Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms controlling pancreatic islet cell function in insulin secretion

Abstract

Metabolic homeostasis in mammals is tightly regulated by the complementary actions of insulin and glucagon. The secretion of these hormones from pancreatic β-cells and α-cells, respectively, is controlled by metabolic, endocrine, and paracrine regulatory mechanisms and is essential for the control of blood levels of glucose. The deregulation of these mechanisms leads to various pathologies, most notably type 2 diabetes, which is driven by the combined lesions of impaired insulin action and a loss of the normal insulin secretion response to glucose. Glucose stimulates insulin secretion from β-cells in a bi-modal fashion, and new insights about the underlying mechanisms, particularly relating to the second or amplifying phase of this secretory response, have been recently gained. Other recent work highlights the importance of α-cell-produced proglucagon-derived peptides, incretin hormones from the gastrointestinal tract and other dietary components, including certain amino acids and fatty acids, in priming and potentiation of the β-cell glucose response. These advances provide a new perspective for the understanding of the β-cell failure that triggers type 2 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Islet cell architecture and fundamental signalling pathways of GSIS.
Fig. 2: Pyruvate cycling pathways implicated in the regulation of GSIS.
Fig. 3: Pentose monophosphate shunt, phosphoenolpyruvate cycle and their nucleotide metabolites in GSIS.
Fig. 4: Glycerolipid/FFA cycle for the amplification of GSIS.
Fig. 5: Other hormones in control of insulin secretion.

Similar content being viewed by others

References

  1. Sakula, A. Paul Langerhans (1847–1888): a centenary tribute. J. R. Soc. Med. 81, 414–415 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Dolensek, J., Rupnik, M. S. & Stozer, A. Structural similarities and differences between the human and the mouse pancreas. Islets 7, e1024405 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Ionescu-Tirgoviste, C. et al. A 3D map of the islet routes throughout the healthy human pancreas. Sci. Rep. 5, 14634 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Olehnik, S. K., Fowler, J. L., Avramovich, G. & Hara, M. Quantitative analysis of intra- and inter-individual variability of human beta-cell mass. Sci. Rep. 7, 16398 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Saito, K., Takahashi, T., Yaginuma, N. & Iwama, N. Islet morphometry in the diabetic pancreas of man. Tohoku J. Exp. Med. 125, 185–197 (1978).

    CAS  PubMed  Google Scholar 

  6. Brazeau, P. et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179, 77–79 (1973).

    CAS  PubMed  Google Scholar 

  7. Rorsman, P. & Huising, M. O. The somatostatin-secreting pancreatic delta-cell in health and disease. Nat. Rev. Endocrinol. 14, 404–414 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hay, D. L., Chen, S., Lutz, T. A., Parkes, D. G. & Roth, J. D. Amylin: pharmacology, physiology, and clinical potential. Pharmacol. Rev. 67, 564–600 (2015).

    CAS  PubMed  Google Scholar 

  9. Henquin, J. C. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52, 739–751 (2009).

    CAS  PubMed  Google Scholar 

  10. Ashcroft, F. M., Harrison, D. E. & Ashcroft, S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312, 446–448 (1984).

    CAS  PubMed  Google Scholar 

  11. Cook, D. L. & Hales, C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311, 271–273 (1984). Together with Ashcroft, F. M. et al., these two original papers established the role of KATP channels in GSIS.

    CAS  PubMed  Google Scholar 

  12. Gaisano, H. Y. Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis. Diabetes Obes. Metab. 19, 115–123 (2017).

    CAS  PubMed  Google Scholar 

  13. De Vos, A. et al. Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J. Clin. Invest. 96, 2489–2495 (1995).

    PubMed  PubMed Central  Google Scholar 

  14. Johnson, J. H., Newgard, C. B., Milburn, J. L., Lodish, H. F. & Thorens, B. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J. Biol. Chem. 265, 6548–6551 (1990).

    CAS  PubMed  Google Scholar 

  15. Thorens, B., Sarkar, H. K., Kaback, H. R. & Lodish, H. F. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 55, 281–290 (1988).

    CAS  PubMed  Google Scholar 

  16. Matschinsky, F. M. Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics. Diabetes 51 (Suppl. 3), S394–S404 (2002). A comprehensive review of studies establishing glucokinase as a key regulator of β-cell glucose metabolism and GSIS.

    CAS  PubMed  Google Scholar 

  17. Wilson, J. E. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol. 206, 2049–2057 (2003).

    CAS  PubMed  Google Scholar 

  18. Alves, T. C. et al. Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle. Cell Metab. 22, 936–947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Khan, A., Ling, Z. C. & Landau, B. R. Quantifying the carboxylation of pyruvate in pancreatic islets. J. Biol. Chem. 271, 2539–2542 (1996).

    CAS  PubMed  Google Scholar 

  20. Lu, D. et al. 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc. Natl Acad. Sci. USA 99, 2708–2713 (2002).

    CAS  PubMed  Google Scholar 

  21. Schuit, F. et al. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J. Biol. Chem. 272, 18572–18579 (1997).

    CAS  PubMed  Google Scholar 

  22. Schuit, F. et al. beta-cell-specific gene repression: a mechanism to protect against inappropriate or maladjusted insulin secretion? Diabetes 61, 969–975 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Eto, K. et al. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 283, 981–985 (1999).

    CAS  PubMed  Google Scholar 

  24. MacDonald, M. J. High content of mitochondrial glycerol-3-phosphate dehydrogenase in pancreatic islets and its inhibition by diazoxide. J. Biol. Chem. 256, 8287–8290 (1981).

    CAS  PubMed  Google Scholar 

  25. Gembal, M., Detimary, P., Gilon, P., Gao, Z. Y. & Henquin, J. C. Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells. J. Clin. Invest. 91, 871–880 (1993). A paper that established the existence of KATP channel-independent pathways for the regulation of GSIS.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Miki, T. et al. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl Acad. Sci. USA 95, 10402–10406 (1998).

    CAS  PubMed  Google Scholar 

  27. Remedi, M. S. et al. Diet-induced glucose intolerance in mice with decreased beta-cell ATP-sensitive K+channels. Diabetes 53, 3159–3167 (2004).

    CAS  PubMed  Google Scholar 

  28. Malloy, C. R., Sherry, A. D. & Jeffrey, F. M. Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy. J. Biol. Chem. 263, 6964–6971 (1988).

    CAS  PubMed  Google Scholar 

  29. Hohmeier, H. E. et al. Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49, 424–430 (2000).

    CAS  PubMed  Google Scholar 

  30. Ronnebaum, S. M. et al. A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J. Biol. Chem. 281, 30593–30602 (2006). A paper describing a unique role for IDH1 in the control of GSIS.

    CAS  PubMed  Google Scholar 

  31. Attali, V. et al. Regulation of insulin secretion and proinsulin biosynthesis by succinate. Endocrinology 147, 5110–5118 (2006).

    CAS  PubMed  Google Scholar 

  32. Farfari, S., Schulz, V., Corkey, B. & Prentki, M. Glucose-regulated anaplerosis and cataplerosis in pancreatic beta-cells: possible implication of a pyruvate/citrate shuttle in insulin secretion. Diabetes 49, 718–726 (2000).

    CAS  PubMed  Google Scholar 

  33. Fransson, U., Rosengren, A. H., Schuit, F. C., Renstrom, E. & Mulder, H. Anaplerosis via pyruvate carboxylase is required for the fuel-induced rise in the ATP:ADP ratio in rat pancreatic islets. Diabetologia 49, 1578–1586 (2006).

    CAS  PubMed  Google Scholar 

  34. Jensen, M. V. et al. Metabolic cycling in control of glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. Metab. 295, E1287–E1297 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. MacDonald, M. J. et al. Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am. J. Physiol. Endocrinol. Metab. 288, E1–E15 (2005).

    CAS  PubMed  Google Scholar 

  36. Pongratz, R. L., Kibbey, R. G., Shulman, G. I. & Cline, G. W. Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion. J. Biol. Chem. 282, 200–207 (2007).

    CAS  PubMed  Google Scholar 

  37. Ronnebaum, S. M. et al. Silencing of cytosolic or mitochondrial isoforms of malic enzyme has no effect on glucose-stimulated insulin secretion from rodent islets. J. Biol. Chem. 283, 28909–28917 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Joseph, J. W. et al. The mitochondrial citrate/isocitrate carrier plays a regulatory role in glucose-stimulated insulin secretion. J. Biol. Chem. 281, 35624–35632 (2006).

    CAS  PubMed  Google Scholar 

  39. Joseph, J. W. et al. Normal flux through ATP-citrate lyase or fatty acid synthase is not required for glucose-stimulated insulin secretion. J. Biol. Chem. 282, 31592–31600 (2007).

    CAS  PubMed  Google Scholar 

  40. Odegaard, M. L. et al. The mitochondrial 2-oxoglutarate carrier is part of a metabolic pathway that mediates glucose- and glutamine-stimulated insulin secretion. J. Biol. Chem. 285, 16530–16537 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Guay, C., Madiraju, S. R., Aumais, A., Joly, E. & Prentki, M. A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. J. Biol. Chem. 282, 35657–35665 (2007).

    CAS  PubMed  Google Scholar 

  42. Guay, C. et al. A role for cytosolic isocitrate dehydrogenase as a negative regulator of glucose signaling for insulin secretion in pancreatic b-cells. PLoS ONE 8, e77097 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ferdaoussi, M. et al. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional beta cells. J. Clin. Invest. 125, 3847–3860 (2015). A paper that connects cytosolic NADPH production by IDH1 to downstream signalling events that enhance insulin secretion.

    PubMed  PubMed Central  Google Scholar 

  44. Zhang, G. F. et al. Reductive TCA cycle metabolism fuels glutamine- and glucose-stimulated insulin secretion. Cell Metab. https://doi.org/10.1016/j.cmet.2020.11.020 (2020).

  45. Holleran, A. L., Briscoe, D. A., Fiskum, G. & Kelleher, J. K. Glutamine metabolism in AS-30D hepatoma cells. Evidence for its conversion into lipids via reductive carboxylation. Mol. Cell Biochem. 152, 95–101 (1995).

    CAS  PubMed  Google Scholar 

  46. Jiang, L. et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532, 255–258 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2011).

    PubMed  PubMed Central  Google Scholar 

  48. Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2011).

    PubMed  PubMed Central  Google Scholar 

  49. Wise, D. R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl Acad. Sci. USA 108, 19611–19616 (2011).

    CAS  PubMed  Google Scholar 

  50. Urban, D. J. et al. Assessing inhibitors of mutant isocitrate dehydrogenase using a suite of pre-clinical discovery assays. Sci. Rep. 7, 12758 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).

    CAS  PubMed  Google Scholar 

  52. Spegel, P. et al. Time-resolved metabolomics analysis of beta-cells implicates the pentose phosphate pathway in the control of insulin release. Biochem. J. 450, 595–605 (2013).

    CAS  PubMed  Google Scholar 

  53. Goehring, I. et al. Identification of an intracellular metabolic signature impairing beta cell function in the rat beta cell line INS-1E and human islets. Diabetologia 54, 2584–2594 (2011).

    CAS  PubMed  Google Scholar 

  54. Huang, M. & Joseph, J. W. Assessment of the metabolic pathways associated with glucose-stimulated biphasic insulin secretion. Endocrinology 155, 1653–1666 (2014).

    PubMed  Google Scholar 

  55. Lorenz, M. A., El Azzouny, M. A., Kennedy, R. T. & Burant, C. F. Metabolome response to glucose in the beta-cell line INS-1 832/13. J. Biol. Chem. 288, 10923–10935 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gooding, J. R. et al. Adenylosuccinate is an insulin secretagogue derived from glucose-induced purine metabolism. Cell Rep. 13, 157–167 (2015). A paper establishing a novel role for S-AMP in regulation of insulin secretion.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jesinkey, S. R. et al. Mitochondrial GTP links nutrient sensing to beta cell health, mitochondrial morphology, and insulin secretion independent of OxPhos. Cell Rep. 28, 759–772.e10 (2019). A paper presenting evidence for an alternate nucleotide signalling pathway involving the GTP-forming isoform of succinyl CoA synthetase (SCS-GTP).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kibbey, R. G. et al. Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab. 5, 253–264 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Koyama, K. et al. beta-cell function in normal rats made chronically hyperleptinemic by adenovirus-leptin gene therapy. Diabetes 46, 1276–1280 (1997).

    CAS  PubMed  Google Scholar 

  60. Stein, D. T. et al. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J. Clin. Invest. 97, 2728–2735 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Stein, D. T. et al. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J. Clin. Invest. 100, 398–403 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Briscoe, C. P. et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 278, 11303–11311 (2003).

    CAS  PubMed  Google Scholar 

  63. Mancini, A. D. & Poitout, V. The fatty acid receptor FFA1/GPR40 a decade later: how much do we know? Trends Endocrinol. Metab. 24, 398–407 (2013).

    CAS  PubMed  Google Scholar 

  64. Ferdaoussi, M. et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 55, 2682–2692 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Corkey, B. E. et al. A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic beta-cells. J. Biol. Chem. 264, 21608–21612 (1989).

    CAS  PubMed  Google Scholar 

  66. Mulder, H. et al. Overexpression of a modified human malonyl-CoA decarboxylase blocks the glucose-induced increase in malonyl-CoA level but has no impact on insulin secretion in INS-1-derived (832/13) beta-cells. J. Biol. Chem. 276, 6479–6484 (2001).

    CAS  PubMed  Google Scholar 

  67. Prentki, M., Corkey, B. E. & Madiraju, S. R. M. Lipid-associated metabolic signalling networks in pancreatic beta cell function. Diabetologia 63, 10–20 (2020).

    CAS  PubMed  Google Scholar 

  68. Zhao, S. et al. alpha/beta-hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion. Cell Metab. 19, 993–1007 (2014). A paper providing evidence for a glycerolipid cycle mechanism for the enhancement of insulin secretion via the activation of Munc13-1.

    CAS  PubMed  Google Scholar 

  69. Antinozzi, P. A., Segall, L., Prentki, M., McGarry, J. D. & Newgard, C. B. Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion. A re-evaluation of the long-chain acyl-CoA hypothesis. J. Biol. Chem. 273, 16146–16154 (1998).

    CAS  PubMed  Google Scholar 

  70. Ronnebaum, S. M. et al. Chronic suppression of acetyl-CoA carboxylase 1 in beta-cells impairs insulin secretion via inhibition of glucose rather than lipid metabolism. J. Biol. Chem. 283, 14248–14256 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chakravarthy, M. V. et al. Inactivation of hypothalamic FAS protects mice from diet-induced obesity and inflammation. J. Lipid Res. 50, 630–640 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ansari, I. H. et al. Characterization of Acyl-CoA synthetase isoforms in pancreatic beta cells: Gene silencing shows participation of ACSL3 and ACSL4 in insulin secretion. Arch. Biochem. Biophys. 618, 32–43 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sudhof, T. C. The molecular machinery of neurotransmitter release (Nobel lecture). Angew. Chem. Int. Ed. Engl. 53, 12696–12717 (2014).

    PubMed  Google Scholar 

  74. Ivarsson, R. et al. Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes 54, 2132–2142 (2005).

    CAS  PubMed  Google Scholar 

  75. Ferdaoussi, M. & MacDonald, P. E. Toward connecting metabolism to the exocytotic site. Trends Cell Biol. 27, 163–171 (2017). An informative review about protein SUMOylation in the regulation of islet hormone secretion.

    CAS  PubMed  Google Scholar 

  76. Dai, X. Q. et al. SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans. Diabetes 60, 838–847 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. He, X. et al. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function. Diabetologia 61, 881–895 (2018).

    CAS  PubMed  Google Scholar 

  78. Gheni, G. et al. Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep. 9, 661–673 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Maechler, P. & Wollheim, C. B. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402, 685–689 (1999).

    CAS  PubMed  Google Scholar 

  80. Vetterli, L. et al. Delineation of glutamate pathways and secretory responses in pancreatic islets with beta-cell-specific abrogation of the glutamate dehydrogenase. Mol. Biol. Cell 23, 3851–3862 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Capozzi, M. E. et al. β Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight 4, e126742 (2019). A comprehensive dataset showing the importance of proglucagon peptides for enabling normal regulation of insulin secretion.

    PubMed Central  Google Scholar 

  82. Svendsen, B. et al. Insulin secretion depends on intra-islet glucagon signaling. Cell Rep. 25, 1127–1134 e1122 (2018).

    CAS  PubMed  Google Scholar 

  83. Zhu, L. et al. Intra-islet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight 5, e127994 (2019).

    Google Scholar 

  84. Capozzi, M. E. et al. Glucagon lowers glycemia when β-cells are active. JCI Insight 5, e129954 (2019).

    Google Scholar 

  85. Le Marchand, S. J. & Piston, D. W. Glucose suppression of glucagon secretion: metabolic and calcium responses from alpha-cells in intact mouse pancreatic islets. J. Biol. Chem. 285, 14389–14398 (2010).

    PubMed  PubMed Central  Google Scholar 

  86. Maruyama, H., Hisatomi, A., Orci, L., Grodsky, G. M. & Unger, R. H. Insulin within islets is a physiologic glucagon release inhibitor. J. Clin. Invest. 74, 2296–2299 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Muller, W. A., Faloona, G. R. & Unger, R. H. The effect of experimental insulin deficiency on glucagon secretion. J. Clin. Invest. 50, 1992–1999 (1971). A classic paper defining a key role of insulin to regulate glucagon secretion.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kawamori, D. et al. Insulin signaling in alpha cells modulates glucagon secretion in vivo. Cell Metab. 9, 350–361 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Egefjord, L., Petersen, A. B. & Rungby, J. Zinc, alpha cells and glucagon secretion. Curr. Diabetes Rev. 6, 52–57 (2010).

    CAS  PubMed  Google Scholar 

  90. Li, C. et al. Regulation of glucagon secretion in normal and diabetic human islets by gamma-hydroxybutyrate and glycine. J. Biol. Chem. 288, 3938–3951 (2013).

    CAS  PubMed  Google Scholar 

  91. Hardy, A. B., Serino, A. S., Wijesekara, N., Chimienti, F. & Wheeler, M. B. Regulation of glucagon secretion by zinc: lessons from the β cell-specific Znt8 knockout mouse model. Diabetes Obes. Metab. 13, 112–117 (2011).

    CAS  PubMed  Google Scholar 

  92. van der Meulen, T. et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21, 769–776 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. DiGruccio, M. R. et al. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol. Metab. 5, 449–458 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. van der Meulen, T. et al. Virgin beta cells persist throughout life at a neogenic niche within pancreatic islets. Cell Metab. 25, 911–926.e6 (2017).

    PubMed  Google Scholar 

  95. Krentz, N. A. J. & Gloyn, A. L. Insights into pancreatic islet cell dysfunction from type 2 diabetes mellitus genetics. Nat. Rev. Endocrinol. 16, 202–212 (2020). A comprehensive review of the genetics of T2D, with a focus on genes related to islet dysfunction.

    CAS  PubMed  Google Scholar 

  96. Parker, S. C. et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl Acad. Sci. USA 110, 17921–17926 (2013).

    CAS  PubMed  Google Scholar 

  97. Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet. 46, 136–143 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at type 2 diabetes susceptibility loci. eLife 7, e31977 (2018).

    PubMed  PubMed Central  Google Scholar 

  99. Attie, A. D., Churchill, G. A. & Nadeau, J. H. How mice are indispensable for understanding obesity and diabetes genetics. Curr. Opin. Endocrinol. Diabetes Obes. 24, 83–91 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Haldeman, J. M. et al. Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing. Nucleic Acids Res. 47, e23 (2019).

    CAS  PubMed  Google Scholar 

  101. Vinuela, A. et al. Influence of genetic variants on gene expression in human pancreatic islets – implications for type 2 diabetes. bioRxiv https://doi.org/10.1101/655670 (2019).

    Article  Google Scholar 

  102. Lawlor, N. et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 27, 208–222 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Segerstolpe, A. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kirchhoff, K. et al. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51, 597–601 (2008).

    CAS  PubMed  Google Scholar 

  105. Stancakova, A. et al. Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes 58, 2129–2136 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tuomi, T. et al. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab. 23, 1067–1077 (2016).

    CAS  PubMed  Google Scholar 

  107. Abdallah, B. M., Ditzel, N., Laborda, J., Karsenty, G. & Kassem, M. DLK1 regulates whole-body glucose metabolism: a negative feedback regulation of the osteocalcin-insulin loop. Diabetes 64, 3069–3080 (2015).

    CAS  PubMed  Google Scholar 

  108. Chacon, M. R. et al. Human serum levels of fetal antigen 1 (FA1/Dlk1) increase with obesity, are negatively associated with insulin sensitivity and modulate inflammation in vitro. Int. J. Obes. 32, 1122–1129 (2008).

    CAS  Google Scholar 

  109. Ostenson, C. G., Gaisano, H., Sheu, L., Tibell, A. & Bartfai, T. Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. Diabetes 55, 435–440 (2006).

    CAS  PubMed  Google Scholar 

  110. Arystarkhova, E. et al. Hyperplasia of pancreatic beta cells and improved glucose tolerance in mice deficient in the FXYD2 subunit of Na,K-ATPase. J. Biol. Chem. 288, 7077–7085 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Solimena, M. et al. Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia 61, 641–657 (2018).

    CAS  PubMed  Google Scholar 

  112. Gerst, F. et al. The expression of Aldolase B in islets is negatively associated with insulin secretion in humans. J. Clin. Endocrinol. Metab. 103, 4373–4383 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Keller, M. P. et al. Gene loci associated with insulin secretion in islets from non-diabetic mice. J. Clin. Invest. 129, 4419–4432 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Bosma, K. J. et al. Pancreatic islet beta cell-specific deletion of G6pc2 reduces fasting blood glucose. J. Mol. Endocrinol. 64, 235–248 (2020).

    CAS  PubMed  Google Scholar 

  115. Accili, D. et al. When beta-cells fail: lessons from dedifferentiation. Diabetes Obes. Metab. 18, 117–122 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hunter, C. S. & Stein, R. W. Evidence for loss in identity, de-differentiation, and trans-differentiation of islet beta-cells in type 2 diabetes. Front. Genet. 8, 35 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Talchai, C., Xuan, S., Lin, H. V., Sussel, L. & Accili, D. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150, 1223–1234 (2012). Pioneering paper introducing β-cell de-differentiation as a possible mechanism underlying β-cell failure in T2D.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, Z., York, N. W., Nichols, C. G. & Remedi, M. S. Pancreatic beta cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab. 19, 872–882 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cinti, F. et al. Evidence of beta-cell dedifferentiation in human type 2 diabetes. J. Clin. Endocrinol. Metab. 101, 1044–1054 (2016).

    CAS  PubMed  Google Scholar 

  120. Butler, A. E. et al. β-cell deficit in obese type 2 diabetes, a minor role of β-cell dedifferentiation and degranulation. J. Clin. Endocrinol. Metab. 101, 523–532 (2016).

    CAS  PubMed  Google Scholar 

  121. Sun, J. et al. β-cell dedifferentiation in patients with T2D with adequate glucose control and nondiabetic chronic pancreatitis. J. Clin. Endocrinol. Metab. 104, 83–94 (2019).

    PubMed  Google Scholar 

  122. Wang, Y. J. et al. Single-cell transcriptomics of the human endocrine pancreas. Diabetes 65, 3028–3038 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Poitout, V. et al. Glucolipotoxicity of the pancreatic beta cell. Biochim. Biophys. Acta 1801, 289–298 (2010).

    CAS  PubMed  Google Scholar 

  124. Assimacopoulos-Jeannet, F. et al. Fatty acids rapidly induce the carnitine palmitoyltransferase I gene in the pancreatic beta-cell line INS-1. J. Biol. Chem. 272, 1659–1664 (1997).

    CAS  PubMed  Google Scholar 

  125. Boucher, A. et al. Biochemical mechanism of lipid-induced impairment of glucose-stimulated insulin secretion and reversal with a malate analogue. J. Biol. Chem. 279, 27263–27271 (2004).

    CAS  PubMed  Google Scholar 

  126. Jensen, M. V. et al. Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion. J. Biol. Chem. 281, 22342–22351 (2006).

    CAS  PubMed  Google Scholar 

  127. Imai, Y., Dobrian, A. D., Morris, M. A., Taylor-Fishwick, D. A. & Nadler, J. L. Lipids and immunoinflammatory pathways of beta cell destruction. Diabetologia 59, 673–678 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee, S. J., Kim, S. H., Park, K. M., Lee, J. H. & Park, J. W. Increased obesity resistance and insulin sensitivity in mice lacking the isocitrate dehydrogenase 2 gene. Free Radic. Biol. Med. 99, 179–188 (2016).

    CAS  PubMed  Google Scholar 

  129. Haythorne, E. et al. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic beta-cells. Nat. Commun. 10, 2474 (2019).

    PubMed  PubMed Central  Google Scholar 

  130. Lu, H., Koshkin, V., Allister, E. M., Gyulkhandanyan, A. V. & Wheeler, M. B. Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Diabetes 59, 448–459 (2010).

    CAS  PubMed  Google Scholar 

  131. Basile, G., Kulkarni, R. N. & Morgan, N. G. How, when, and where do human beta-cells regenerate? Curr. Diab. Rep. 19, 48 (2019).

    PubMed  PubMed Central  Google Scholar 

  132. Genevay, M., Pontes, H. & Meda, P. Beta cell adaptation in pregnancy: a major difference between humans and rodents? Diabetologia 53, 2089–2092 (2010).

    CAS  PubMed  Google Scholar 

  133. Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    CAS  PubMed  Google Scholar 

  134. Aguayo-Mazzucato, C. & Bonner-Weir, S. Pancreatic beta cell regeneration as a possible therapy for diabetes. Cell Metab. 27, 57–67 (2018).

    CAS  PubMed  Google Scholar 

  135. Granger, A. & Kushner, J. A. Cellular origins of beta-cell regeneration: a legacy view of historical controversies. J. Intern. Med. 266, 325–338 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Karakose, E., Ackeifi, C., Wang, P. & Stewart, A. F. Advances in drug discovery for human beta cell regeneration. Diabetologia 61, 1693–1699 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Rajan, S., Torres, J., Thompson, M. S. & Philipson, L. H. SUMO downregulates GLP-1-stimulated cAMP generation and insulin secretion. Am. J. Physiol. Endocrinol. Metab. 302, E714–E723 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ferdaoussi, M. et al. Improved glucose tolerance with DPPIV inhibition requires beta-cell SENP1 amplification of glucose-stimulated insulin secretion. Physiol. Rep. 8, e14420 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001).

    CAS  PubMed  Google Scholar 

  140. Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176 (2001).

    CAS  PubMed  Google Scholar 

  141. Scheuner, D. et al. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat. Med. 11, 757–764 (2005).

    CAS  PubMed  Google Scholar 

  142. Hull, R. L., Westermark, G. T., Westermark, P. & Kahn, S. E. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab. 89, 3629–3643 (2004).

    CAS  PubMed  Google Scholar 

  143. Zraika, S. et al. Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence? Diabetologia 53, 1046–1056 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Mukherjee, A., Morales-Scheihing, D., Butler, P. C. & Soto, C. Type 2 diabetes as a protein misfolding disease. Trends Mol. Med. 21, 439–449 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Matveyenko, A. V. & Butler, P. C. Beta-cell deficit due to increased apoptosis in the human islet amyloid polypeptide transgenic (HIP) rat recapitulates the metabolic defects present in type 2 diabetes. Diabetes 55, 2106–2114 (2006).

    CAS  PubMed  Google Scholar 

  146. Montemurro, C. et al. IAPP toxicity activates HIF1alpha/PFKFB3 signaling delaying beta-cell loss at the expense of beta-cell function. Nat. Commun. 10, 2679 (2019).

    PubMed  PubMed Central  Google Scholar 

  147. Cheng, S. et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 125, 2222–2231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Campbell, J. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013).

    CAS  PubMed  Google Scholar 

  150. El, K. & Campbell, J. E. The role of GIP in alpha-cells and glucagon secretion. Peptides 125, 170213 (2020).

    CAS  PubMed  Google Scholar 

  151. Nauck, M. A. et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest. 91, 301–307 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Matschinsky, F. M. & Wilson, D. F. The central role of glucokinase in glucose homeostasis: a perspective 50 years after demonstrating the presence of the enzyme in islets of langerhans. Front. Physiol. 10, 148 (2019).

    PubMed  PubMed Central  Google Scholar 

  153. Osbak, K. K. et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 30, 1512–1526 (2009).

    CAS  PubMed  Google Scholar 

  154. Stanley, C. A. Perspective on the genetics and diagnosis of congenital hyperinsulinism disorders. J. Clin. Endocrinol. Metab. 101, 815–826 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Pipatpolkai, T., Usher, S., Stansfeld, P. J. & Ashcroft, F. M. New insights into KATP channel gene mutations and neonatal diabetes mellitus. Nat. Rev. Endocrinol. 16, 378–393 (2020).

    CAS  PubMed  Google Scholar 

  156. Shimomura, K. & Maejima, Y. KATP channel mutations and neonatal diabetes. Intern. Med. 56, 2387–2393 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Heimberg, H., De Vos, A., Pipeleers, D., Thorens, B. & Schuit, F. Differences in glucose transporter gene expression between rat pancreatic alpha- and beta-cells are correlated to differences in glucose transport but not in glucose utilization. J. Biol. Chem. 270, 8971–8975 (1995).

    CAS  PubMed  Google Scholar 

  158. Heimberg, H. et al. The glucose sensor protein glucokinase is expressed in glucagon-producing alpha-cells. Proc. Natl Acad. Sci. USA 93, 7036–7041 (1996).

    CAS  PubMed  Google Scholar 

  159. Detimary, P. et al. The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in beta cells but not in alpha cells and are also observed in human islets. J. Biol. Chem. 273, 33905–33908 (1998).

    CAS  PubMed  Google Scholar 

  160. Walker, J. N. et al. Regulation of glucagon secretion by glucose: paracrine, intrinsic or both? Diabetes Obes. Metab. 13, 95–105 (2011). A comprehensive review about the mechanisms regulating glucagon secretion.

    CAS  PubMed  Google Scholar 

  161. Zhang, Q. et al. Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metab. 18, 871–882 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Marliss, E. B., Aoki, T. T., Unger, R. H., Soeldner, J. S. & Cahill, G. F. Jr. Glucagon levels and metabolic effects in fasting man. J. Clin. Invest. 49, 2256–2270 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Dean, E. D. A primary role for alpha-cells as amino acid sensors. Diabetes 69, 542–549 (2020).

    PubMed  Google Scholar 

  164. Finan, B., Capozzi, M. E. & Campbell, J. E. Repositioning glucagon action in the physiology and pharmacology of diabetes. Diabetes 69, 532–541 (2020).

    CAS  PubMed  Google Scholar 

  165. Dean, E. D. et al. Interrupted glucagon signaling reveals hepatic alpha cell axis and role for L-glutamine in alpha cell proliferation. Cell Metab. 25, 1362–1373.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Solloway, M. J. et al. Glucagon couples hepatic amino acid catabolism to mTOR-dependent regulation of alpha-cell mass. Cell Rep. 12, 495–510 (2015). A pioneering paper demonstrating a link between glucagon receptor activity, amino acid homeostasis, and α-cell mass and function.

    CAS  PubMed  Google Scholar 

  167. Vergari, E. et al. Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion. Nat. Commun. 10, 139 (2019).

    PubMed  PubMed Central  Google Scholar 

  168. Genuth, S. Should sulfonylureas remain an acceptable first-line add-on to metformin therapy in patients with type 2 diabetes? No, it’s time to move on! Diabetes Care 38, 170–175 (2015).

    CAS  PubMed  Google Scholar 

  169. Capozzi, M. E., DiMarchi, R. D., Tschop, M. H., Finan, B. & Campbell, J. E. Targeting the incretin/glucagon system with triagonists to treat diabetes. Endocr. Rev. 39, 719–738 (2018).

    PubMed  PubMed Central  Google Scholar 

  170. Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    CAS  PubMed  Google Scholar 

  171. Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36 (2015).

    CAS  PubMed  Google Scholar 

  172. Frias, J. P. et al. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab. 26, 343–352.e2 (2017).

    CAS  PubMed  Google Scholar 

  173. Frias, J. P. et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 392, 2180–2193 (2018).

    CAS  PubMed  Google Scholar 

  174. Elahi, D. et al. The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7-37) in normal and diabetic subjects. Regul. Pept. 51, 63–74 (1994).

    CAS  PubMed  Google Scholar 

  175. Nauck, M. A., Bartels, E., Orskov, C., Ebert, R. & Creutzfeldt, W. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J. Clin. Endocrinol. Metab. 76, 912–917 (1993).

    CAS  PubMed  Google Scholar 

  176. Smith, E. P. et al. The role of beta cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs. Cell Metab. 19, 1050–1057 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Campbell, J. E. et al. TCF1 links GIPR signaling to the control of beta cell function and survival. Nat. Med. 22, 84–90 (2016).

    CAS  PubMed  Google Scholar 

  178. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    CAS  PubMed  Google Scholar 

  179. Ferrannini, E. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 124, 499–508 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Hodson, D. J. & Rorsman, P. A variation on the theme: SGLT2 inhibition and glucagon secretion in human islets. Diabetes 69, 864–866 (2020).

    CAS  PubMed  Google Scholar 

  181. Saponaro, C. et al. Interindividual heterogeneity of SGLT2 expression and function in human pancreatic islets. Diabetes 69, 902–914 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work cited in this review from the authors’ laboratories was supported by NIH grants DK046492-25 (to C.B.N.) and RO1 DK123075 (to J.E.C.), a career development award 1-18-JDF-017 from the American Diabetes Association (to J.E.C.), and a Borden Scholar award (to J.E.C.). The authors are grateful for the contributions of collaborators and members of their labs to the cited work, including Drs. Mette Jensen, Guofang Zhang, Megan Capozzi and Kimberly El.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Christopher B. Newgard.

Ethics declarations

Competing interests

C.B.N. is a member of the Eli Lilly Global Diabetes Advisory Board. J.E.C. has a sponsored research agreement with Eli Lilly that has supported a portion of his work referenced in this article.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks M. Prentki, D. Accili and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Insulin resistance

Referring to a condition in which the effect of insulin to promote the uptake and storage of glucose and other metabolic fuels is blunted; a major contributing metabolic lesion in type 2 diabetes.

Secretagogues

Referring to metabolites and hormones that stimulate hormone secretion. Mainly used in this article as a general term for agents that stimulate insulin secretion from β-cells.

Stimulatory glucose

Referring to glucose levels above those typically found in fasting mammals (4 mM); insulin secretion increases in a linear fashion as glucose levels increase above those found in the fasted state.

Euglycaemic values

Referring to the tight control of glucose levels achieved in humans without diabetes or without insulin resistance, ranging from 3.9 mM in the fasted state to 5.5 mM in the fed state.

Km

Also known as the Michaelis constant, it is the concentration of a substrate (glucose in the case of glucokinase) that permits an enzyme to achieve half of its maximal activity (Vmax).

Anaplerotic enzyme

From the Greek meaning ‘to fill up’, referring to an enzyme that contributes substrate to the tricarboxylic acid (TCA) cycle that is used for a non-oxidative purpose, for example, the exit of TCA cycle intermediates from the mitochondria to participate in cytosolic metabolism.

Reducing equivalent shuttle

Referring to a series of reactions by which cytosolic NADH is converted to mitochondrial NADH and FADH, involving the metabolism of organic acids in the cytosol to their reduced forms, followed by transport into the mitochondria for re-oxidation by FAD-linked or NAD-linked enzymes. Examples are the malate–aspartate shuttle and the glycerol phosphate shuttle.

Stable isotope flux methods

Use of stable isotope-labelled substrates (for example, 13C-glucose or 13C-glutamine) to discern their metabolic fates by analysing the labelling of their metabolic by-products by mass spectrometry or NMR.

Reductive (counter-clockwise) TCA cycle flux

Referring to the metabolism of substrates (for example, glutamine) in the TCA cycle in a ‘counter-clockwise’ fashion, requiring their reductive rather than oxidative metabolism.

Pentose monophosphate shunt pathway

One of the major pathways of glucose-6-phosphate in mammalian cells; it produces ribose-5-phosphate for nucleotide synthesis and is a source of NADPH via its first two enzymatic steps, catalysed by glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase.

Glutathione

(GSH). A tripeptide (composed of cysteine, glycine and glutamate) with a major role in the regulation of the cellular redox state via its intra-conversion between its oxidized and reduced forms.

Proglucagon-derived peptides

Referring to peptides produced by the processing of the proglucagon precursor, including glucagon, GLP1, GLP2, oxyntomodulin, glicentin, major proglucagon fragment and glicentin-related pancreatic peptide.

mTOR

Standing for ‘mammalian target of rapamycin’; a protein kinase that serves important signalling roles for the regulation of protein synthesis, insulin action and intermediary metabolism.

Pancreatic ductal cells

These cells form the epithelial lining of structures that deliver pancreatic enzymes to the duodenum. In response to specific challenges in rodents, these cells can differentiate to form new insulin-producing β-cells (‘neogenesis’).

Streptozotocin

A glucosamine-nitrosourea compound that is particularly toxic to β-cells and is used as an agent for creating experimental type 1 diabetes in animal models.

ER stress

Occurs when the capacity of the endoplasmic reticulum (ER) to fold proteins becomes saturated.

Unfolded protein response

A group of signal transduction pathways that are activated by ER stress.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, J.E., Newgard, C.B. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol 22, 142–158 (2021). https://doi.org/10.1038/s41580-020-00317-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-00317-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing