenco, I. & Fransen, M. Peroxisomal hydrogen peroxide metabolism and signaling in health and disease. Int. J. Mol. Sci. 20, ijms20153673 (2019).

    Article  Google Scholar 

  72. Appenzeller-Herzog, C. et al. Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish. Free Radic. Biol. Med. 94, 157–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Bestetti, S. et al. Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane. Redox Biol. 28, 101326 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yoboue, E. D., Sitia, R. & Simmen, T. Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death. Dis. 9, 331 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dooley, C. T. et al. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J. Biol. Chem. 279, 22284–22293 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006). First genetically encoded H2O2 probe using the OxyR domain.

    Article  CAS  PubMed  Google Scholar 

  77. Bilan, D. S. & Belousov, V. V. In vivo imaging of hydrogen peroxide with HyPer probes. Antioxid. Redox Signal. 29, 569–584 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Morgan, B. et al. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat. Chem. Biol. 12, 437–443 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Roma, L. P., Deponte, M., Riemer, J. & Morgan, B. Mechanisms and applications of redox-sensitive green fluorescent protein-based hydrogen peroxide probes. Antioxid. Redox Signal. 29, 552–568 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Fernandez-Puente, E. et al. Expression and functional analysis of the hydrogen peroxide biosensors HyPer and HyPer2 in C2C12 myoblasts/myotubes and single skeletal muscle fibres. Sci. Rep. 10, 871–57821 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang, B. K., Ali, S., Stein, K. T. & Sikes, H. D. Interpreting heterogeneity in response of cells expressing a fluorescent hydrogen peroxide biosensor. Biophys. J. 109, 2148–2158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Henzler, T. & Steudle, E. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 51, 2053–2066 (2000). Discovery of H2O2 transport across membranes by aquaporins.

    Article  CAS  PubMed  Google Scholar 

  83. Bienert, G. P. & Chaumont, F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta 1840, 1596–1604 (2014). Groundbreaking work on the role of some aquaporins as peroxiporins.

    Article  CAS  PubMed  Google Scholar 

  84. Bestetti, S. et al. A persulfidation-based mechanism controls aquaporin-8 conductance. Sci. Adv. 4, eaar5770 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Medrano-Fernandez, I. et al. Stress regulates aquaporin-8 permeability to impact cell growth and survival. Antioxid. Redox Signal. 24, 1031–1044 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pak, V. V. et al. Ultrasensitive genetically encoded indicator for intracellular hydrogen peroxide identifies novel roles for cellular oxidants in cell migration and mitochondrial function. Cell Metab. 31, 642–653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tamma, G. et al. Aquaporin membrane channels in oxidative stress, cell signaling, and aging: recent advances and research trends. Oxid. Med. Cell Longev. 2018, 1501847 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rajasekaran, N. S. et al. Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 130, 427–439 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Marinho, H. S., Real, C., Cyrne, L., Soares, H. & Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2, 535–562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jones, D. P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol 295, C849-C868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bak, D. W., Bechtel, T. J., Falco, J. A. & Weerapana, E. Cysteine reactivity across the subcellular universe. Curr. Opin. Chem. Biol. 48, 96–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Go, Y. M. & Jones, D. P. The redox proteome. J. Biol. Chem. 288, 26512–26520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Behring, J. B. et al. Spatial and temporal alterations in protein structure by EGF regulate cryptic cysteine oxidation. Sci. Signal. 13, 13–615 (2020).

    Article  Google Scholar 

  94. Brigelius-Flohé, R. & Flohé, L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid. Redox Signal. 15, 2335–2381 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Young, D. et al. Protein promiscuity in H2O2 signaling. Antioxid. Redox Signal. 30, 1285–1324 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Xiao, H., et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell 180, 968–983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Itoh, K. et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313–322 (1997). Discovery of the NRF2–KEAP1 system.

    Article  CAS  PubMed  Google Scholar 

  98. Yamamoto, M., Kensler, T. W. & Motohashi, H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169–1203 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Fourquet, S., Guerois, R., Biard, D. & Toledano, M. B. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J. Biol. Chem. 285, 8463–8471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kobayashi, M. et al. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell Biol. 29, 493–502 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Cebula, M., Schmidt, E. E. & Arner, E. S. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid. Redox Signal. 23, 823–853 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Singh, C. K. et al. The role of sirtuins in antioxidant and redox signaling. Antioxid. Redox Signal. 28, 643–661 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cheng, X., Ku, C. H. & Siow, R. C. Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic. Biol. Med. 64, 4–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Karin, M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol. 1, a000141 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pahl, H. L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 18, 6853–6866 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Oliveira-Marques, V., Marinho, H. S., Cyrne, L. & Antunes, F. Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid. Redox Signal. 11, 2223–2243 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Schreck, R., Rieber, P. & Baeuerle, P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappaB transcription factor and HIV-1. EMBO J. 10, 2247–2258 (1991). Description of the role of H2O2 in NF-κB activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Halvey, P. J. et al. Selective oxidative stress in cell nuclei by nuclear-targeted D-amino acid oxidase. Antioxid. Redox Signal. 9, 807–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Kaelin, W. G. Jr. & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Jiang, B. H., Rue, E., Wang, G. L., Roe, R. & Semenza, G. L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271, 17771–17778 (1996). Seminal article on HIF.

    Article  CAS  PubMed  Google Scholar 

  111. Hernansanz-Agustin, P. et al. Mitochondrial complex I deactivation is related to superoxide production in acute hypoxia. Redox Biol. 12, 1040–1051 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Prabhakar, N. R., Kumar, G. K., Nanduri, J. & Semenza, G. L. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid. Redox Signal. 9, 1397–1403 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Waypa, G. B., Smith, K. A. & Schumacker, P. T. O2 sensing, mitochondria and ROS signaling: The fog is lifting. Mol. Asp. Med. 47-48, 76–89 (2016).

    Article  CAS  Google Scholar 

  114. Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Pouyssegur, J. & Mechta-Grigoriou, F. Redox regulation of the hypoxia-inducible factor. Biol. Chem. 387, 1337–1346 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Acker, T., Fandrey, J. & Acker, H. The good, the bad and the ugly in oxygen-sensing: ROS, cytochromes and prolyl-hydroxylases. Cardiovasc. Res. 71, 195–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Eijkelenboom, A. & Burgering, B. M. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Klotz, L. O. & Steinbrenner, H. Cellular adaptation to xenobiotics: interplay between xenosensors, reactive oxygen species and FOXO transcription factors. Redox Biol. 13, 646–654 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, B., Chen, Y. & St Clair, D. K. ROS and p53: a versatile partnership. Free Radic. Biol. Med. 44, 1529–1535 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Uehara, I. & Tanaka, N. Role of p53 in the regulation of the inflammatory tumor microenvironment and tumor suppression. Cancers (Basel). 10, 219 (2018).

    Article  PubMed Central  Google Scholar 

  121. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Hinchy, E. C. et al. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J. Biol. Chem. 293, 17208–17217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 10-0199 (2020).

  124. Schmeisser, K. & Parker, J. A. Pleiotropic effects of mTOR and autophagy during development and aging. Front. Cell Dev. Biol. 7, 192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sirover, M. A. Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastases. Cancer Metastasis Rev. 37, 665–676 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Peralta, D. et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Lin, C. S. & Klingenberg, M. Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett. 113, 299–303 (1980). Discovery of uncoupling protein.

    Article  CAS  PubMed  Google Scholar 

  128. Echtay, K. S. et al. Uncoupling proteins: Martin Klingenberg’s contributions for 40 years. Arch. Biochem. Biophys. 657, 41–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Berry, B. J., Trewin, A. J., Amitrano, A. M., Kim, M. & Wojtovich, A. P. Use the protonmotive force: mitochondrial uncoupling and reactive oxygen species. J. Mol. Biol. 430, 3873–3891 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jezek, P., Holendova, B., Garlid, K. D. & Jaburek, M. Mitochondrial uncoupling proteins: subtle regulators of cellular redox signaling. Antioxid. Redox Signal. 29, 667–714 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Echtay, K. S. et al. Superoxide activates mitochondrial uncoupling proteins. Nature 415, 96–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Mailloux, R. J. & Harper, M. E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. 51, 1106–1115 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Dustin, C. M., Heppner, D. E., Lin, M. J. & van der Vliet, A. Redox regulation of tyrosine kinase signaling: more than meet the eye. J, Biochem. 167, 151–163 (2020).

    Article  CAS  Google Scholar 

  134. Truong, T. H. & Carroll, K. S. Redox regulation of protein kinases. Crit. Rev. Biochem. Mol. Biol. 48, 332–356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Londhe, A. D. et al. Regulation of PTP1B activation through disruption of redox-complex formation. Nat. Chem Biol. 16, 122–125 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Truong, T. H. et al. Molecular basis for redox activation of epidermal growth factor receptor kinase. Cell Chem. Biol. 23, 837–848 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Heppner, D. E. et al. Direct cysteine sulfenylation drives activation of the Src kinase. Nat. Commun. 9, 4522–06790 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Dagnell, M. et al. Bicarbonate is essential for protein tyrosine phosphatase 1B (PTP1B) oxidation and cellular signaling through EGF-triggered phosphorylation cascades. J. Biol. Chem. 294, 12330–12338 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Truzzi, D. R. et al. The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1. J. Biol. Chem. 294, 14055–14067 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Löwe, O. et al. BIAM switch assay coupled to mass spectrometry identifies novel redox targets of NADPH oxidase 4. Redox Biol. 21, 101125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bogeski, I. & Niemeyer, B. A. Redox regulation of ion channels. Antioxid. Redox Signal. 21, 859–862 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kourie, J. I. Interaction of reactive oxygen species with ion transport mechanisms. Am. J. Physiol. 275, C1-C24 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Sahoo, N., Hoshi, T. & Heinemann, S. H. Oxidative modulation of voltage-gated potassium channels. Antioxid. Redox Signal. 21, 933–952 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ruppersberg, J. P. et al. Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature 352, 711–714 (1991). Description of redox regulation of K+ channel.

    Article  CAS  PubMed  Google Scholar 

  145. Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q. & Griendling, K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122, 877–902 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chen, P. H., Chi, J. T. & Boyce, M. Functional crosstalk among oxidative stress and O-GlcNAc signaling pathways. Glycobiology 28, 556–564 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Taniguchi, N. et al. Glyco-redox, a link between oxidative stress and changes of glycans: lessons from research on glutathione, reactive oxygen and nitrogen species to glycobiology. Arch. Biochem. Biophys. 595, 72–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Nordzieke, D. E. & Medrano-Fernandez, I. The plasma membrane: a platform for intra- and intercellular redox signaling. Antioxidants (Basel) 7, 168 (2018).

    Article  Google Scholar 

  149. Patinen, T. et al. Regulation of stress signaling pathways by protein lipoxidation. Redox Biol. 23, 101114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Somyajit, K. et al. Redox-sensitive alteration of replisome architecture safeguards genome integrity. Science 358, 797–802 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Ahmed, W. & Lingner, J. PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase. Genes Dev. 32, 658–669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rhee, S. G., Woo, H. A. & Kang, D. The role of peroxiredoxins in the transduction of H2O2 signals. Antioxid. Redox Signal. 28, 537–557 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Sarsour, E. H., Kumar, M. G., Chaudhuri, L., Kalen, A. L. & Goswami, P. C. Redox control of the cell cycle in health and disease. Antioxid. Redox Signal. 11, 2985–3011 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Srinivas, U. S., Tan, B. W. Q., Vellayappan, B. A. & Jeyasekharan, A. D. ROS and the DNA damage response in cancer. Redox Biol. 25, 101084 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Mailloux, R. J. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 4, 381–398 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Matilainen, O., Quiros, P. M. & Auwerx, J. Mitochondria and epigenetics - crosstalk in homeostasis and stress. Trends Cell Biol. 27, 453–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Castro, L., Tortora, V., Mansilla, S. & Radi, R. Aconitases: non-redox iron-sulfur proteins sensitive to reactive species. Acc. Chem. Res. 52, 2609–2619 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Braymer, J. J., Stumpfig, M., Thelen, S., Muhlenhoff, U. & Lill, R. Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries. Biochim. Biophys. Acta Mol. Cell Res. 1866, 240–251 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Bulthuis, E. P., Adjobo-Hermans, M. J. W., Willems, P. H. G. M. & Koopman, W. J. H. Mitochondrial morphofunction in mammalian cells. Antioxid. Redox Signal. 30, 2066–2109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kondadi, A. K., Anand, R. & Reichert, A. S. Functional interplay between cristae biogenesis, mitochondrial dynamics and mitochondrial DNA integrity. Int. J. Mol. Sci. 20, ijms20174311 (2019).

    Article  Google Scholar 

  163. Murley, A. & Nunnari, J. The emerging network of mitochondria-organelle contacts. Mol. Cell 61, 648–653 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Frank, M. et al. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim. Biophys. Acta 1823, 2297–2310 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sies, H. Biochemistry of the peroxisome in the liver cell. Angew. Chem. Int. Ed. Engl. 13, 706–718 (1974).

    Article  CAS  PubMed  Google Scholar 

  167. Gebicka, L. & Krych-Madej, J. The role of catalases in the prevention/promotion of oxidative stress. J. Inorg. Biochem. 197, 110699 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Böhm, B., Heinzelmann, S., Motz, M. & Bauer, G. Extracellular localization of catalase is associated with the transformed state of malignant cells. Biol. Chem. 396, 1339–1356 (2015).

    Article  PubMed  Google Scholar 

  169. Wang, L., Zhang, L., Niu, Y., Sitia, R. & Wang, C. C. Glutathione peroxidase 7 utilizes hydrogen peroxide generated by Ero1alpha to promote oxidative protein folding. Antioxid. Redox Signal. 20, 545–556 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cenci, S. & Sitia, R. Managing and exploiting stress in the antibody factory. FEBS Lett. 581, 3652–3657 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Laporte, A., Lortz, S., Schaal, C., Lenzen, S. & Elsner, M. Hydrogen peroxide permeability of cellular membranes in insulin-producing cells. Biochim. Biophys. Acta Biomembr. 1862, 183096 (2019).

    Article  PubMed  Google Scholar 

  172. Cao, S. S. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 21, 396–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Eletto, D., Chevet, E., Argon, Y. & Appenzeller-Herzog, C. Redox controls UPR to control redox. J. Cell Sci. 127, 3649–3658 (2014).

    CAS  PubMed  Google Scholar 

  174. Amodio, G., Moltedo, O., Faraonio, R. & Remondelli, P. Targeting the endoplasmic reticulum unfolded protein response to counteract the oxidative stress-induced endothelial dysfunction. Oxid. Med. Cell Longev. 2018, 4946289 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Görlach, A., Bertram, K., Hudecova, S. & Krizanova, O. Calcium and ROS: a mutual interplay. Redox Biol. 6, 260–271 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Hempel, N. & Trebak, M. Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium. 63, 70–96 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Feno, S., Butera, G., Vecellio, R. D., Rizzuto, R. & Raffaello, A. Crosstalk between calcium and ROS in pathophysiological conditions. Oxid. Med. Cell Longev. 2019, 9324018 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Joseph, S. K. et al. Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells. J. Biol. Chem. 293, 17464–17476 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Booth, D. M., Enyedi, B., Geiszt, M., Varnai, P. & Hajnoczky, G. Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol. Cell 63, 240–248 (2016). Description of H2O2 redox nanodomains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Csordas, G., Weaver, D. & Hajnoczky, G. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28, 523–540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Egea, J. et al. European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol. 13, 94–162 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Go, Y. M. & Jones, D. P. Redox theory of aging: implications for health and disease. Clin. Sci. 131, 1669–1688 (2017).

    Article  CAS  Google Scholar 

  183. Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Milkovic, L., Cipak, G. A., Cindric, M., Mouthuy, P. A. & Zarkovic, N. Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells 8, 793 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  185. Timme-Laragy, A. R., Hahn, M. E., Hansen, J. M., Rastogi, A. & Roy, M. A. Redox stress and signaling during vertebrate embryonic development: regulation and responses. Semin. Cell Dev. Biol. 80, 17–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Rampon, C., Volovitch, M., Joliot, A., Vriz, S. Hydrogen peroxide and redox regulation of developments. Antioxidants (Basel) 7, 159 (2018).

    Article  Google Scholar 

  187. Oswald, M. C. W., Garnham, N., Sweeney, S. T. & Landgraf, M. Regulation of neuronal development and function by ROS. FEBS Lett. 592, 679–691 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wilson, C., Munoz-Palma, E. & Gonzalez-Billault, C. From birth to death: a role for reactive oxygen species in neuronal development. Semin. Cell Dev. Biol. 80, 43–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Wilson, C. & Gonzalez-Billault, C. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front. Cell Neurosci. 9, 381 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Tan, D. Q. & Suda, T. Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell fate and function. Antioxid. Redox Signal. 29, 149–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Rhee, S. G. & Kil, I. S. Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: linking mitochondrial function to circadian rhythm. Free Radic. Biol. Med. 100, 73–80 (2016). An account of the role of peroxiredoxins in circadian rhythms.

    Article  CAS  PubMed  Google Scholar 

  192. Nagy, A. D. & Reddy, A. B. Redox clocks: time to rethink redox interventions. Free Radic. Biol. Med. 119, 3–7 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Reinke, H. & Asher, G. Crosstalk between metabolism and circadian clocks. Nat. Rev. Mol. Cell Biol. 20, 227–241 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Pei, J. F. et al. Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks. Nat. Cell Biol. 21, 1553–1564 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kempf, A., Song, S. M., Talbot, C. B. & Miesenbock, G. A potassium channel beta-subunit couples mitochondrial electron transport to sleep. Nature 568, 230–234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Patke, A., Young, M. W. & Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 21, 67–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Nayernia, Z., Jaquet, V. & Krause, K. H. New insights on NOX enzymes in the central nervous system. Antioxid. Redox Signal. 20, 2815–2837 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cobley, J. N., Fiorello, M. L. & Bailey, D. M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 15, 490–503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Tarafdar, A. & Pula, G. The role of NADPH oxidases and oxidative stress in neurodegenerative disorders. Int. J. Mol. Sci. 19, ijms19123824 (2018).

    Article  Google Scholar 

  200. Sbodio, J. I., Snyder, S. H. & Paul, B. D. Redox mechanisms in neurodegeneration: from disease outcomes to therapeutic opportunities. Antioxid. Redox Signal. 30, 1450–1499 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Steinbrenner, H. & Sies, H. Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch. Biochem. Biophys. 536, 152–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Lepka, K. et al. Iron-sulfur glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide release from activated microglia. Glia 65, 1521–1534 (2017).

    Article  PubMed  Google Scholar 

  203. Casas, A. I. et al. NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage. Proc. Natl Acad. Sci. USA 114, 12315–12320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Meda, F. et al. Nerves, H2O2 and Shh: three players in the game of regeneration. Semin. Cell Dev. Biol. 80, 65–73 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Hervera, A. et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat. Cell Biol. 20, 307–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Vicente-Gutierrez, C. et al. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat. Metab. 1, 201–211 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Bierhaus, A. et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc. Natl Acad. Sci. USA 100, 1920–1925 (2003). A report describing how psychosocial stress is translated into a cell response pattern.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Aschbacher, K. et al. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity. Psychoneuroendocrinology 38, 1698–1708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Aschbacher, K. & Mason, A. E. Eustress, distress and oxidative stress: promising pathways for mind-body medicine. In Oxidative Stress: Eustress and Distress (ed. Sies, H.) 583–617 (Academic, 2020).

  210. Golbidi, S., Li, H. & Laher, I. Oxidative stress: a unifying mechanism for cell damage induced by noise, (water-pipe) smoking, and emotional stress-therapeutic strategies targeting redox imbalance. Antioxid. Redox Signal. 28, 741–759 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Münzel, T. et al. Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice. Eur. Heart J. 38, 2838–2849 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Rousset, F., Carnesecchi, S., Senn, P. & Krause, K. H. NOX3-targeted therapies for inner ear pathologies. Curr. Pharm. Des. 21, 5977–5987 (2015).

    Article  CAS  PubMed  Google Scholar 

  213. Lugrin, J., Rosenblatt-Velin, N., Parapanov, R. & Liaudet, L. The role of oxidative stress during inflammatory processes. Biol. Chem. 395, 203–230 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Pei, L. & Wallace, D. C. Mitochondrial etiology of neuropsychiatric disorders. Biol. Psychiatry 83, 722–730 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Nathan, C. & Cunningham-Bussel, A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 13, 349–361 (2013). A review bridging immunology and redox biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  217. Kenny, E. F. et al. Diverse stimuli engage different neutrophil extracellular trap pathways. eLife. 6, e24437 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Anelli, T., Sannino, S. & Sitia, R. Proteostasis and “redoxtasis” in the secretory pathway: tales of tails from ERp44 and immunoglobulins. Free Radic. Biol. Med. 83, 323–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  219. Garaude, J. Reprogramming of mitochondrial metabolism by innate immunity. Curr. Opin. Immunol. 56, 17–23 (2018).

    Article  PubMed  Google Scholar 

  220. Abais, J. M., Xia, M., Zhang, Y., Boini, K. M. & Li, P. L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Signal. 22, 1111–1129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Jones, R. M. & Neish, A. S. Redox signaling mediated by the gut microbiota. Free Radic. Biol. Med. 105, 41–47 (2017).

    Article  CAS  PubMed  Google Scholar 

  222. Aviello, G. & Knaus, U. G. NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol. 11, 1011–1023 (2018).

    Article  CAS  PubMed  Google Scholar 

  223. Cano, S. M., Lancel, S., Boulanger, E. & Neviere, R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants (Basel) 7, 98 (2018).

    Article  Google Scholar 

  224. Niethammer, P. Wound redox gradients revisited. Semin. Cell Dev. Biol. 80, 13–16 (2018).

    Article  CAS  PubMed  Google Scholar 

  225. Love, N. R. & Chen, Y. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat. Cell Biol. 15, 222–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Levigne, D., Modarressi, A., Krause, K. H. & Pittet-Cuenod, B. NADPH oxidase 4 deficiency leads to impaired wound repair and reduced dityrosine-crosslinking, but does not affect myofibroblast formation. Free Radic. Biol. Med. 96, 374–384 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. Kunkemoeller, B. & Kyriakides, T. R. Redox signaling in diabetic wound healing regulates extracellular matrix deposition. Antioxid. Redox Signal. 27, 823–838 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Handy, D. E. & Loscalzo, J. Responses to reductive stress in the cardiovascular system. Free Radic. Biol. Med. 109, 114–124 (2017).

    Article  CAS  PubMed  Google Scholar 

  229. Incalza, M. A. et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol. 100, 1–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  230. Münzel, T. et al. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J. Am. Coll. Cardiol. 70, 212–229 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Schröder, K. Redox control of angiogenesis. Antioxid. Redox Signal. 30, 960–971 (2019).

    Article  PubMed  Google Scholar 

  232. Förstermann, U., Xia, N. & Li, H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ. Res. 120, 713–735 (2017).

    Article  PubMed  Google Scholar 

  233. Siu, K. L. et al. NOX isoforms in the development of abdominal aortic aneurysm. Redox Biol. 11, 118–125 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Oikonomou, E. K. & Antoniades, C. Immunometabolic regulation of vascular redox state: the role of adipose tissue. Antioxid. Redox Signal. 29, 313–336 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Stocker, R. & Keaney, J. F. Jr. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84, 1381–1478 (2004).

    Article  CAS  PubMed  Google Scholar 

  236. Trinity, J. D., Broxterman, R. M. & Richardson, R. S. Regulation of exercise blood flow: role of free radicals. Free Radic. Biol. Med. 98, 90–102 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Jackson, M. J. Redox regulation of muscle adaptations to contractile activity and aging. J. Appl. Physiol. 119, 163–171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Le Moal, E. et al. Redox control of skeletal muscle regeneration. Antioxid. Redox Signal. 27, 276–310 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  239. El Assar, M., Angulo, J. & Rodriguez-Manas, L. Frailty as a phenotypic manifestation of underlying oxidative stress. Free Radic. Biol. Med.10 (2019).

  240. McArdle, A., Pollock, N., Staunton, C. A. & Jackson, M. J. Aberrant redox signalling and stress response in age-related muscle decline: role in inter- and intra-cellular signalling. Free Radic. Biol. Med. 132, 50–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  241. Cobley, J. N., Close, G. L., Bailey, D. M. & Davison, G. W. Exercise redox biochemistry: conceptual, methodological and technical recommendations. Redox Biol. 12, 540–548 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Hancock, M. et al. Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. eLife 7, 41044 (2018).

    Article  Google Scholar 

  243. Jackson, M. J. Mechanistic models to guide redox investigations and interventions in musculoskeletal ageing. Free Radic. Biol. Med. 149, 2–7 (2020).

    Article  CAS  PubMed  Google Scholar 

  244. Watson, J. D. Type 2 diabetes as a redox disease. Lancet 383, 841–843 (2014).

    Article  PubMed  Google Scholar 

  245. Haeusler, R. A., McGraw, T. E. & Accili, D. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol. 19, 31–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  246. Petersen, M. C. & Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Onyango, A. N. Cellular stresses and stress responses in the pathogenesis of insulin resistance. Oxid. Med. Cell Longev. 2018, 4321714 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956). Seminal article on the free radical theory of ageing.

    Article  CAS  PubMed  Google Scholar 

  249. Golubev, A., Hanson, A. D. & Gladyshev, V. N. Non-enzymatic molecular damage as a prototypic driver of aging. J. Biol. Chem. 292, 6029–6038 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). Comprehensive overview of the hallmarks of ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Pomatto, L. C. D. & Davies, K. J. A. The role of declining adaptive homeostasis in ageing. J. Physiol. 595, 7275–7309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Schmidlin, C. J., Dodson, M. B., Madhavan, L. & Zhang, D. D. Redox regulation by NRF2 in aging and disease. Free Radic. Biol. Med. 134, 702–707 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Taetzsch, T., Benusa, S., Levesque, S., Mumaw, C. L. & Block, M. L. Loss of NF-kappaB p50 function synergistically augments microglial priming in the middle-aged brain. J. Neuroinflammation 16, 60–1446 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Salminen, A., Kauppinen, A. & Kaarniranta, K. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. J. Mol. Med. 97, 1049–1064 (2019).

    Article  CAS  PubMed  Google Scholar 

  255. Rose, G., Crocco, P., De, R. F., Montesanto, A. & Passarino, G. Further support to the uncoupling-to-survive theory: the genetic variation of human UCP genes is associated with longevity. PLoS One 6, e29650 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kirstein, J. et al. Proteotoxic stress and ageing triggers the loss of redox homeostasis across cellular compartments. EMBO J. 34, 2334–2349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Höhn, A. et al. Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 11, 482–501 (2017).

    Article  PubMed  Google Scholar 

  258. Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435 (2019).

    Article  CAS  PubMed  Google Scholar 

  259. Akbari, M., Kirkwood, T. B. L. & Bohr, V. A. Mitochondria in the signaling pathways that control longevity and health span. Ageing Res. Rev. 54, 100940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Campisi, J. et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature 571, 183–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Labunskyy, V. M. & Gladyshev, V. N. Role of reactive oxygen species-mediated signaling in aging. Antioxid. Redox Signal. 19, 1362–1372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Palmeira, C. M. et al. Mitohormesis and metabolic health: the interplay between ROS, cAMP and sirtuins. Free Radic. Biol. Med. 141, 483–491 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Bazopoulou, D. et al. Developmental ROS individualizes organismal stress resistance and lifespan. Nature 576, 301–306 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Golubev, A., Hanson, A. D. & Gladyshev, V. N. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid. Redox Signal. 29, 1003–1017 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). Comprehensive overview of the hallmarks of cancer.

    Article  CAS  PubMed  Google Scholar 

  266. Hornsveld, M. & Dansen, T. B. The hallmarks of cancer from a redox perspective. Antioxid. Redox Signal. 25, 300–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  267. Moloney, J. N. & Cotter, T. G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 80, 50–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  268. Kalyanaraman, B. et al. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol. 15, 347–362 (2018).

    Article  CAS  PubMed  Google Scholar 

  269. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Kim, J., Kim, J. & Bae, J. S. ROS homeostasis and metabolism: a critical liaison for cancer therapy. Exp. Mol. Med. 48, e269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Steinbrenner, H., Speckmann, B. & Sies, H. Toward understanding success and failures in the use of selenium for cancer prevention. Antioxid. Redox Signal. 19, 181–191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Yang, H. et al. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 37, 266–0909 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Chaiswing, L., St Clair, W. H. & St Clair, D. K. Redox paradox: a novel approach to therapeutics-resistant cancer. Antioxid. Redox Signal. 29, 1237–1272 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Panieri, E. & Santoro, M. M. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death. Dis. 7, e2253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Allen, B. G. et al. First-in-human phase I clinical trial of pharmacologic ascorbate combined with radiation and temozolomide for newly diagnosed glioblastoma. Clin. Cancer Res. 25, 6590–6597 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Schoenfeld, J. D. et al. Pharmacological ascorbate as a means of sensitizing cancer cells to radio-chemotherapy while protecting normal tissue. Semin. Radiat. Oncol. 29, 25–32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Elbatreek, M. H., Pachado, M. P., Cuadrado, A., Jandeleit-Dahm, K. & Schmidt, H. H. H. W. Reactive oxygen comes of age: mechanism-based therapy of diabetic end-organ damage. Trends Endocrinol. Metab. 30, 312–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  278. Keleku-Lukwete, N., Suzuki, M. & Yamamoto, M. An overview of the advantages of KEAP1-NRF2 system activation during inflammatory disease treatment. Antioxid. Redox Signal. 29, 1746–1755 (2018).

    Article  CAS  PubMed  Google Scholar 

  279. Ames, B. N. Prolonging healthy aging: longevity vitamins and proteins. Proc. Natl Acad. Sci. USA 115, 10836–10844 (2018). An overview of healthy ageing and the role of micronutrients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Banba, A., Tsuji, A., Kimura, H., Murai, M. & Miyoshi, H. Defining the mechanism of action of S1QELs, specific suppressors of superoxide production in the quinone-reaction site in mitochondrial complex I. J. Biol. Chem. 294, 6550–6561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Brand, M. D. et al. Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab. 24, 582–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Galaris, D., Barbouti, A. & Pantopoulos, K. Iron homeostasis and oxidative stress: an intimate relationship. Biochim. Biophys. Acta Mol. Cell Res. 1866, 118535 (2019).

    Article  CAS  PubMed  Google Scholar 

  283. Koppenol, W. H. & Hider, R. H. Iron and redox cycling. Do’s and don’ts. Free Radic. Biol. Med. 133, 3–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  284. Pugh, C. W. & Ratcliffe, P. J. New horizons in hypoxia signaling pathways. Exp. Cell Res. 356, 116–121 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Jain, I. H. et al. Hypoxia as a therapy for mitochondrial disease. Science 352, 54–61 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug. Discov. 12, 931–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  287. von Woedtke, T., Schmidt, A., Bekeschus, S., Wende, K. & Weltmann, K. D. Plasma medicine: a field of applied redox biology. Vivo 33, 1011–1026 (2019).

    Article  Google Scholar 

  288. Chacko, B. K., Zhi, D., Darley-Usmar, V. M. & Mitchell, T. The bioenergetic health index is a sensitive measure of oxidative stress in human monocytes. Redox Biol. 8, 43–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  289. Hill, B. G., Shiva, S., Ballinger, S., Zhang, J. & Darley-Usmar, V. M. Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biol. Chem. 401, 3–29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug. Discov. 8, 579–591 (2009).

    Article  CAS  PubMed  Google Scholar 

  291. Kirkpatrick, D. L. & Powis, G. Clinically evaluated cancer drugs inhibiting redox signaling. Antioxid. Redox Signal. 26, 262–273 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Adhikari, A., Mondal, S., Darbar, S. & Kumar, P. S. Role of nanomedicine in redox mediated healing at molecular level. Biomol. Concepts 10, 160–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  293. Yang, B., Chen, Y. & Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119, 4881–4985 (2019).

    Article  CAS  PubMed  Google Scholar 

  294. Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Go, Y. M., Fernandes, J., Hu, X., Uppal, K. & Jones, D. P. Mitochondrial network responses in oxidative physiology and disease. Free Radic. Biol. Med. 116, 31–40 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Di Mascio, P. et al. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem. Rev. 119, 2043–2086 (2019).

    Article  PubMed  Google Scholar 

  297. Mano, C. M. et al. Excited singlet molecular O2(1Δg) is generated enzymatically from excited carbonyls in the dark. Sci. Rep. 4, 5938 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Brash, D. E., Goncalves, L. C. P. & Bechara, E. J. H. Chemiexcitation and its implications for disease. Trends Mol. Med. 24, 527–541 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Poole, L. B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 80, 148–157 (2015).

    Article  CAS  PubMed  Google Scholar 

  300. Leisegang, M. S., Schröder, K. & Brandes, R. P. Redox regulation and noncoding RNAs. Antioxid. Redox Signal. 29, 793–812 (2018).

    Article  CAS  PubMed  Google Scholar 

  301. Kalinina, E. V., Ivanova-Radkevich, V. I. & Chernov, N. N. Role of microRNAs in the regulation of redox-dependent processes. Biochemistry (Mosc,) 84, 1233–1246 (2019).

    Article  CAS  Google Scholar 

  302. Bartesaghi, S. & Radi, R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 14, 618–625 (2018).

    Article  CAS  PubMed  Google Scholar 

  303. MacMillan-Crow, L. A., Crow, J. P., Kerby, J. D., Beckman, J. S. & Thompson, J. A. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc. Natl. Acad. Sci. U. S. A. 93, 11853–11858 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Filipovic, M. R., Zivanovic, J., Alvarez, B. & Banerjee, R. Chemical biology of H2S signaling through persulfidation. Chem. Rev. 118, 1253–1337 (2018). Chemistry of H2S signaling.

    Article  CAS  PubMed  Google Scholar 

  305. Paul, B. D. & Snyder, S. H. H2S signalling through protein sulfhydration and beyond. Nat. Rev. Mol. Cell Biol. 13, 499–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  306. Biteau, B., Labarre, J. & Toledano, M. B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980–984 (2003).

    Article  CAS  PubMed  Google Scholar 

  307. Akter, S. et al. Chemical proteomics reveals new targets of cysteine sulfinic acid reductase. Nat. Chem. Biol. 14, 995–1004 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Watson, W. H. et al. Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J. Biol. Chem. 278, 33408–33415 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the many colleagues whose research work contributed to this rapidly expanding field, and we apologize to the many authors whose interesting work could not be referred to explicitly. Fruitful discussions with W. Stahl and C. Berndt are gratefully acknowledged. Generous research support was provided by the Deutsche Forschungsgemeinschaft, Bonn, and the US National Foundation for Cancer Research, Bethesda, to H.S. and by the US National Institutes of Health to D.P.J.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Helmut Sies or Dean P. Jones.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks F. Ursini, M. Davies and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Pleiotropic

From Greek pleion, meaning ‘more’, and tropos, meaning ‘way’, in biology originally denoting that one gene can influence two or more seemingly unrelated phenotypic traits. In current usage, the term describes multiple actions exerted by a given agent. If the actions generate opposing effects (for example, both harmful and beneficial to an organism), it is antagonistic pleiotropy.

Redox signalling

Response of a cell to an oxidant or reductant, or to an alteration in redox status of a cellular component, that leads to a variety of downstream effects on cell state directly or via an essential redox relay from a source to a target.

Oxidative eustress

Term describing the physiological oxidative challenge (Greek eu, meaning ‘good’, ‘well’, ‘positive’), essential in redox signalling. Supraphysiological oxidative challenge is denoted as ‘oxidative distress’.

Thiolate

Anion formed from thiol by dissociation of a proton (RSH → RS + H+).

Selenoproteins

Proteins with selenocysteine, the 21st amino acid, in the primary structure. Selenomethionine can sometimes substitute for methionine during protein synthesis, but unlike selenocysteine, this is not encoded within the RNA message and is generally without functional significance.

Hormesis

From Greek hormesis ‘rapid motion, eagerness’, describing a biphasic dose-response phenomenon: low-dose exposure (stimulation, preconditioning) and high-dose exposure (inhibition), J-shaped or inverted U-shaped dose-response curve.

4-Hydroxynonenal

A reactive aldehyde produced during free radical chain reaction of polyunsaturated fatty acids.

Lipid peroxidation

Oxidative free radical chain reaction of polyunsaturated fatty acids.

Mitochondrial electron transport chain

(ETC). Series of electron transfer complexes in the mitochondrial inner membrane that support oxidation of metabolic fuels to generate an electrochemical proton gradient for ATP synthesis from ADP and inorganic phosphate. Complexes within this chain are also sources of O2·– and its product, H2O2.

Cristae

Folds of the mitochondrial inner membrane.

Peroxiredoxins

Enzymes that catalyse reduction of H2O2 with a thioredoxin as the electron donor.

Glutathione

Tripeptide (γ-glutamylcysteinylglycine) that is widespread in biology and, among other functions, supports antioxidant reactions.

Peroxidases

Enzymes which catalyse the reduction of H2O2 and other hydroperoxides.

Catalatic reaction

One of the modes of catalysis for catalase, along with peroxidatic reaction. In the overall reaction cycle, the intermediate formed by reaction of catalase haem iron with H2O2, termed ‘compound I’, can be reduced by a second molecule of H2O2 (catalatic reaction) or by an alternative hydrogen donor (peroxidatic reaction).

Thioredoxin system

A thiol antioxidant system consisting of NADPH, thioredoxin reductase and thioredoxin that supports maintenance of protein thiols and reduction of hydroperoxides.

Glutathione system

A thiol antioxidant system consisting of glutathione peroxidases, glutathione disulfide reductase, glutathione S-transferases, glutaredoxin, glutathione synthesis enzymes and glutathione which supports maintenance of protein thiols and reduction of hydroperoxides.

Iron–sulfur (Fe–S) clusters

Redox centres in proteins in which iron is coordinately bonded between cysteinyl residues (thiolates) in protein and sulfide (S2−), for example, Fe2S2 and Fe4S4.

Sirtuin family

Enzymes that remove acetyl (that is, functioning as deacetylases) or other acyl groups (that is, functioning as desuccinylases, demalonylases, demyristoylases or depalmitoylases) from proteins.

Autophagy

A process for removal of damaged cellular structures that contributes to maintenance of cellular homeostasis.

Glutathionylation

A post-translational protein modification functioning in redox signalling comprising the reversible formation of an S-glutathione adduct of a cysteinyl residue in proteins. Glutaredoxins are enzymes that catalyse the formation and removal of S-glutathionylated proteins.

Src kinase

A member of a family of non-receptor tyrosine kinases with many protein targets and functions in differentiation and regulation of cell growth.

Xanthine oxidase

A form of xanthine dehydrogenase that generates a relatively high proportion of O2·– instead of H2O2 during oxidation of hypoxanthine to xanthine or xanthine to uric acid.

Aconitase

An enzyme in the citric acid cycle that has an Fe–S cluster and is sensitive to inactivation by O2·–.

Mitochondrial permeability transition pore

A pore formed from structural changes in mitochondrial inner membrane proteins that allow influx of solutes into the mitochondrial matrix. Activation of the pore causes high-amplitude swelling of the mitochondria and activates cell death mechanisms.

Unfolded protein response

(UPR). A cell stress response triggered by disruption of protein processing within the endoplasmic reticulum.

ER stress

Perturbation of functions of the endoplasmic reticulum (ER), for example abnormal folding and processing of proteins.

Axonal growth cone

Site of growth at the tip of a dendrite or an axon of neurons, containing cytoplasm and actin formed in the leading edge of the cell during neuronal development and regeneration.

Cell senescence

A state of cells with arrested cell division and resistance to cell proliferation signals and uncontrolled cell growth. Accumulation of senescent cells is a hallmark of ageing; it contributes to decline in organ function and some age-related diseases.

Exosomes

Nanometre-sized vesicles released by cells, a means for cell–cell communication. Exosomes possess characteristics of cells of origin and can be used as biomarkers of disease.

Neutrophil extracellular traps

Extracellular fibre networks created by neutrophils to trap and kill invading microbes. They contain DNA from extruded chromatin and antimicrobial proteins such as neutrophil elastase and cathepsin G.

NLRP3 inflammasome

NLRP3 is protein complex in cells that activates inflammatory processes. ‘NLR’ refers to ‘nucleotide-binding oligomerization domain, leucine-rich repeat’. The complex senses a broad range of microbial and environmental stressors.

Schiff base

A chemical structure with a double bond between nitrogen and carbon formed by reaction of an amine with a carbonyl group.

Michael addition

An addition reaction of a nucleophilic chemical with a chemical having an electrophilic α,β-conjugated carbonyl structure. The reaction can be important in pathological processes because DNA and other macromolecules contain nucleophiles, and α,β-conjugated carbonyls are major products of lipid peroxidation of polyunsaturated fatty acids.

Redox cycling agents

Chemicals that undergo enzymatic one-electron reduction, generating a transient radical, which is reoxidized by molecular oxygen, reducing it to O2·–.

Photodynamic therapy

A therapy using photoexcitable agents and light to generate toxic reactive oxygen species, predominantly singlet molecular oxygen.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sies, H., Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21, 363–383 (2020). https://doi.org/10.1038/s41580-020-0230-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-0230-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing