Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Target gene-independent functions of MYC oncoproteins

Abstract

Oncoproteins of the MYC family are major drivers of human tumorigenesis. Since a large body of evidence indicates that MYC proteins are transcription factors, studying their function has focused on the biology of their target genes. Detailed studies of MYC-dependent changes in RNA levels have provided contrasting models of the oncogenic activity of MYC proteins through either enhancing or repressing the expression of specific target genes, or as global amplifiers of transcription. In this Review, we first summarize the biochemistry of MYC proteins and what is known (or is unclear) about the MYC target genes. We then discuss recent progress in defining the interactomes of MYC and MYCN and how this information affects central concepts of MYC biology, focusing on mechanisms by which MYC proteins modulate transcription. MYC proteins promote transcription termination upon stalling of RNA polymerase II, and we propose that this mechanism enhances the stress resilience of basal transcription. Furthermore, MYC proteins coordinate transcription elongation with DNA replication and cell cycle progression. Finally, we argue that the mechanism by which MYC proteins regulate the transcription machinery is likely to promote tumorigenesis independently of global or relative changes in the expression of their target genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protein domains of MYC and their canonical function.
Fig. 2: Models of gene regulation by MYC.
Fig. 3: MYC-associated proteins.
Fig. 4: A hand-over model of promoter-proximal function of MYC proteins.
Fig. 5: MYC binding at core promoters.

Similar content being viewed by others

References

  1. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ. 8, 1039–1048 (1997).

    CAS  PubMed  Google Scholar 

  3. Sansom, O. J. et al. Myc deletion rescues Apc deficiency in the small intestine. Nature 446, 676–679 (2007).

    CAS  PubMed  Google Scholar 

  4. Kawauchi, D. et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21, 168–180 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vo, B. T. et al. The interaction of Myc with Miz1 defines medulloblastoma subgroup identity. Cancer Cell 29, 5–16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dammert, M. A. et al. MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nat. Commun. 10, 3485 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Makela, T. P., Saksela, K., Evan, G. & Alitalo, K. A fusion protein formed by L-myc and a novel gene in SCLC. EMBO J. 10, 1331–1335 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nau, M. M. et al. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature 318, 69–73 (1985).

    CAS  PubMed  Google Scholar 

  9. Gabay, M., Li, Y. & Felsher, D. W. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med. 4, a014241 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Annibali, D. et al. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nat. Commun. 5, 4632 (2014).

    CAS  PubMed  Google Scholar 

  12. Dubois, N. C. et al. Placental rescue reveals a sole requirement for c-Myc in embryonic erythroblast survival and hematopoietic stem cell function. Development 135, 2455–2465 (2008).

    CAS  PubMed  Google Scholar 

  13. Sodir, N. M. et al. Endogenous Myc maintains the tumor microenvironment. Genes Dev. 25, 907–916 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, C. H. et al. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc. Natl Acad. Sci. USA 104, 13028–13033 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227–231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kortlever, R. M. et al. Myc cooperates with ras by programming inflammation and immune suppression. Cell 171, 1301–1315.e14 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Topper, M. J. et al. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171, 1284–1300 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Conacci-Sorrell, M., McFerrin, L. & Eisenman, R. N. An overview of MYC and its interactome. Cold Spring Harb. Perspect. Med. 4, a014357 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Guo, J. et al. Sequence specificity incompletely defines the genome-wide occupancy of Myc. Genome Biol. 15, 482 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mathsyaraja, H. et al. Max deletion destabilizes MYC protein and abrogates Emicro-Myc lymphomagenesis. Genes Dev. 33, 1252–1264 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hurlin, P. J. et al. Deletion of Mnt leads to disrupted cell cycle control and tumorigenesis. EMBO J. 22, 4584–4596 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schaub, F. X. et al. Pan-cancer alterations of the MYC oncogene and its proximal network across the cancer genome atlas. Cell Syst. 6, 282–300.e2 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Walz, S. et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 511, 483–487 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Farrell, A. S. & Sears, R. C. MYC degradation. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a014365 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Herold, S. et al. Recruitment of BRCA1 limits MYCN-driven accumulation of stalled RNA polymerase. Nature 567, 545–549 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl Acad. Sci. USA 101, 9085–9090 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat. Cell Biol. 6, 308–318 (2004).

    CAS  PubMed  Google Scholar 

  28. Richards, M. W. et al. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc. Natl Acad. Sci. USA 113, 13726–13731 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dauch, D. et al. A MYC-Aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat. Med. 22, 744–753 (2016).

    CAS  PubMed  Google Scholar 

  30. Zhang, N. et al. MYC interacts with the human STAGA coactivator complex via multivalent contacts with the GCN5 and TRRAP subunits. Biochim. Biophys. Acta 1839, 395–405 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D. & Cole, M. D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998).

    CAS  PubMed  Google Scholar 

  32. Thomas, L. R. et al. Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol. Cell 58, 440–452 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalkat, M. et al. MYC protein interactome profiling reveals functionally distinct regions that cooperate to drive tumorigenesis. Mol. Cell 72, 836–848.e7 (2018).

    CAS  PubMed  Google Scholar 

  34. Thomas, L. R. et al. Interaction of MYC with host cell factor-1 is mediated by the evolutionarily conserved Myc box IV motif. Oncogene 35, 3613–3618 (2016).

    CAS  PubMed  Google Scholar 

  35. Nair, S. K. & Burley, S. K. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112, 193–205 (2003).

    CAS  PubMed  Google Scholar 

  36. Wei, Y. et al. Multiple direct interactions of TBP with the MYC oncoprotein. Nat. Struct. Mol. Biol. 26, 1035–1043 (2019).

    CAS  PubMed  Google Scholar 

  37. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Eilers, M. & Eisenman, R. N. Myc’s broad reach. Genes Dev. 22, 2755–2766 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat. Cell Biol. 7, 311–318 (2005).

    CAS  PubMed  Google Scholar 

  40. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    CAS  PubMed  Google Scholar 

  41. Sabo, A. et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 511, 488–492 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Eilers, M., Picard, D., Yamamoto, K. R. & Bishop, J. M. Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340, 66–68 (1989).

    CAS  PubMed  Google Scholar 

  43. Kress, T. R., Sabo, A. & Amati, B. MYC: connecting selective transcriptional control to global RNA production. Nat. Rev. Cancer 15, 593–607 (2015).

    CAS  PubMed  Google Scholar 

  44. Muhar, M. et al. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science 360, 800–805 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Stine, Z. E., Walton, Z. E., Altman, B. J., Hsieh, A. L. & Dang, C. V. MYC, metabolism and cancer. Cancer Discov. 5, 1024–1039 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Berwanger, B. et al. Loss of a FYN-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma. Cancer Cell 2, 377–386 (2002).

    CAS  PubMed  Google Scholar 

  47. Murphy, D. M. et al. Dissection of the oncogenic MYCN transcriptional network reveals a large set of clinically relevant cell cycle genes as drivers of neuroblastoma tumorigenesis. Mol. Carcinog. 50, 403–411 (2011).

    CAS  PubMed  Google Scholar 

  48. Blanco-Bose, W. E. et al. C-Myc and its target FoxM1 are critical downstream effectors of constitutive androstane receptor (CAR) mediated direct liver hyperplasia. Hepatology 48, 1302–1311 (2008).

    CAS  PubMed  Google Scholar 

  49. Yin, X. Y. et al. Inverse regulation of cyclin B1 by c-Myc and p53 and induction of tetraploidy by cyclin B1 overexpression. Cancer Res. 61, 6487–6493 (2001).

    CAS  PubMed  Google Scholar 

  50. Wanzel, M. et al. Akt and 14-3-3η regulate Miz1 to control cell-cycle arrest after DNA damage. Nat. Cell Biol. 7, 30–41 (2005).

    CAS  PubMed  Google Scholar 

  51. Yustein, J. T. et al. Induction of ectopic Myc target gene JAG2 augments hypoxic growth and tumorigenesis in a human B-cell model. Proc. Natl Acad. Sci. USA 107, 3534–3539 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat. Cell Biol. 3, 400–408 (2001).

    CAS  PubMed  Google Scholar 

  53. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat. Cell Biol. 3, 392–399 (2001).

    CAS  PubMed  Google Scholar 

  54. Herold, S. et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell 10, 509–521 (2002).

    CAS  PubMed  Google Scholar 

  55. Seoane, J., Le, H. V. & Massague, J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    CAS  PubMed  Google Scholar 

  56. Wu, S. et al. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22, 351–360 (2003).

    CAS  PubMed  Google Scholar 

  57. Inghirami, G. et al. Down-regulation of LFA-1 adhesion receptors by C-myc oncogene in human B lymphoblastoid cells. Science 250, 682–686 (1990).

    CAS  PubMed  Google Scholar 

  58. Gebhardt, A. et al. Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. J. Cell Biol. 172, 139–149 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. van Riggelen, J. et al. The interaction between Myc and Miz1 is required to antagonize TGFβ-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev. 24, 1281–1294 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Tu, W. B. et al. MYC interacts with the G9a histone methyltransferase to drive transcriptional repression and tumorigenesis. Cancer Cell 34, 579–595.e8 (2018).

    CAS  PubMed  Google Scholar 

  61. Baluapuri, A. et al. MYC recruits SPT5 to RNA polymerase II to promote processive transcription elongation. Mol. Cell 74, 674–687.e11 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaur, M. & Cole, M. D. MYC acts via the PTEN tumor suppressor to elicit autoregulation and genome-wide gene repression by activation of the Ezh2 methyltransferase. Cancer Res. 73, 695–705 (2013).

    CAS  PubMed  Google Scholar 

  63. Barna, M. et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456, 971–975 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nilsson, J. A. et al. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 7, 433–444 (2005).

    CAS  PubMed  Google Scholar 

  65. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nie, Z. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lorenzin, F. et al. Different promoter affinities account for specificity in MYC-dependent gene regulation. eLife 5, e15161 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gerlach, J. M. et al. PAF1 complex component Leo1 helps recruit Drosophila Myc to promoters. Proc. Natl Acad. Sci. USA 114, E9224–E9232 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Guccione, E. et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat. Cell Biol. 8, 764–770 (2006).

    CAS  PubMed  Google Scholar 

  71. Tesi, A. et al. An early Myc-dependent transcriptional program orchestrates cell growth during B-cell activation. EMBO Rep. 20, e47987 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Loven, J. et al. Revisiting global gene expression analysis. Cell 151, 476–482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang, C. H. et al. CDK9-mediated transcription elongation is required for MYC addiction in hepatocellular carcinoma. Genes Dev. 28, 1800–1814 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chipumuro, E. et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126–1139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lewis, L. M. et al. Replication study: transcriptional amplification in tumor cells with elevated c-Myc. eLife 7, e30274 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wolf, E., Lin, C. Y., Eilers, M. & Levens, D. L. Taming of the beast: shaping Myc-dependent amplification. Trends Cell Biol. 25, 241–248 (2015).

    CAS  PubMed  Google Scholar 

  77. Heidelberger, J. B. et al. Proteomic profiling of VCP substrates links VCP to K6-linked ubiquitylation and c-Myc function. EMBO Rep. 19, e44754 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Besche, H. C., Haas, W., Gygi, S. P. & Goldberg, A. L. Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry 48, 2538–2549 (2009).

    CAS  PubMed  Google Scholar 

  79. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    PubMed  Google Scholar 

  80. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    CAS  PubMed  Google Scholar 

  81. Popov, N., Schulein, C., Jaenicke, L. A. & Eilers, M. Ubiquitylation of the amino terminus of Myc by SCF(β-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nat. Cell Biol. 12, 973–981 (2010).

    CAS  PubMed  Google Scholar 

  82. Jacquet, K. et al. The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol. Cell 62, 409–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gorrini, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063–1067 (2007).

    CAS  PubMed  Google Scholar 

  84. Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. de Pretis, S. et al. Integrative analysis of RNA polymerase II and transcriptional dynamics upon MYC activation. Genome Res. 27, 1658–1664 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. Buchel, G. et al. Association with aurora-A controls N-MYC-dependent promoter escape and pause release of RNA polymerase II during the cell cycle. Cell Rep. 21, 3483–3497 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Fong, N., Saldi, T., Sheridan, R. M., Cortazar, M. A. & Bentley, D. L. RNA Pol II dynamics modulate Co-transcriptional chromatin modification, CTD phosphorylation, and transcriptional direction. Mol. Cell 66, 546–557.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jaenicke, L. A. et al. Ubiquitin-dependent turnover of MYC antagonizes MYC/PAF1C complex accumulation to drive transcriptional elongation. Mol. Cell 61, 54–67 (2016).

    CAS  PubMed  Google Scholar 

  89. Eberhardy, S. R. & Farnham, P. J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277, 40156–40162 (2002).

    CAS  PubMed  Google Scholar 

  90. Dejure, F. R. et al. The MYC mRNA 3’-UTR couples RNA polymerase II function to glutamine and ribonucleotide levels. EMBO J. 36, 1854–1868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Crossley, M. P., Bocek, M. & Cimprich, K. A. R-loops as cellular regulators and genomic threats. Mol. Cell 73, 398–411 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Shivji, M. K. K., Renaudin, X., Williams, C. H. & Venkitaraman, A. R. BRCA2 regulates transcription elongation by RNA polymerase II to prevent R-loop accumulation. Cell Rep. 22, 1031–1039 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Salas-Armenteros, I. et al. Human THO-Sin3A interaction reveals new mechanisms to prevent R-loops that cause genome instability. EMBO J. 36, 3532–3547 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kouzine, F. et al. Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat. Struct. Mol. Biol. 20, 396–403 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Madabhushi, R. et al. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161, 1592–1605 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42, 668–675 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gothe, H. J. et al. Spatial chromosome folding and active transcription drive DNA fragility and formation of oncogenic MLL translocations. Mol. Cell 75, 267–283.e12 (2019).

    CAS  PubMed  Google Scholar 

  98. Hann, S. R., Thompson, C. B. & Eisenman, R. N. c-Myc oncogene protein synthesis is independent of the cell cycle in human and avian cells. Nature 314, 366–369 (1985).

    CAS  PubMed  Google Scholar 

  99. Otto, T. et al. Stabilization of N-Myc is a critical function of Aurora a in human neuroblastoma. Cancer Cell 15, 67–78 (2009).

    CAS  PubMed  Google Scholar 

  100. Topham, C. et al. MYC is a major determinant of mitotic cell fate. Cancer Cell 28, 129–140 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Xiao, D. et al. Polo-like kinase-1 regulates Myc stabilization and activates a feedforward circuit promoting tumor cell survival. Mol. Cell 64, 493–506 (2016).

    CAS  PubMed  Google Scholar 

  102. Chakraborty, A. A. & Tansey, W. P. Inference of cell cycle-dependent proteolysis by laser scanning cytometry. Exp. Cell Res. 315, 1772–1778 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hamperl, S. & Cimprich, K. A. Conflict Resolution in the genome: how transcription and replication make it work. Cell 167, 1455–1467 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Poli, J. et al. Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev. 30, 337–354 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ross, J. et al. Deletion of the Miz-1 POZ domain increases efficacy of cytarabine treatment in T- and B-ALL/Lymphoma mouse models. Cancer Res. 79, 4184–4195 (2019).

    CAS  PubMed  Google Scholar 

  106. Kress, T. R. et al. Identification of MYC-dependent transcriptional programs in oncogene-addicted liver tumors. Cancer Res. 76, 3463–3472 (2016).

    CAS  PubMed  Google Scholar 

  107. Bermejo, R. et al. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146, 233–246 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Su, Y. et al. Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Genes Dev. 32, 1398–1419 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sjostrom, S. K., Finn, G., Hahn, W. C., Rowitch, D. H. & Kenney, A. M. The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev. Cell 9, 327–338 (2005).

    CAS  PubMed  Google Scholar 

  110. Brockmann, M. et al. Small molecule inhibitors of Aurora-A induce proteasomal degradation of N-Myc in childhood neuroblastoma. Cancer Cell 24, 75–89 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hydbring, P. et al. Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proc. Natl Acad. Sci. USA 107, 58–63 (2010).

    CAS  PubMed  Google Scholar 

  112. Benassi, B. et al. c-Myc phosphorylation is required for cellular response to oxidative stress. Mol. Cell 21, 509–519 (2006).

    CAS  PubMed  Google Scholar 

  113. Tan, J. et al. PDK1 signaling toward PLK1-MYC activation confers oncogenic transformation, tumor-initiating cell activation, and resistance to mTOR-targeted therapy. Cancer Discov. 3, 1156–1171 (2013).

    CAS  PubMed  Google Scholar 

  114. Li, Q. & Dang, C. V. c-Myc overexpression uncouples DNA replication from mitosis. Mol. Cell Biol. 19, 5339–5351 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Goga, A., Yang, D., Tward, A. D., Morgan, D. O. & Bishop, J. M. Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat. Med. 13, 820–827 (2007).

    CAS  PubMed  Google Scholar 

  116. Ricke, R. M., Jeganathan, K. B., Malureanu, L., Harrison, A. M. & van Deursen, J. M. Bub1 kinase activity drives error correction and mitotic checkpoint control but not tumor suppression. J. Cell Biol. 199, 931–949 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kessler, J. D. et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335, 348–353 (2012).

    CAS  PubMed  Google Scholar 

  118. Chen, L. et al. The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. Mol. Cell 69, 412–425 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    CAS  PubMed  Google Scholar 

  120. Hsu, T. Y. T. et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525, 384–388 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Iwai, K. et al. Anti-tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC-dependent vulnerability. EMBO Mol. Med. 10, e8289 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cossa, G. et al. Localized inhibition of protein phosphatase 1 by NUAK1 promotes spliceosome activity and reveals a MYC-sensitive feedback control of transcription. Mol. Cell (in the press) (2020).

  123. Liu, L. et al. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature 483, 608–612 (2012).

    CAS  PubMed  Google Scholar 

  124. Zhang, W. et al. Targeting the MYCN-PARP-DNA damage response pathway in neuroendocrine prostate cancer. Clin. Cancer Res. 24, 696–707 (2018).

    CAS  PubMed  Google Scholar 

  125. Goldenberg, O., Erez, E., Nimrod, G. & Ben-Tal, N. The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures. Nucleic Acids Res. 37, D323–D327 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank several colleagues in the field for numerous fruitful discussions and apologize to the many colleagues whose work we did not quote due to lack of space. The work in the authors’ laboratories is funded by grants from the European Research Council (AuroMYC, TarMyc) and the German Research Council (DFG).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Martin Eilers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell biology thanks William Tansey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Phospho-degron

A short amino acid motif that is recognized by a ubiquitin ligase and promotes the degradation of the protein. Ubiquitin ligases often recognize degrons upon phosphorylation of a critical residue, hence the term phospho-degron.

Bio-ID techniques

Allow the systematic identification in living cells of proteins that are in close proximity to a protein of interest fused to a biotin ligase.

Promoter-proximal pausing

A transcription regulatory step, whereby RNA polymerase II pauses about 80 nucleotides downstream of the transcription start site.

R-loop

A three-stranded nucleic acid structure consisting of an RNA–DNA hybrid and the corresponding single strand of DNA.

Replication–transcription conflicts

Collusions of the transcription and replication machineries during S phase, which could result in DNA damage and genome instability.

Pattern recognition receptors

Cellular innate immunity factors that recognize molecules that are typical of pathogens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baluapuri, A., Wolf, E. & Eilers, M. Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol 21, 255–267 (2020). https://doi.org/10.1038/s41580-020-0215-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-0215-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing