Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

NAD+ metabolism and its roles in cellular processes during ageing

Abstract

Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for redox reactions, making it central to energy metabolism. NAD+ is also an essential cofactor for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ can directly and indirectly influence many key cellular functions, including metabolic pathways, DNA repair, chromatin remodelling, cellular senescence and immune cell function. These cellular processes and functions are critical for maintaining tissue and metabolic homeostasis and for healthy ageing. Remarkably, ageing is accompanied by a gradual decline in tissue and cellular NAD+ levels in multiple model organisms, including rodents and humans. This decline in NAD+ levels is linked causally to numerous ageing-associated diseases, including cognitive decline, cancer, metabolic disease, sarcopenia and frailty. Many of these ageing-associated diseases can be slowed down and even reversed by restoring NAD+ levels. Therefore, targeting NAD+ metabolism has emerged as a potential therapeutic approach to ameliorate ageing-related disease, and extend the human healthspan and lifespan. However, much remains to be learnt about how NAD+ influences human health and ageing biology. This includes a deeper understanding of the molecular mechanisms that regulate NAD+ levels, how to effectively restore NAD+ levels during ageing, whether doing so is safe and whether NAD+ repletion will have beneficial effects in ageing humans.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: NAD+ metabolism.
Fig. 2: Three main classes of NAD+-consuming enzymes.
Fig. 3: NAD+ metabolism in ageing.
Fig. 4: Therapeutic approaches to restore NAD+ levels and their impact on health.

References

  1. 1.

    Sahar, S., Nin, V., Barbosa, M. T., Chini, E. N. & Sassone-Corsi, P. Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging 3, 794–802 (2011).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Cambronne, X. A. & Kraus, W. L. Location, location, location: compartmentalization of NAD synthesis and functions in mammalian cells. Trends Biochem. Sci. 45, 858–873 (2020).

    PubMed  Google Scholar 

  3. 3.

    Verdin, E. NAD+ in aging, metabolism, and neurodegeneration. Science 350, 1208–1213 (2015).

    CAS  PubMed  Google Scholar 

  4. 4.

    Cambronne, X. A. et al. Biosensor reveals multiple sources for mitochondrial NAD+. Science 352, 1474–1477 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Liu, L. et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 27, 1067–1080.e5 (2018). This study demonstrates that NAD+ synthesis breakdown fluxes differ widely across tissues, suggesting a tissue-specific NAD+ metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Minhas, P. S. et al. Macrophage de novo NAD synthesis specifies immune function in aging and inflammation. Nat. Immunol. 20, 50–63 (2019).

    CAS  PubMed  Google Scholar 

  7. 7.

    Carrico, C., Meyer, J. G., He, W., Gibson, B. W. & Verdin, E. The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications. Cell Metab. 27, 497–512 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Masri, S. et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158, 659–672 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Cantó, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ramsey, K. M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324, 651–654 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324, 654–657 (2009). This study demonstrates that intracellular NAD+ levels are regulated by the core circadian regulator CLOCK–BMAL1 through the modulation of NAMPT expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000). This study is the first to demonstrates that sirtuin function is dependent on NAD+.

    CAS  Google Scholar 

  13. 13.

    Feldman, J. L., Baeza, J. & Denu, J. M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288, 31350–31356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Jiang, H. et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110–113 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    He, W., Newman, J. C., Wang, M. Z., Ho, L. & Verdin, E. Mitochondrial sirtuins: regulators of protein acylation and metabolism. Trends Endocrinol. Metab. 23, 467–476 (2012).

    CAS  PubMed  Google Scholar 

  16. 16.

    Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).

    CAS  PubMed  Google Scholar 

  17. 17.

    Haigis, M. C. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126, 941–954 (2006).

    CAS  PubMed  Google Scholar 

  18. 18.

    Liszt, G., Ford, E., Kurtev, M. & Guarente, L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem. 280, 21313–21320 (2005).

    CAS  PubMed  Google Scholar 

  19. 19.

    Amat, R. et al. SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) gene in skeletal muscle through the PGC-1α Autoregulatory Loop and Interaction with MyoD. J. Biol. Chem. 284, 21872–21880 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Nemoto, S., Fergusson, M. M. & Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 280, 16456–16460 (2005).

    CAS  PubMed  Google Scholar 

  21. 21.

    Gurd, B. J. Deacetylation of PGC-1α by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl. Physiol. Nutr. Metab. 36, 589–597 (2011).

    CAS  PubMed  Google Scholar 

  22. 22.

    Kang, H. T. & Hwang, E. S. Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426–438 (2009).

    CAS  PubMed  Google Scholar 

  23. 23.

    Jang, S.-Y., Kang, H. T. & Hwang, E. S. Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304–19314 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hottiger, M. O., Hassa, P. O., Lüscher, B., Schüler, H. & Koch-Nolte, F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem. Sci. 35, 208–219 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Bai, P. & Cantó, C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 16, 290–295 (2012).

    CAS  PubMed  Google Scholar 

  26. 26.

    Oliver, A. W. et al. Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2. Nucleic Acids Res. 32, 456–464 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Boehler, C. et al. Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc. Natl Acad. Sci. USA 108, 2783–2788 (2011).

    CAS  PubMed  Google Scholar 

  28. 28.

    Beck, C., Robert, I., Reina-San-Martin, B., Schreiber, V. & Dantzer, F. Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp. Cell. Res. 329, 18–25 (2014).

    CAS  PubMed  Google Scholar 

  29. 29.

    Huber, A., Bai, P., de Murcia, J. M. & de Murcia, G. PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair. 3, 1103–1108 (2004).

    CAS  PubMed  Google Scholar 

  30. 30.

    Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Pirinen, E. et al. Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 19, 1034–1041 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Scheibye-Knudsen, M. et al. A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab. 20, 840–855 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Cantó, C., Sauve, A. A. & Bai, P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol. Asp. Med. 34, 1168–1201 (2013).

    Google Scholar 

  35. 35.

    Gui, B. et al. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proc. Natl Acad. Sci. USA 116, 14573–14582 (2019).

    CAS  PubMed  Google Scholar 

  36. 36.

    Bai, P. et al. PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab. 13, 450–460 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Liu, Q., Kriksunov, I. A., Hao, Q., Graeff, R. & Lee, H. C. Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine NAAPD synthesis and hydrolysis activities. J. Biol. Chem. https://doi.org/10.2210/pdb2hct/pdb (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Ernst, I. M. A., Fliegert, R. & Guse, A. H. Adenine dinucleotide second messengers and T-lymphocyte calcium signaling. Front. Immunol. 4, 259 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Yu, P. et al. Direct gating of the TRPM2 channel by cADPR via specific interactions with the ADPR binding pocket. Cell Rep. 27, 3684–3695.e4 (2019).

    CAS  PubMed  Google Scholar 

  40. 40.

    Mao, S. Architecture of the human TRPM2 channel. Science 362, 1372.12–1374 (2018).

    Google Scholar 

  41. 41.

    Torti, M., Bertoni, A., Canobbio, I., Sinigaglia, F. & Balduini, C. Hydrolysis of NADP by platelet CD38 in the absence of synthesis and degradation of cyclic ADP-ribose 2′-phosphate. FEBS Lett. 455, 359–363 (1999).

    CAS  PubMed  Google Scholar 

  42. 42.

    Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016). This study demonstrates that CD38 expression increases in multiple tissues during aging and that CD38 is a major NADase involved in the ageing-related tissue decline of NAD+ levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Aomatsu, E. et al. Novel SCRG1/BST1 axis regulates self-renewal, migration, and osteogenic differentiation potential in mesenchymal stem cells. Sci. Rep. 4, 3652 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Preugschat, F. et al. A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157. Arch. Biochem. Biophys. 564, 156–163 (2014).

    CAS  PubMed  Google Scholar 

  45. 45.

    Covarrubias, A. J. et al. Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nat. Metab. 2, 1265–1283 (2020).

    CAS  PubMed  Google Scholar 

  46. 46.

    Ortolan, E., Augeri, S., Fissolo, G., Musso, I. & Funaro, A. CD157: from immunoregulatory protein to potential therapeutic target. Immunol. Lett. 205, 59–64 (2019).

    CAS  PubMed  Google Scholar 

  47. 47.

    Reinherz, E. L., Kung, P. C., Goldstein, G., Levey, R. H. & Schlossman, S. F. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc. Natl Acad. Sci. USA 77, 1588–1592 (1980).

    CAS  PubMed  Google Scholar 

  48. 48.

    Shubinsky, G. & Schlesinger, M. The CD38 lymphocyte differentiation marker: new insight into its ectoenzymatic activity and its role as a signal transducer. Immunity 7, 315–324 (1997).

    CAS  PubMed  Google Scholar 

  49. 49.

    Todd, R. F. 3rd, Roach, J. A. & Arnaout, M. A. The modulated expression of Mo5, a human myelomonocytic plasma membrane antigen. Blood 65, 964–973 (1985).

    PubMed  Google Scholar 

  50. 50.

    Quarona, V. et al. CD38 and CD157: a long journey from activation markers to multifunctional molecules. Cytometry B Clin. Cytom. 84, 207–217 (2013).

    PubMed  Google Scholar 

  51. 51.

    Deaglio, S. et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J. Immunol. 160, 395–402 (1998).

    CAS  PubMed  Google Scholar 

  52. 52.

    Deaglio, S. et al. Human CD38 and its ligand CD31 define a unique lamina propria T lymphocyte signaling pathway. FASEB J. 15, 580–582 (2001).

    CAS  PubMed  Google Scholar 

  53. 53.

    Vallario, A. et al. Human myeloma cells express the CD38 ligand CD31. Br. J. Haematol. 105, 441–444 (1999).

    CAS  PubMed  Google Scholar 

  54. 54.

    Deaglio, S. et al. CD38/CD31 interactions activate genetic pathways leading to proliferation and migration in chronic lymphocytic leukemia cells. Mol. Med. 16, 87–91 (2010).

    CAS  PubMed  Google Scholar 

  55. 55.

    Partida-Sánchez, S. et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat. Med. 7, 1209–1216 (2001).

    PubMed  Google Scholar 

  56. 56.

    Matalonga, J. et al. The nuclear receptor LXR limits bacterial infection of host macrophages through a mechanism that impacts cellular NAD metabolism. Cell Rep. 18, 1241–1255 (2017).

    CAS  PubMed  Google Scholar 

  57. 57.

    Hogan, K. A., Chini, C. C. S. & Chini, E. N. The multi-faceted ecto-enzyme CD38: roles in immunomodulation, cancer, aging, and metabolic diseases. Front. Immunol. 10, 1187 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Funaro, A. et al. CD157 is an important mediator of neutrophil adhesion and migration. Blood 104, 4269–4278 (2004).

    CAS  PubMed  Google Scholar 

  59. 59.

    Essuman, K. et al. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343.e5 (2017). This study demonstrates that SARM1 has both NAD+ glycohydrolase and cyclase activity, clarifying the key role of this enzyme in NAD+ depletion during Wallerian degeneration.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 activation triggers axon degeneration locally via NAD destruction. Science 348, 453–457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Wang, Q. et al. Sarm1/Myd88-5 regulates neuronal intrinsic immune response to traumatic axonal injuries. Cell Rep. 23, 716–724 (2018).

    CAS  PubMed  Google Scholar 

  62. 62.

    Lin, C.-W., Chen, C.-Y., Cheng, S.-J., Hu, H.-T. & Hsueh, Y.-P. Sarm1 deficiency impairs synaptic function and leads to behavioral deficits, which can be ameliorated by an mGluR allosteric modulator. Front. Cell. Neurosci. 8, 87 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Carty, M. et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat. Immunol. 7, 1074–1081 (2006).

    CAS  PubMed  Google Scholar 

  64. 64.

    Panneerselvam, P. et al. T-cell death following immune activation is mediated by mitochondria-localized SARM. Cell Death Differ. 20, 478–489 (2013).

    CAS  PubMed  Google Scholar 

  65. 65.

    Zhao, Z. Y. et al. A cell-permeant mimetic of NMN activates SARM1 to produce cyclic ADP-ribose and induce non-apoptotic cell death. iScience 15, 452–466 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Gürtler, C. et al. SARM regulates CCL5 production in macrophages by promoting the recruitment of transcription factors and RNA polymerase II to the Ccl5 promoter. J. Immunol. 192, 4821–4832 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Uccellini, M. B. et al. Passenger mutations confound phenotypes of SARM1-deficient mice. Cell Rep. 31, 107498 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Lautrup, S., Sinclair, D. A., Mattson, M. P. & Fang, E. F. NAD in brain aging and neurodegenerative disorders. Cell Metab. 30, 630–655 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Hruby, A. & Hu, F. B. The epidemiology of obesity: a big picture. Pharmacoeconomics 33, 673–689 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Pi-Sunyer, X. The medical risks of obesity. Postgrad. Med. 121, 21–33 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Salvestrini, V., Sell, C. & Lorenzini, A. Obesity may accelerate the aging process. Front. Endocrinol. 10, 266 (2019).

    Google Scholar 

  72. 72.

    Katsyuba, E., Romani, M., Hofer, D. & Auwerx, J. NAD+ homeostasis in health and disease. Nat. Metab. 2, 9–31 (2020).

    CAS  PubMed  Google Scholar 

  73. 73.

    Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807–5811 (2000).

    CAS  PubMed  Google Scholar 

  74. 74.

    Smith, J. S. et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl Acad. Sci. USA 97, 6658–6663 (2000).

    CAS  PubMed  Google Scholar 

  75. 75.

    Fukuwatari, T., Shibata, K., Ishihara, K., Fushiki, T. & Sugimoto, E. Elevation of blood NAD level after moderate exercise in young women and mice. J. Nutr. Sci. Vitaminol. 47, 177–179 (2001).

    CAS  PubMed  Google Scholar 

  76. 76.

    de Guia, R. M. et al. Aerobic and resistance exercise training reverses age-dependent decline in NAD salvage capacity in human skeletal muscle. Physiol. Rep. 7, e14139 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Cantó, C. et al. AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Mitchell, S. J. et al. Effects of sex, strain, and energy intake on hallmarks of aging in mice. Cell Metab. 23, 1093–1112 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Elamin, M., Ruskin, D. N., Masino, S. A. & Sacchetti, P. Ketogenic diet modulates NAD-dependent enzymes and reduces DNA damage in hippocampus. Front. Cell. Neurosci. 12, 263 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Levine, D. C. et al. NAD controls circadian reprogramming through PER2 nuclear translocation to counter aging. Mol. Cell 78, 835–849.e7 (2020).

    CAS  PubMed  Google Scholar 

  81. 81.

    Cantó, C. et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847 (2012).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S.-I. Nicotinamide mononucleotide, a key NAD intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011). This study demonstrates that NAMPT expression can be dampened in inflammatory settings such as ageing and obesity.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Ear, P. H. et al. Maternal nicotinamide riboside enhances postpartum weight loss, juvenile offspring development, and neurogenesis of adult offspring. Cell Rep. 26, 969–983.e4 (2019).

    CAS  PubMed  Google Scholar 

  84. 84.

    Goodman, R. P. et al. Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature https://doi.org/10.1038/s41586-020-2337-2 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Hirschey, M. D. et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177–190 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109–1122 (2006).

    CAS  PubMed  Google Scholar 

  88. 88.

    Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M. & Tschöp, M. H. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl Acad. Sci. USA 105, 9793–9798 (2008).

    CAS  PubMed  Google Scholar 

  89. 89.

    Barbosa, M. T. P. et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 21, 3629–3639 (2007).

    CAS  PubMed  Google Scholar 

  90. 90.

    Szántó, M. & Bai, P. The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes Dev. 34, 321–340 (2020).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Tarragó, M. G. et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD decline. Cell Metab. 27, 1081–1095.e10 (2018). This study demonstrates that the pharmacological inhibition of CD38 reverses age-related NAD+ level decline, improving several physiological and metabolic features.

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Stromsdorfer, K. L. et al. NAMPT-mediated NAD+ biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Rep. 16, 1851–1860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Dollerup, O. L. et al. Effects of nicotinamide riboside on endocrine pancreatic function and incretin hormones in nondiabetic men with obesity. J. Clin. Endocrinol. Metab. 104, 5703–5714 (2019).

    PubMed  Google Scholar 

  94. 94.

    Remie, C. M. E. et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am. J. Clin. Nutr. https://doi.org/10.1093/ajcn/nqaa072 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    CAS  PubMed  Google Scholar 

  96. 96.

    Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    CAS  PubMed  Google Scholar 

  97. 97.

    Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Oishi, Y. & Manabe, I. Macrophages in age-related chronic inflammatory diseases. NPJ Aging Mech. Dis. 2, 16018 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    van Beek, A. A., Van den Bossche, J., Mastroberardino, P. G., de Winther, M. P. J. & Leenen, P. J. M. Metabolic alterations in aging macrophages: ingredients for inflammaging? Trends Immunol. 40, 113–127 (2019).

    PubMed  Google Scholar 

  100. 100.

    Van Gool, F. et al. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat. Med. 15, 206–210 (2009). This study is one of the first to demonstrate that NAD+ levels can influence innate immune cell function.

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Venter, G. et al. NAMPT-mediated salvage synthesis of NAD+ controls morphofunctional changes of macrophages. PLoS ONE 9, e97378 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Cameron, A. M. et al. Inflammatory macrophage dependence on NAD salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat. Immunol. 20, 420–432 (2019).

    CAS  PubMed  Google Scholar 

  103. 103.

    Regdon, Z. et al. LPS protects macrophages from AIF-independent parthanatos by downregulation of PARP1 expression, induction of SOD2 expression, and a metabolic shift to aerobic glycolysis. Free Radic. Biol. Med. 131, 184–196 (2019).

    CAS  PubMed  Google Scholar 

  104. 104.

    Virág, L., Jaén, R. I., Regdon, Z., Boscá, L. & Prieto, P. Self-defense of macrophages against oxidative injury: fighting for their own survival. Redox Biol. 26, 101261 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Chini, C. C. S. et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nat. Metab. 2, 1284–1304 (2020). This study, along with Covarrubias et al. (2020), demonstrated that senescent cell burden is linked to tissue NAD+ level decline via CD38+ immune cells.

    CAS  PubMed  Google Scholar 

  106. 106.

    Chini, C. et al. The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD decline. Biochem. Biophys. Res. Commun. 513, 486–493 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Youm, Y.-H. et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 18, 519–532 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Tabula Muris Consortium et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018). This is a compendium of single-cell transcriptomic data that comprises more than 100,000 cells from 20 mouse organs and tissues.

    Google Scholar 

  109. 109.

    Pathria, P., Louis, T. L. & Varner, J. A. Targeting tumor-associated macrophages in cancer. Trends Immunol. 40, 310–327 (2019).

    CAS  PubMed  Google Scholar 

  110. 110.

    Adriouch, S., Haag, F., Boyer, O., Seman, M. & Koch-Nolte, F. Extracellular NAD: a danger signal hindering regulatory T cells. Microbes Infect. 14, 1284–1292 (2012).

    CAS  PubMed  Google Scholar 

  111. 111.

    Hubert, S. et al. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J. Exp. Med. 207, 2561–2568 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Tullius, S. G. et al. NAD protects against EAE by regulating CD4 T-cell differentiation. Nat. Commun. 5, 5101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Elkhal, A. et al. NAD regulates Treg cell fate and promotes allograft survival via a systemic IL-10 production that is CD4 CD25 Foxp3 T cells independent. Sci. Rep. 6, 22325 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Fagnoni, F. F. et al. Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, including centenarians. Immunology 88, 501–507 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Weng, N.-P., Akbar, A. N. & Goronzy, J. CD28- T cells: their role in the age-associated decline of immune function. Trends Immunol. 30, 306–312 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Jeng, M. Y. et al. Metabolic reprogramming of human CD8 memory T cells through loss of SIRT1. J. Exp. Med. 215, 51–62 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Chatterjee, S. et al. CD38-NAD+ axis regulates immunotherapeutic anti-tumor T cell response. Cell Metab. 27, 85–100.e8 (2018).

    CAS  PubMed  Google Scholar 

  118. 118.

    Lee, K.-A. et al. Characterization of age-associated exhausted CD8+ T cells defined by increased expression of Tim-3 and PD-1. Aging Cell 15, 291–300 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Shimada, Y., Hayashi, M., Nagasaka, Y., Ohno-Iwashita, Y. & Inomata, M. Age-associated up-regulation of a negative co-stimulatory receptor PD-1 in mouse CD4+ T cells. Exp. Gerontol. 44, 517–522 (2009).

    CAS  PubMed  Google Scholar 

  120. 120.

    Xin Yu, J. et al. Trends in clinical development for PD-1/PD-L1 inhibitors. Nat. Rev. Drug Discov. 19, 163–164 (2020).

    PubMed  Google Scholar 

  121. 121.

    Akinleye, A. & Rasool, Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J. Hematol. Oncol. 12, 92 (2019).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Lages, C. S., Lewkowich, I., Sproles, A., Wills-Karp, M. & Chougnet, C. Partial restoration of T-cell function in aged mice by in vitro blockade of the PD-1/ PD-L1 pathway. Aging Cell 9, 785–798 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Verma, V. et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1CD38 cells and anti-PD-1 resistance. Nat. Immunol. 20, 1231–1243 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Chen, L. et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov. 8, 1156–1175 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    PubMed  Google Scholar 

  126. 126.

    Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020). This article presents a comprehensive proteomic database of soluble proteins and exosomal SASP factors originating from multiple senescence inducers and cell types.

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Kirkland, J. L., Tchkonia, T., Zhu, Y., Niedernhofer, L. J. & Robbins, P. D. The clinical potential of senolytic drugs. J. Am. Geriatr. Soc. 65, 2297–2301 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718–735 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Yoshino, J., Baur, J. A. & Imai, S.-I. NAD intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 27, 513–528 (2018).

    CAS  PubMed  Google Scholar 

  131. 131.

    Nacarelli, T. et al. NAD metabolism governs the proinflammatory senescence-associated secretome. Nat. Cell Biol. 21, 397–407 (2019). This article demonstrates that the NAD+ salvage pathway is upregulated during cellular senescence and regulates the expression of inflammatory SASP genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Desdín-Micó, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science https://doi.org/10.1126/science.aax0860 (2020).

    Article  PubMed  Google Scholar 

  133. 133.

    Zhu, X.-H., Lu, M., Lee, B.-Y., Ugurbil, K. & Chen, W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc. Natl Acad. Sci. 112, 2876–2881 (2015).

    CAS  PubMed  Google Scholar 

  134. 134.

    Fang, E. F. et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157, 882–896 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Fang, E. F. et al. NAD replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Gong, B. et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging 34, 1581–1588 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Schöndorf, D. C. et al. The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson’s disease. Cell Rep. 23, 2976–2988 (2018).

    PubMed  Google Scholar 

  138. 138.

    Birkmayer, J. G., Vrecko, C., Volc, D. & Birkmayer, W. Nicotinamide adenine dinucleotide (NADH)–a new therapeutic approach to Parkinson’s disease. Comparison of oral and parenteral application. Acta Neurol. Scand. Suppl. 146, 32–35 (1993).

    CAS  PubMed  Google Scholar 

  139. 139.

    Harlan, B. A. et al. Evaluation of the NAD biosynthetic pathway in ALS patients and effect of modulating NAD levels in hSOD1-linked ALS mouse models. Exp. Neurol. 327, 113219 (2020).

    CAS  PubMed  Google Scholar 

  140. 140.

    Salvadores, N., Sanhueza, M., Manque, P. & Court, F. A. Axonal degeneration during aging and its functional role in neurodegenerative disorders. Front. Neurosci. 11, 451 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Lingor, P., Koch, J. C., Tönges, L. & Bähr, M. Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res. 349, 289–311 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Gilley, J. & Coleman, M. P. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol. 8, e1000300 (2010).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Loreto, A. et al. Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiol. Dis. 134, 104678 (2020).

    CAS  PubMed  Google Scholar 

  144. 144.

    Wang, J. et al. A local mechanism mediates NAD-dependent protection of axon degeneration. J. Cell Biol. 170, 349–355 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Araki, T., Sasaki, Y. & Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013 (2004).

    CAS  PubMed  Google Scholar 

  146. 146.

    Sasaki, Y., Nakagawa, T., Mao, X., DiAntonio, A. & Milbrandt, J. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD depletion. eLife 5, e19749 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. 147.

    Gilley, J., Adalbert, R., Yu, G. & Coleman, M. P. Rescue of peripheral and CNS axon defects in mice lacking NMNAT2. J. Neurosci. 33, 13410–13424 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Gilley, J., Orsomando, G., Nascimento-Ferreira, I. & Coleman, M. P. Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Cell Rep. 10, 1974–1981 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Geisler, S. et al. Gene therapy targeting SARM1 blocks pathological axon degeneration in mice. J. Exp. Med. 216, 294–303 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Kitaoka, Y. et al. Axonal protection by Nmnat3 overexpression with involvement of autophagy in optic nerve degeneration. Cell Death Dis. 4, e860 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Yahata, N., Yuasa, S. & Araki, T. Nicotinamide mononucleotide adenylyltransferase expression in mitochondrial matrix delays Wallerian degeneration. J. Neurosci. 29, 6276–6284 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Pellegatta, M. & Taveggia, C. The complex work of proteases and secretases in wallerian degeneration: beyond neuregulin-1. Front. Cell. Neurosci. 13, 93 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Conforti, L., Gilley, J. & Coleman, M. P. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat. Rev. Neurosci. 15, 394–409 (2014).

    CAS  PubMed  Google Scholar 

  154. 154.

    Williams, P. A. et al. Nicotinamide and WLD act together to prevent neurodegeneration in glaucoma. Front. Neurosci. 11, 232 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Brown, K. D. et al. Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 20, 1059–1068 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Stefano, M. D. et al. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ. 22, 731–742 (2015).

    PubMed  Google Scholar 

  157. 157.

    Voorhees, J. R. et al. (-)-P7C3-S243 protects a rat model of Alzheimer’s disease from neuropsychiatric deficits and neurodegeneration without altering amyloid deposition or reactive glia. Biol. Psychiatry 84, 488–498 (2018).

    CAS  PubMed  Google Scholar 

  158. 158.

    Tesla, R. et al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 109, 17016–17021 (2012).

    CAS  PubMed  Google Scholar 

  159. 159.

    Blacher, E. et al. Alzheimer’s disease pathology is attenuated in a CD38-deficient mouse model. Ann. Neurol. 78, 88–103 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 599 (2018).

    CAS  PubMed  Google Scholar 

  161. 161.

    Long, A. N. et al. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 15, 19 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. 162.

    Long, A. et al. CD38 knockout mice show significant protection against ischemic brain damage despite high level poly-ADP-ribosylation. Neurochem. Res. 42, 283–293 (2017).

    CAS  PubMed  Google Scholar 

  163. 163.

    Mayo, L. et al. Dual role of CD38 in microglial activation and activation-induced cell death. J. Immunol. 181, 92–103 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Banerjee, S. et al. CD38/cyclic ADP-ribose regulates astrocyte calcium signaling: implications for neuroinflammation and HIV-1-associated dementia. J. Neuroimmune Pharmacol. 3, 154–164 (2008).

    PubMed  PubMed Central  Google Scholar 

  165. 165.

    Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    PubMed  Google Scholar 

  166. 166.

    Jin, D. et al. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446, 41–45 (2007).

    CAS  PubMed  Google Scholar 

  167. 167.

    Higashida, H. et al. An immunohistochemical, enzymatic, and behavioral study of CD157/BST-1 as a neuroregulator. BMC Neurosci. 18, 35 (2017).

    PubMed  PubMed Central  Google Scholar 

  168. 168.

    Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69, S4–S9 (2014).

    PubMed  Google Scholar 

  169. 169.

    Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Kauppinen, T. M. et al. Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid β. J. Neuroinflammation 8, 152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Bayrakdar, E. T. et al. Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Aβ(1–42)-induced rat model of Alzheimer’s disease. Free. Radic. Res. 48, 146–158 (2014).

    Google Scholar 

  172. 172.

    Wu, X.-L., Wang, P., Liu, Y.-H. & Xue, Y.-X. Effects of poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide on blood–brain barrier and dopaminergic neurons of rats with lipopolysaccharide-induced Parkinson’s disease. J. Mol. Neurosci. 53, 1–9 (2014).

    CAS  PubMed  Google Scholar 

  173. 173.

    Mandir, A. S. et al. Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc. Natl Acad. Sci. USA 96, 5774–5779 (1999).

    CAS  PubMed  Google Scholar 

  174. 174.

    Kim, T. W. et al. ADP-ribose) polymerase 1 and AMP-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson’s disease. Cell Death Dis. 4, e919 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Hou, Y. et al. NAD supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl Acad. Sci. USA 115, E1876–E1885 (2018).

    CAS  PubMed  Google Scholar 

  176. 176.

    Yao, Z., Yang, W., Gao, Z. & Jia, P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci. Lett. 647, 133–140 (2017).

    CAS  PubMed  Google Scholar 

  177. 177.

    Wang, X., Hu, X., Yang, Y., Takata, T. & Sakurai, T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 1643, 1–9 (2016).

    CAS  PubMed  Google Scholar 

  178. 178.

    Chi, Y. & Sauve, A. A. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection. Curr. Opin. Clin. Nutr. Metab. Care 16, 657–661 (2013).

    CAS  PubMed  Google Scholar 

  179. 179.

    Sorrentino, V. et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552, 187–193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Fang, E. F. et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 22, 401–412 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Lehmann, S., Loh, S. H. Y. & Miguel Martins, L. Enhancing NAD salvage metabolism is neuroprotective in a PINK1 model of Parkinson’s disease. Biol. Open 6, 141–147 (2017).

    CAS  PubMed  Google Scholar 

  182. 182.

    Jia, H. et al. High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson’s disease. J. Neurosci. Res. 86, 2083–2090 (2008).

    CAS  PubMed  Google Scholar 

  183. 183.

    Okabe, K., Yaku, K., Tobe, K. & Nakagawa, T. Implications of altered NAD metabolism in metabolic disorders. J. Biomed. Sci. 26, 34 (2019).

    PubMed  PubMed Central  Google Scholar 

  184. 184.

    Connell, N. J., Houtkooper, R. H. & Schrauwen, P. NAD metabolism as a target for metabolic health: have we found the silver bullet? Diabetologia 62, 888–899 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Martens, C. R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD in healthy middle-aged and older adults. Nat. Commun. 9, 1286 (2018).

    PubMed  PubMed Central  Google Scholar 

  186. 186.

    Dollerup, O. L. et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin. Nutr. 108, 343–353 (2018).

    PubMed  Google Scholar 

  187. 187.

    de la Rubia, J. E. et al. Efficacy and tolerability of EH301 for amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled human pilot study. Amyotroph. Lateral Scler. Frontotemporal Degener. 20, 115–122 (2019).

    PubMed  Google Scholar 

  188. 188.

    Elhassan, Y. S. et al. Nicotinamide riboside augments the aged human skeletal muscle NAD metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 28, 1717–1728.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Belenky, P. et al. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129, 473–484 (2007).

    CAS  PubMed  Google Scholar 

  190. 190.

    Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Schmeisser, K. et al. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat. Chem. Biol. 9, 693–700 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Gallo, C. M., Smith, D. L. Jr & Smith, J. S. Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol. Cell. Biol. 24, 1301–1312 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Saldeen, J., Tillmar, L., Karlsson, E. & Welsh, N. Nicotinamide- and caspase-mediated inhibition of poly(ADP-ribose) polymerase are associated with p53-independent cell cycle (G2) arrest and apoptosis. Mol. Cell. Biochem. 243, 113–122 (2003).

    CAS  PubMed  Google Scholar 

  194. 194.

    Avalos, J. L., Bever, K. M. & Wolberger, C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Mol. Cell 17, 855–868 (2005).

    CAS  PubMed  Google Scholar 

  195. 195.

    Hwang, E. S. & Song, S. B. Possible adverse effects of high-dose nicotinamide: mechanisms and safety assessment. Biomolecules 10, 387 (2020).

    Google Scholar 

  196. 196.

    Fang, E. F. et al. NAD augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nat. Commun. 10, 5284 (2019).

    PubMed  PubMed Central  Google Scholar 

  197. 197.

    Ryu, D. et al. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci. Transl Med. 8, 361ra139 (2016).

    PubMed  PubMed Central  Google Scholar 

  198. 198.

    Zhang, H. et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).

    CAS  PubMed  Google Scholar 

  199. 199.

    Mills, K. F. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24, 795–806 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Mitchell, S. J. et al. Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab. 27, 667–676.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. 201.

    Gomes, A. P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Sims, C. A. et al. Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI Insight 3, e120182 (2018).

    PubMed Central  Google Scholar 

  203. 203.

    Uddin, G. M., Youngson, N. A., Sinclair, D. A. & Morris, M. J. Head to head comparison of short-term treatment with the NAD+ precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Front. Pharmacol. 7, 258 (2016).

    PubMed  PubMed Central  Google Scholar 

  204. 204.

    Guan, Y. et al. Nicotinamide mononucleotide, an NAD precursor, rescues age-associated susceptibility to AKI in a sirtuin 1–dependent manner. J. Am. Soc. Nephrol. 28, 2337–2352 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. 205.

    Lee, C. F. et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation 134, 883–894 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Lin, J. B. et al. NAMPT-mediated NAD+ biosynthesis is essential for vision in mice. Cell Rep. 17, 69–85 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207.

    Martin, A. S. et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model. JCI Insight 2, e93885 (2017).

    PubMed Central  Google Scholar 

  208. 208.

    de Picciotto, N. E. et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530 (2016).

    PubMed  PubMed Central  Google Scholar 

  209. 209.

    Tarantini, S. et al. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 24, 101192 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210.

    Das, A. et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell 173, 74–89.e20 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. 211.

    Giroud-Gerbetant, J. et al. A reduced form of nicotinamide riboside defines a new path for NAD biosynthesis and acts as an orally bioavailable NAD precursor. Mol. Metab. 30, 192–202 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. 212.

    Yang, Y., Zhang, N., Zhang, G. & Sauve, A. A. NRH salvage and conversion to NAD requires NRH kinase activity by adenosine kinase. Nat. Metab. 2, 364–379 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. 213.

    Zhou, T. et al. Structure of human nicotinamide/nicotinic acid mononucleotide adenylyltransferase. Basis for the dual substrate specificity and activation of the oncolytic agent tiazofurin. J. Biol. Chem. 277, 13148–13154 (2002).

    CAS  PubMed  Google Scholar 

  214. 214.

    Wang, G. et al. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell 158, 1324–1334 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215.

    Gardell, S. J. et al. Boosting NAD with a small molecule that activates NAMPT. Nat. Commun. 10, 3241 (2019).

    PubMed  PubMed Central  Google Scholar 

  216. 216.

    Katsyuba, E. et al. De novo NAD synthesis enhances mitochondrial function and improves health. Nature 563, 354–359 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217.

    Diaz-Ruiz, A. et al. Benefits of caloric restriction in longevity and chemical-induced tumorigenesis are transmitted independent of NQO1. J. Gerontol. A Biol. Sci. Med. Sci. 74, 155–162 (2019).

    CAS  PubMed  Google Scholar 

  218. 218.

    Kim, H.-J. et al. Augmentation of cellular NAD by NQO1 enzymatic action improves age-related hearing impairment. Aging Cell 18, e13016 (2019).

    PubMed  PubMed Central  Google Scholar 

  219. 219.

    Lee, J.-S. et al. Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice. PLoS ONE 7, e47122 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. 220.

    Morales, J. et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit. Rev. Eukaryot. Gene Expr. 24, 15–28 (2014).

    PubMed  PubMed Central  Google Scholar 

  221. 221.

    Xia, Q. et al. PARP-1 inhibition rescues short lifespan in hyperglycemic C. elegans and improves GLP-1 secretion in human cells. Aging Dis. 9, 17 (2018).

    PubMed  PubMed Central  Google Scholar 

  222. 222.

    Brown, J. S., Kaye, S. B. & Yap, T. A. PARP inhibitors: the race is on. Br. J. Cancer 114, 713–715 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223.

    Alano, C. C. et al. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J. Neurosci. 30, 2967–2978 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. 224.

    Almeida, G. S. et al. PARP inhibitor rucaparib induces changes in NAD levels in cells and liver tissues as assessed by MRS. NMR Biomed. https://doi.org/10.1002/nbm.3736 (2017).

  225. 225.

    Mathews, M. T. & Berk, B. C. PARP-1 inhibition prevents oxidative and nitrosative stress-induced endothelial cell death via transactivation of the VEGF receptor 2. Arterioscler. Thromb. Vasc. Biol. 28, 711–717 (2008).

    CAS  PubMed  Google Scholar 

  226. 226.

    Escande, C. et al. Flavonoid apigenin is an inhibitor of the NAD+ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62, 1084–1093 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. 227.

    Ogura, Y., Kitada, M., Xu, J., Monno, I. & Koya, D. CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD/NADH ratio and Sirt3 activity in renal tubular cells in diabetic rats. Aging 12, 11325–11336 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. 228.

    Boslett, J., Hemann, C., Zhao, Y. J., Lee, H.-C. & Zweier, J. L. Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD(P)(H). J. Pharmacol. Exp. Ther. 361, 99–108 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. 229.

    Taliou, A., Zintzaras, E., Lykouras, L. & Francis, K. An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clin. Ther. 35, 592–602 (2013).

    CAS  PubMed  Google Scholar 

  230. 230.

    Haffner, C. D. et al. Discovery, synthesis, and biological evaluation of thiazoloquin(az)olin(on)es as potent CD38 inhibitors. J. Med. Chem. 58, 3548–3571 (2015).

    CAS  PubMed  Google Scholar 

  231. 231.

    Boslett, J., Reddy, N., Alzarie, Y. A. & Zweier, J. L. Inhibition of CD38 with the thiazoloquin(az)olin(on)e 78c protects the heart against postischemic injury. J. Pharmacol. Exp. Ther. 369, 55–64 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. 232.

    Chini, E. N., Chini, C. C. S., Espindola Netto, J. M., de Oliveira, G. C. & van Schooten, W. The pharmacology of CD38/NADase: an emerging target in cancer and diseases of aging. Trends Pharmacol. Sci. 39, 424–436 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. 233.

    Liu, D. et al. Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol. Aging 34, 1564–1580 (2013).

    CAS  PubMed  Google Scholar 

  234. 234.

    Park, J. H., Long, A., Owens, K. & Kristian, T. Nicotinamide mononucleotide inhibits post-ischemic NAD+ degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol. Dis. 95, 102–110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. 235.

    Wei, C.-C. et al. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci. Rep. 7, 717 (2017).

    PubMed  PubMed Central  Google Scholar 

  236. 236.

    Wei, C.-C. et al. NAD replenishment with nicotinamide mononucleotide protects blood-brain barrier integrity and attenuates delayed tissue plasminogen activator-induced haemorrhagic transformation after cerebral ischaemia. Br. J. Pharmacol. 174, 3823–3836 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. 237.

    North, B. J. et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 33, 1438–1453 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. 238.

    Frederick, D. W. et al. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab. 24, 269–282 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. 239.

    Gariani, K. et al. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 63, 1190–1204 (2016).

    CAS  PubMed  Google Scholar 

  240. 240.

    Lee, H. J., Hong, Y.-S., Jun, W. & Yang, S. J. Nicotinamide riboside ameliorates hepatic metaflammation by modulating NLRP3 inflammasome in a rodent model of type 2 diabetes. J. Med. Food 18, 1207–1213 (2015).

    CAS  PubMed  Google Scholar 

  241. 241.

    Mukherjee, S. et al. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration. Hepatology 65, 616–630 (2017).

    CAS  PubMed  Google Scholar 

  242. 242.

    Hamity, M. V. et al. Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats. Pain 158, 962–972 (2017).

    CAS  PubMed  Google Scholar 

  243. 243.

    Trammell, S. A. J. et al. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci. Rep. 6, 26933 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. 244.

    Fang, Q. et al. HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase β. Nat. Commun. 5, 5513 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. 245.

    Ratajczak, J. et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun. 7, 13103 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. 246.

    Grozio, A. et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat. Metab. 1, 47–57 (2019). This article describes the discovery and characterization of a novel NMN transporter in mammals.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. 247.

    Berger, F., Lau, C., Dahlmann, M. & Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 280, 36334–36341 (2005).

    CAS  PubMed  Google Scholar 

  248. 248.

    Zhang, X. et al. Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. J. Biol. Chem. 278, 13503–13511 (2003).

    CAS  PubMed  Google Scholar 

  249. 249.

    Koch-Nolte, F., Fischer, S., Haag, F. & Ziegler, M. Compartmentation of NAD+-dependent signalling. FEBS Lett. 585, 1651–1656 (2011).

    CAS  PubMed  Google Scholar 

  250. 250.

    Yamamoto, M. et al. Nmnat3 is dispensable in mitochondrial NAD level maintenance in vivo. PLoS ONE 11, e0147037 (2016).

    PubMed  PubMed Central  Google Scholar 

  251. 251.

    Bruzzone, S. et al. Catastrophic NAD+ depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE. PLoS ONE 4, e7897 (2009).

    PubMed  PubMed Central  Google Scholar 

  252. 252.

    Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. 253.

    Pillai, J. B., Isbatan, A., Imai, S.-I. & Gupta, M. P. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J. Biol. Chem. 280, 43121–43130 (2005).

    CAS  PubMed  Google Scholar 

  254. 254.

    Luo, X. & Kraus, W. L. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26, 417–432 (2012).

    PubMed  PubMed Central  Google Scholar 

  255. 255.

    Revollo, J. R., Grimm, A. A. & Imai, S.-I. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279, 50754–50763 (2004).

    CAS  PubMed  Google Scholar 

  256. 256.

    Wang, T. et al. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat. Struct. Mol. Biol. 13, 661–662 (2006).

    CAS  PubMed  Google Scholar 

  257. 257.

    Yoon, M. J. et al. SIRT1-mediated eNAMPT Secretion from adipose tissue regulates hypothalamic NAD+ and function in mice. Cell Metab. 21, 706–717 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. 258.

    Sociali, G. et al. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells. FASEB J. 33, 3704–3717 (2019).

    CAS  PubMed  Google Scholar 

  259. 259.

    Yoshida, M. et al. Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab. 30, 329–342.e5 (2019). This article demonstrates the presence of the catalytically active extracellular NAMPT in exosomes and a novel paracrine mechanism of NAD+ biosynthesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  260. 260.

    Samal, B. et al. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. 14, 1431–1437 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. 261.

    Garten, A. et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 11, 535–546 (2015).

    CAS  PubMed  Google Scholar 

  262. 262.

    Kieswich, J. et al. Monomeric eNAMPT in the development of experimental diabetes in mice: a potential target for type 2 diabetes treatment. Diabetologia 59, 2477–2486 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. 263.

    Hara, N., Yamada, K., Shibata, T., Osago, H. & Tsuchiya, M. Nicotinamide phosphoribosyltransferase/visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma. PLoS ONE 6, e22781 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. 264.

    Pissios, P. Nicotinamide N-methyltransferase: more than a vitamin B3 clearance enzyme. Trends Endocrinol. Metab. 28, 340–353 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. 265.

    Kraus, D. et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508, 258–262 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. 266.

    Komatsu, M. et al. NNMT activation can contribute to the development of fatty liver disease by modulating the NAD metabolism. Sci. Rep. 8, 8637 (2018).

    PubMed  PubMed Central  Google Scholar 

  267. 267.

    Rudolphi, B. et al. Body weight predicts nicotinamide N-methyltransferase activity in mouse fat. Endocr. Res. 43, 55–63 (2018).

    CAS  PubMed  Google Scholar 

  268. 268.

    Hong, S. et al. Nicotinamide N-methyltransferase regulates hepatic nutrient metabolism through Sirt1 protein stabilization. Nat. Med. 21, 887–894 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. 269.

    Gokarn, R. et al. Long-term dietary macronutrients and hepatic gene expression in aging mice. J. Gerontol. A Biol. Sci. Med. Sci. 73, 1618–1625 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. 270.

    Neelakantan, H. et al. Small molecule nicotinamide N-methyltransferase inhibitor activates senescent muscle stem cells and improves regenerative capacity of aged skeletal muscle. Biochem. Pharmacol. 163, 481–492 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. 271.

    Hoxhaj, G. et al. Direct stimulation of NADP synthesis through Akt-mediated phosphorylation of NAD kinase. Science 363, 1088–1092 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. 272.

    Baar, E. L., Carbajal, K. A., Ong, I. M. & Lamming, D. W. Sex- and tissue-specific changes in mTOR signaling with age in C57BL/6J mice. Aging Cell 15, 155–166 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Review was supported by NIH grant R24DK085610 (E.V.) and Buck Institute for Research on Aging intramural funds (E.V.). A.J.C. is a recipient of a University of California President’s Postdoctoral Fellowship at the University of California, San Francisco, and is also supported by an NIH T32 training grant (3T32AG000266-19S1).

Author information

Affiliations

Authors

Contributions

All authors contributed to the research for and discussion, writing and review of the manuscript. A.J.C., R.P. and A.G. designed the figures and tables.

Corresponding author

Correspondence to Eric Verdin.

Ethics declarations

Competing interests

E.V. is a scientific co-founder of Napa Therapeutics and serves on the scientific advisory board of Seneque. E.V., A.J.C. and R.P. receive research support from Napa Therapeutics. E.V. and A.G. receive research support from BaReCia. A.G serves as Chief Scientific Officer for Seneque USA and is one of the inventors on a patent (PCT/US18/46233) for the SLC12A8 nicotinamide mononucleotide transporter, whose applicant is Washington University in St. Louis and which has been licensed by Teijin Limited (Japan).

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks J. Auwerx and M. Hirschey and T. Nakagawa for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Redox reactions

Oxidation–reduction chemical reactions that involve a transfer of electrons between two species.

Hydride

Formally, the anion of hydrogen (H). The term is commonly used to describe a binary compound that hydrogen forms with other electropositive elements.

Kynurenic acid

A quinoline-2-carboxylic acid with a hydroxy group at C-4 (4-hydroxyquinoline-2-carboxylic acid). It is a product of the metabolism of l-tryptophan.

Picolinic acid

A pyridinemonocarboxylic acid in which the carboxy group is located at position 2 (pyridine-2-carboxylic acid). It is an intermediate in the metabolism of l-tryptophan.

Extracellular vesicles

Lipid bilayer-delimited particles of endosomal and plasma membrane origin that are released by cells in the extracellular milieu.

Insulin resistance

An impaired response to exogenous or endogenous insulin to increase glucose uptake and utilization, resulting in elevated levels of glucose in the blood.

Xeroderma pigmentosum

A rare autosomal recessive genetic disorder characterized by a defect in the DNA repair system (primarily in the nucleotide excision repair system) that causes increased sensitivity to the DNA-damaging effects of ultraviolet radiation.

Progeroid diseases

A group of rare genetic disorders characterized by clinical features typical of physiological ageing and mostly due to defects in the DNA repair system or in lamin A.

Ataxia telangiectasia

A rare autosomal recessive genetic disorder caused by defects in the ATM gene, which is involved in cell division and DNA repair. It is characterized by neurodegeneration, immunodeficiency, increased radiation sensitivity and cancer susceptibility.

Cockayne syndrome

A rare autosomal recessive genetic disorder caused by defects in the ERCC6 or ERCC8 gene, which is involved in DNA repair. It is characterized by severe photosensitivity, neurodegeneration and premature ageing.

Hormesis

A biphasic dose response to an agent characterized by a stimulatory or beneficial effect at low dose and an inhibitory or toxic effect at high dose.

AKT

A serine/threonine-specific protein kinase that participates in multiple signalling pathways related to metabolism, cell survival, motility, transcription and cell cycle progression.

K m

Michaelis–Menten constant representing the substrate concentration at which the reaction is half the maximum velocity (Vmax) in the Michaelis–Menten enzymatic kinetic model.

V max

The maximum reaction rate achieved by the system at saturated substrate concentration in the Michaelis–Menten enzymatic kinetic model.

Ectoenzymes

Enzymes located on the outer surface of a cell’s membrane with their catalytic site available to the exterior environment of the cell.

Transmembrane protein with a type II orientation

Integral cell membrane protein with the amino terminus on the cytoplasmic side and the carboxy terminus on the extracellular side of the membrane. The transmembrane domain is located close to the amino terminus. Type III transmembrane proteins show an opposite orientation.

Glycophosphatidylinositol-anchored protein

Soluble protein attached by a glycolipid anchor (glycophosphatidylinositol) to the cell membrane.

Paneth cells

Highly specialized epithelial cells located in the small intestine secreting antimicrobial peptides and proteins.

Inflammageing

Defined as the low-grade chronic inflammation and immune cell dysregulation/exhaustion that occurs gradually during the ageing process. Inflammageing is emerging as a key causal factor for many age-related diseases.

NLRP3 inflammasome

A multiprotein complex made up of the proteins ASC, NLRP3 and caspase 1 that is activated in response to pathogens or sterile cell and tissue damage. When activated, the complex leads to the cleavage of the proforms of the cytokines IL-1β and IL-18, which themselves become activated and secreted to further amplify inflammation and immune responses.

Virtual memory T cells

A subpopulation of CD8+ T cells that have a memory-like phenotype (semidifferentiated) but are never been exposed to a foreign antigen (antigen naive).

Regulatory T cells

A subpopulation of CD4+ T cells that modulate the immune system, suppressing the immune response and maintaining tolerance to self-antigens.

Immune checkpoint

Molecules present on the surface of different cell types (that is, T cells, antigen-presenting cells and cancer cells) that regulate the immune response via inhibitory or activating immune signalling pathways.

Senolytics

Agents that target and eliminate senescent cells.

Wallerian degeneration

An active process of degeneration that occurs after any lesion or interruption of axons of neurons that ultimately leads to cell death.

Microglia

Type of glial cell located throughout the brain and spinal cord that functions as a resident macrophage and is the first and main form of active immune defence in the central nervous system.

Astrocytes

Highly specialized star-shaped glial cells located in the brain and spinal cord and involved in several processes, including support of the blood–brain barrier, provision of nutrients to neurons, repair and scarring following injury, and facilitation of neurotransmission

α-Amino-β-carboxymuconate ε-semialdehyde decarboxylase

In de novo NAD+ biosynthesis, it is the enzyme that catalyses the decarboxylation of α-amino-β-carboxymuconate ε-semialdehyde to α-aminomuconate ε-semialdehyde.

Flavonoid

A member of a class of polyphenolic secondary metabolites found in plants.

AMPK

5′-AMP-activated protein kinase, an enzyme that on changes in the ATP:AMP ratio phosphorylates downstream targets to redirect metabolism towards increased catabolism and decreased anabolism.

mTOR–p70S6K

Signalling pathway that involves the serine/threonine protein kinase mTOR and the mitogen-activated serine/threonine protein kinase p70S6K and regulates protein synthesis and cell proliferation, differentiation and survival.

ERK

Extracellular signal-regulated kinase involved in cell growth by controlling many proteins required in translation regulation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Covarrubias, A.J., Perrone, R., Grozio, A. et al. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 22, 119–141 (2021). https://doi.org/10.1038/s41580-020-00313-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing