Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Crosstalk between mechanotransduction and metabolism

Abstract

Mechanical forces shape cells and tissues during development and adult homeostasis. In addition, they also signal to cells via mechanotransduction pathways to control cell proliferation, differentiation and death. These processes require metabolism of nutrients for both energy generation and biosynthesis of macromolecules. However, how cellular mechanics and metabolism are connected is still poorly understood. Here, we discuss recent evidence indicating how the mechanical cues exerted by the extracellular matrix (ECM), cell–ECM and cell–cell adhesion complexes influence metabolic pathways. Moreover, we explore the energy and metabolic requirements associated with cell mechanics and ECM remodelling, implicating a reciprocal crosstalk between cell mechanics and metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ECM mechanosensing and mechanotransduction mechanisms.
Fig. 2: Adhesion forces regulate cell metabolism.
Fig. 3: YAP/TAZ mechanotransduction regulates cell metabolism.
Fig. 4: Cell–ECM and cell–cell adhesions regulate metabolism.
Fig. 5: Metabolism regulates the cytoskeleton, adhesions and the ECM.

Similar content being viewed by others

References

  1. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Appreciating force and shape — the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825–833 (2014).

    CAS  PubMed  Google Scholar 

  3. Discher, D. E. et al. Matrix mechanosensing: from scaling concepts in ’omics data to mechanisms in the nucleus, regeneration, and cancer. Annu. Rev. Biophys. 46, 295–315 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Murrell, M., Oakes, P. W., Lenz, M. & Gardel, M. L. Forcing cells into shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 16, 486–498 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Janmey, P. A., Fletcher, D. A. & Reinhart-King, C. A. Stiffness sensing by cells. Physiol. Rev. 100, 695–724 (2020).

    PubMed  Google Scholar 

  6. LeGoff, L. & Lecuit, T. Mechanical forces and growth in animal tissues. Cold Spring Harb. Perspect. Biol. 8, a019232 (2015).

    PubMed  Google Scholar 

  7. Petridou, N. I., Spiró, Z. & Heisenberg, C.-P. Multiscale force sensing in development. Nat. Cell Biol. 19, 581–588 (2017).

    CAS  PubMed  Google Scholar 

  8. Green, H. Terminal differentiation of cultured human epidermal cells. Cell 11, 405–416 (1977). This work provides the very first hint that cell differentiation can be controlled by cell–ECM adhesion, and not only by soluble growth factors.

    CAS  PubMed  Google Scholar 

  9. Mooney, D. et al. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J. Cell. Physiol. 151, 497–505 (1992).

    CAS  PubMed  Google Scholar 

  10. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    CAS  PubMed  Google Scholar 

  11. Watt, F. M., Jordan, P. W. & O’Neill, C. H. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl Acad. Sci. USA 85, 5576–5580 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Maroudas, N. G. Chemical and mechanical requirements for fibroblast adhesion. Nature 244, 353–354 (1973).

    CAS  PubMed  Google Scholar 

  13. Folkman, J. & Moscona, A. Role of cell shape in growth control. Nature 273, 345–349 (1978). This work makes the landmark discovery that cells respond quantitatively to variations of cell–ECM adhesion and cell shape.

    CAS  PubMed  Google Scholar 

  14. Lambert, C. A., Soudant, E. P., Nusgens, B. V. & Lapière, C. M. Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces. Lab. Invest. 66, 444–451 (1992).

    CAS  PubMed  Google Scholar 

  15. Ingber, D. E. & Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109, 317–330 (1989).

    CAS  PubMed  Google Scholar 

  16. Klein, E. A. et al. Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr. Biol. 19, 1511–1518 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  PubMed  Google Scholar 

  18. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    CAS  PubMed  Google Scholar 

  19. Sordella, R., Jiang, W., Chen, G.-C., Curto, M. & Settleman, J. Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell 113, 147–158 (2003). This work provides the first genetic evidence that RHO signalling can regulate cell fate in vivo.

    CAS  PubMed  Google Scholar 

  20. Douguet, D. & Honoré, E. Mammalian mechanoelectrical transduction: structure and function of force-gated ion channels. Cell 179, 340–354 (2019).

    CAS  PubMed  Google Scholar 

  21. Hinz, B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol. 47, 54–65 (2015).

    CAS  PubMed  Google Scholar 

  22. Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).

    CAS  PubMed  Google Scholar 

  23. Yap, A. S., Duszyc, K. & Viasnoff, V. Mechanosensing and mechanotransduction at cell–cell junctions. Cold Spring Harb. Perspect. Biol. 10, a028761 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Saini, K. & Discher, D. E. Forced unfolding of proteins directs biochemical cascades. Biochemistry 58, 4893–4902 (2019).

    CAS  PubMed  Google Scholar 

  25. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    CAS  PubMed  Google Scholar 

  26. Schwartz, M. A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol. 2, a005066 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Miralles, F., Posern, G., Zaromytidou, A.-I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 (2003). This work identifies the first molecular mechanism regulating nuclear gene expression in response to actin dynamics.

    CAS  PubMed  Google Scholar 

  28. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011). This work identifies a broadly conserved mediator of the transcriptional responses to ECM stiffness and cell geometry.

    CAS  PubMed  Google Scholar 

  29. Dupont, S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp. Cell Res. 343, 42–53 (2016).

    CAS  PubMed  Google Scholar 

  30. Mamidi, A. et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 564, 114–118 (2018).

    CAS  PubMed  Google Scholar 

  31. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Cho, S. et al. Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Dev. Cell 49, 920–935.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    CAS  PubMed  Google Scholar 

  34. Kirby, T. J. & Lammerding, J. Emerging views of the nucleus as a cellular mechanosensor. Nat. Cell Biol. 20, 373–381 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019).

    CAS  PubMed  Google Scholar 

  36. Chen, T., Saw, T. B., Mège, R.-M. & Ladoux, B. Mechanical forces in cell monolayers. J. Cell. Sci. 131, jcs218156 (2018).

    PubMed  Google Scholar 

  37. Brás-Pereira, C. & Moreno, E. Mechanical cell competition. Curr. Opin. Cell Biol. 51, 15–21 (2018).

    PubMed  Google Scholar 

  38. DeBerardinis, R. J. & Thompson, C. B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148, 1132–1144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Metallo, C. M. & Vander Heiden, M. G. Understanding metabolic regulation and its influence on cell physiology. Mol. Cell 49, 388–398 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Park, J. S. et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature 578, 621–626 (2020). The authors show how glycolytic metabolism can be regulated by ECM elasticity through a non-transcriptional mechanism centred on the proteasomal degradation of the enzyme PFK.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kusakabe, T., Motoki, K. & Hori, K. Mode of interactions of human aldolase isozymes with cytoskeletons. Arch. Biochem. Biophys. 344, 184–193 (1997).

    CAS  PubMed  Google Scholar 

  42. Wang, J., Morris, A. J., Tolan, D. R. & Pagliaro, L. The molecular nature of the F-actin binding activity of aldolase revealed with site-directed mutants. J. Biol. Chem. 271, 6861–6865 (1996).

    CAS  PubMed  Google Scholar 

  43. Hu, H. et al. Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell 164, 433–446 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Counillon, L., Bouret, Y., Marchiq, I. & Pouysségur, J. Na+/H+ antiporter (NHE1) and lactate/H+ symporters (MCTs) in pH homeostasis and cancer metabolism. Biochim. Biophys. Acta 1863, 2465–2480 (2016).

    CAS  PubMed  Google Scholar 

  45. Reshkin, S. J., Greco, M. R. & Cardone, R. A. Role of pHi, and proton transporters in oncogene-driven neoplastic transformation. Phil. Trans. R. Soc. B 369, 20130100 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Schwartz, M. A., Both, G. & Lechene, C. Effect of cell spreading on cytoplasmic pH in normal and transformed fibroblasts. Proc. Natl Acad. Sci. USA 86, 4525–4529 (1989). This work provides one of the first pieces of evidence linking integrin mechanotransduction to regulation of intracellular parameters such as pH.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schwartz, M. A., Cragoe, E. J. & Lechene, C. P. pH regulation in spread cells and round cells. J. Biol. Chem. 265, 1327–1332 (1990).

    CAS  PubMed  Google Scholar 

  48. Schwartz, M. A., Lechene, C. & Ingber, D. E. Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin alpha 5 beta 1, independent of cell shape. Proc. Natl Acad. Sci. USA 88, 7849–7853 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7, 733–736 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tominaga, T. & Barber, D. L. Na–H exchange acts downstream of RhoA to regulate integrin-induced cell adhesion and spreading. Mol. Biol. Cell 9, 2287–2303 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tominaga, T., Ishizaki, T., Narumiya, S. & Barber, D. L. p160ROCK mediates RhoA activation of Na-H exchange. EMBO J. 17, 4712–4722 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hofschröer, V. et al. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells. Sci. Rep. 7, 42369 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Jaldin-Fincati, J. R., Pavarotti, M., Frendo-Cumbo, S., Bilan, P. J. & Klip, A. Update on GLUT4 vesicle traffic: a cornerstone of insulin action. Trends Endocrinol. Metab. 28, 597–611 (2017).

    CAS  PubMed  Google Scholar 

  54. Møller, L. L. V., Klip, A. & Sylow, L. Rho GTPases-emerging regulators of glucose homeostasis and metabolic health. Cells 8, 434 (2019).

    PubMed Central  Google Scholar 

  55. Steimle, P. A., Kent Fulcher, F. & Patel, Y. M. A novel role for myosin II in insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 331, 1560–1565 (2005).

    CAS  PubMed  Google Scholar 

  56. Hiller, K. & Metallo, C. M. Profiling metabolic networks to study cancer metabolism. Curr. Opin. Biotechnol. 24, 60–68 (2013).

    CAS  PubMed  Google Scholar 

  57. Romani, P. et al. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nat. Cell Biol. 21, 338–347 (2019). This work provides evidence that the mechanical properties of the cell microenvironment tune lipogenesis in multiple cell systems by shifting the homeostatic SREBP1/2 activity.

    CAS  PubMed  Google Scholar 

  58. Bertolio, R. et al. Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nat. Commun. 10, 1326 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Singh, V., Erady, C. & Balasubramanian, N. Cell-matrix adhesion controls Golgi organization and function through Arf1 activation in anchorage-dependent cells. J. Cell. Sci. 131, jcs215855 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Brown, M. S., Radhakrishnan, A. & Goldstein, J. L. Retrospective on cholesterol homeostasis: the central role of scap. Annu. Rev. Biochem. 87, 783–807 (2018).

    CAS  PubMed  Google Scholar 

  61. Eisler, S. A. et al. A Rho signaling network links microtubules to PKD controlled carrier transport to focal adhesions. eLife 7, e35907 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. Fourriere, L. et al. RAB6 and microtubules restrict protein secretion to focal adhesions. J. Cell Biol. 218, 2215–2231 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hong, J.-H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078 (2005).

    CAS  PubMed  Google Scholar 

  64. Peck, B. et al. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab. 4, 6 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Guo, L. et al. Kindlin-2 links mechano-environment to proline synthesis and tumor growth. Nat. Commun. 10, 1–20 (2019).

    Google Scholar 

  66. Sun, Z., Costell, M. & Fässler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21, 25–31 (2019).

    CAS  PubMed  Google Scholar 

  67. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

    CAS  PubMed  Google Scholar 

  68. Mohammadi, H. & Sahai, E. Mechanisms and impact of altered tumour mechanics. Nat. Cell Biol. 20, 766–774 (2018).

    CAS  PubMed  Google Scholar 

  69. Miceli, C. et al. The primary cilium and lipophagy translate mechanical forces to direct metabolic adaptation of kidney epithelial cells. Nat. Cell Biol. 22, 1091–1102 (2020).

    CAS  PubMed  Google Scholar 

  70. Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013).

    CAS  PubMed  Google Scholar 

  71. Manor, U. et al. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 4, e08828 (2015).

    PubMed Central  Google Scholar 

  72. Korobova, F., Gauvin, T. J. & Higgs, H. N. A role for myosin II in mammalian mitochondrial fission. Curr. Biol. 24, 409–414 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Helle, S. C. J. et al. Mechanical force induces mitochondrial fission. eLife 6, e30292 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020).

    CAS  PubMed  Google Scholar 

  75. Pocaterra, A., Romani, P. & Dupont, S. YAP/TAZ functions and their regulation at a glance. J. Cell Sci. 133, jcs230425 (2020).

    CAS  PubMed  Google Scholar 

  76. Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18, 758–770 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Koo, J. H. & Guan, K.-L. Interplay between YAP/TAZ and Metabolism. Cell Metab. 28, 196–206 (2018).

    CAS  PubMed  Google Scholar 

  78. Santinon, G., Pocaterra, A. & Dupont, S. Control of YAP/TAZ activity by metabolic and nutrient-sensing pathways. Trends Cell Biol. 26, 289–299 (2016).

    CAS  PubMed  Google Scholar 

  79. Bertero, T. et al. Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. J. Clin. Invest. 126, 3313–3335 (2016). The authors show how regulation of YAP/TAZ by the stiffness of the ECM in turn controls the expression of key metabolic enzymes, which accounts for altered metabolism in a human disease.

    PubMed  PubMed Central  Google Scholar 

  80. Liu, Q.-P., Luo, Q., Deng, B., Ju, Y. & Song, G.-B. Stiffer matrix accelerates migration of hepatocellular carcinoma cells through enhanced aerobic glycolysis via the MAPK-YAP signaling. Cancers 12, 490 (2020).

    CAS  PubMed Central  Google Scholar 

  81. DeRan, M. et al. Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of Angiomotin-like 1 protein. Cell Rep. 9, 495–503 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Enzo, E. et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 34, 1349–1370 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mo, J.-S. et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat. Cell Biol. 17, 500–510 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, W. et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat. Cell Biol. 17, 490–499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bertero, T. et al. Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 29, 124–140.e10 (2019).

    CAS  PubMed  Google Scholar 

  86. Santinon, G. et al. dNTP metabolism links mechanical cues and YAP/TAZ to cell growth and oncogene-induced senescence. EMBO J. 37, e97780 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Bento, C. F. et al. Mammalian autophagy: how does it work? Annu. Rev. Biochem. 85, 685–713 (2016).

    CAS  PubMed  Google Scholar 

  88. Pavel, M. et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat. Commun. 9, 2961 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Totaro, A. et al. Cell phenotypic plasticity requires autophagic flux driven by YAP/TAZ mechanotransduction. Proc. Natl Acad. Sci. USA 116, 17848–17857 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vera-Ramirez, L., Vodnala, S. K., Nini, R., Hunter, K. W. & Green, J. E. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat. Commun. 9, 1944 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Pocaterra, A. et al. F-actin dynamics regulates mammalian organ growth and cell fate maintenance. J. Hepatol. 71, 130–142 (2019). This work provides a genetic proof in mice for the role of actin mechanotransduction as regulator of liver physiology, including hepatocyte metabolism.

    CAS  PubMed  Google Scholar 

  92. Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    CAS  PubMed  Google Scholar 

  93. Sansores-Garcia, L. et al. Modulating F-actin organization induces organ growth by affecting the Hippo pathway: modulating F-actin organization induces organ growth. EMBO J. 30, 2325–2335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hakvoort, T. B. M. et al. Pivotal role of glutamine synthetase in ammonia detoxification. Hepatology 65, 281–293 (2017).

    CAS  PubMed  Google Scholar 

  95. Yap, A. S., Duszyc, K. & Viasnoff, V. Mechanosensing and mechanotransduction at cell-cell junctions. Cold Spring Harb. Perspect. Biol. 10, a028761 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26, 54–68 (2012).

    PubMed  PubMed Central  Google Scholar 

  97. Debnath, J. et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111, 29–40 (2002).

    CAS  PubMed  Google Scholar 

  98. Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Schafer, Z. T. et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461, 109–113 (2009). The authors explore for the first time how loss of attachment to the ECM affects glucose and energy metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Grassian, A. R., Metallo, C. M., Coloff, J. L., Stephanopoulos, G. & Brugge, J. S. Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes Dev. 25, 1716–1733 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Jiang, L. et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532, 255–258 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat. Commun. 8, 15267 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Sullivan, W. J. et al. Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization. Cell 175, 117–132.e21 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Labuschagne, C. F., Cheung, E. C., Blagih, J., Domart, M.-C. & Vousden, K. H. Cell clustering promotes a metabolic switch that supports metastatic colonization. Cell Metab. 30, 720–734.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Fung, C., Lock, R., Gao, S., Salas, E. & Debnath, J. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol. Biol. Cell 19, 797–806 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Avivar-Valderas, A. et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol. Cell. Biol. 31, 3616–3629 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, N. & Debnath, J. IκB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy 9, 1214–1227 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Vlahakis, A. & Debnath, J. The interconnections between autophagy and integrin-mediated cell adhesion. J. Mol. Biol. 429, 515–530 (2017).

    CAS  PubMed  Google Scholar 

  109. Chen, N., Eritja, N., Lock, R. & Debnath, J. Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3-kinase in three-dimensional culture. Oncogene 32, 2543–2554 (2013).

    CAS  PubMed  Google Scholar 

  110. Hawk, M. A. et al. RIPK1-mediated induction of mitophagy compromises the viability of extracellular-matrix-detached cells. Nat. Cell Biol. 20, 272–284 (2018).

    CAS  PubMed  Google Scholar 

  111. Gurkar, A. U. et al. Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress. Nat. Commun. 4, 2189 (2013).

    PubMed  Google Scholar 

  112. Mi, N. et al. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat. Cell Biol. 17, 1112–1123 (2015).

    CAS  PubMed  Google Scholar 

  113. Shi, J., Surma, M. & Wei, L. Disruption of ROCK1 gene restores autophagic flux and mitigates doxorubicin-induced cardiotoxicity. Oncotarget 9, 12995–13008 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Dixon, S. J. & Stockwell, B. R. The hallmarks of ferroptosis. Annu. Rev. Cancer Biol. 3, 35–54 (2019).

    Google Scholar 

  115. Vande Voorde, J. et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5, eaau7314 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Wu, J. et al. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature 572, 402–406 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Panzilius, E. et al. Cell density-dependent ferroptosis in breast cancer is induced by accumulation of polyunsaturated fatty acid-enriched triacylglycerides. Preprint at bioRxiv https://doi.org/10.1101/417949 (2019).

    Article  Google Scholar 

  118. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, W.-H. et al. The Hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 28, 2501–2508.e4 (2019).

    CAS  PubMed  Google Scholar 

  120. Das, T. et al. A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat. Cell Biol. 17, 276–287 (2015).

    CAS  PubMed  Google Scholar 

  121. Frechin, M. et al. Cell-intrinsic adaptation of lipid composition to local crowding drives social behaviour. Nature 523, 88–91 (2015).

    CAS  PubMed  Google Scholar 

  122. Flamholz, A., Phillips, R. & Milo, R. The quantified cell. Mol. Biol. Cell 25, 3497–3500 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. Bernstein, B. W. & Bamburg, J. R. Actin-ATP hydrolysis is a major energy drain for neurons. J. Neurosci. 23, 1–6 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Engl, E. & Attwell, D. Non-signalling energy use in the brain. J. Physiol. 593, 3417–3429 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88, 39–48 (1997). This work provides one of the first indications that focal adhesions undergo remodelling in response to direct force application to increase their resistance.

    CAS  PubMed  Google Scholar 

  126. Gray, D. S., Tien, J. & Chen, C. S. Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J. Biomed. Mater. Res. A 66, 605–614 (2003).

    PubMed  Google Scholar 

  127. Sunyer, R. & Trepat, X. Durotaxis. Curr. Biol. 30, R383–R387 (2020).

    CAS  PubMed  Google Scholar 

  128. Zanotelli, M. R. et al. Regulation of ATP utilization during metastatic cell migration by collagen architecture. Mol. Biol. Cell 29, 1–9 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zanotelli, M. R. et al. Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making. Nat. Commun. 10, 1–12 (2019).

    CAS  Google Scholar 

  130. Zhang, J. et al. Energetic regulation of coordinated leader-follower dynamics during collective invasion of breast cancer cells. Proc. Natl Acad. Sci. USA 116, 7867–7872 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. van Horssen, R. et al. Modulation of cell motility by spatial repositioning of enzymatic ATP/ADP exchange capacity. J. Biol. Chem. 284, 1620–1627 (2009).

    PubMed  Google Scholar 

  132. Schuler, M.-H. et al. Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration. Mol. Biol. Cell 28, 2159–2169 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Gutnick, A., Banghart, M. R., West, E. R. & Schwarz, T. L. The light-sensitive dimerizer zapalog reveals distinct modes of immobilization for axonal mitochondria. Nat. Cell Biol. 21, 768–777 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kandel, J., Chou, P. & Eckmann, D. M. Automated detection of whole-cell mitochondrial motility and its dependence on cytoarchitectural integrity. Biotechnol. Bioeng. 112, 1395–1405 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Pathak, D., Sepp, K. J. & Hollenbeck, P. J. Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria. J. Neurosci. 30, 8984–8992 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Papalazarou, V. et al. The creatine–phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis. Nat. Metab. 2, 62–80 (2020). This work provides an in-depth overview of how pancreatic cell metabolism is rewired in response to ECM stiffness, including the tracing of glucose fluxes by isotope-labeling techniques.

    CAS  PubMed  Google Scholar 

  137. Piazza, I. et al. A Map of protein-metabolite interactions reveals principles of chemical communication. Cell 172, 358–372.e23 (2018).

    CAS  PubMed  Google Scholar 

  138. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    CAS  PubMed  Google Scholar 

  139. Zhang, L., Li, J., Young, L. H. & Caplan, M. J. AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc. Natl Acad. Sci. USA 103, 17272–17277 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Zheng, B. & Cantley, L. C. Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proc. Natl Acad. Sci. USA 104, 819–822 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Lee, J. H. et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447, 1017–1020 (2007).

    CAS  PubMed  Google Scholar 

  142. Bays, J. L., Campbell, H. K., Heidema, C., Sebbagh, M. & DeMali, K. A. Linking E-cadherin mechanotransduction to cell metabolism through force-mediated activation of AMPK. Nat. Cell Biol. 19, 724–731 (2017). The authors find that forces flowing through cell–cell cadherin adhesions control AMPK activity to sustain the energy demand associated with cell–cell adhesion reinforcement.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Sunyer, R. et al. Collective cell durotaxis emerges from long-range intercellular force transmission. Science 353, 1157–1161 (2016).

    CAS  PubMed  Google Scholar 

  144. Georgiadou, M. et al. AMPK negatively regulates tensin-dependent integrin activity. J. Cell Biol. 216, 1107–1121 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Katz, M. et al. A reciprocal tensin-3–cten switch mediates EGF-driven mammary cell migration. Nat. Cell Biol. 9, 961–969 (2007).

    CAS  PubMed  Google Scholar 

  146. Taylor, K. A. & Taylor, D. W. Formation of two-dimensional complexes of F-actin and crosslinking proteins on lipid monolayers: demonstration of unipolar alpha-actinin-F-actin crosslinking. Biophys. J. 67, 1976–1983 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ritterson Lew, C. & Tolan, D. R. Aldolase sequesters WASP and affects WASP/Arp2/3-stimulated actin dynamics. J. Cell. Biochem. 114, 1928–1939 (2013).

    PubMed  Google Scholar 

  148. Pagliaro, L. & Taylor, D. L. Aldolase exists in both the fluid and solid phases of cytoplasm. J. Cell Biol. 107, 981–991 (1988).

    CAS  PubMed  Google Scholar 

  149. Zhang, D. et al. Phosphoglycerate mutase 1 promotes cancer cell migration independent of its metabolic activity. Oncogene 36, 2900–2909 (2017).

    CAS  PubMed  Google Scholar 

  150. Norris, V. et al. Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor. BMC Biochem. 14, 3 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ray, S., Kassan, A., Busija, A. R., Rangamani, P. & Patel, H. H. The plasma membrane as a capacitor for energy and metabolism. Am. J. Physiol. Cell Physiol. 310, C181–C192 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Dewulf, M. et al. Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nat. Commun. 10, 1974 (2019).

    PubMed  PubMed Central  Google Scholar 

  153. Hsu, C.-K. et al. Caveolin-1 controls hyperresponsiveness to mechanical stimuli and fibrogenesis-associated RUNX2 activation in keloid fibroblasts. J. Invest. Dermatol. 138, 208–218 (2018).

    CAS  PubMed  Google Scholar 

  154. Le Saux, O. et al. The role of caveolin-1 in pulmonary matrix remodeling and mechanical properties. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L1007–L1017 (2008).

    PubMed  PubMed Central  Google Scholar 

  155. Moreno-Vicente, R. et al. Caveolin-1 modulates mechanotransduction responses to substrate stiffness through actin-dependent control of YAP. Cell Rep. 26, 1679–1680 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144, 402–413 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Poole, K., Herget, R., Lapatsina, L., Ngo, H.-D. & Lewin, G. R. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat. Commun. 5, 3520 (2014).

    PubMed  Google Scholar 

  158. Qi, Y. et al. Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons. Nat. Commun. 6, 8512 (2015).

    CAS  PubMed  Google Scholar 

  159. Hu, P. & Barker, T. H. Thy-1 in integrin mediated mechanotransduction. Front. Cell Dev. Biol. 7, 22 (2019).

    PubMed  PubMed Central  Google Scholar 

  160. Boulter, E. et al. Cell metabolism regulates integrin mechanosensing via an SLC3A2-dependent sphingolipid biosynthesis pathway. Nat. Commun. 9, 4862 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Sorrentino, G. et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16, 357–366 (2014).

    CAS  PubMed  Google Scholar 

  162. Hamanaka, R. B. et al. Glutamine metabolism is required for collagen protein synthesis in lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 61, 597–606 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Nault, R. et al. Dose-dependent metabolic reprogramming and differential gene expression in TCDD-elicited hepatic fibrosis. Toxicol. Sci. 154, 253–266 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Phang, J. M., Liu, W., Hancock, C. N. & Fischer, J. W. Proline metabolism and cancer: emerging links to glutamine and collagen. Curr. Opin. Clin. Nutr. Metab. Care 18, 71–77 (2015).

    CAS  PubMed  Google Scholar 

  165. Ingber, D. & Folkman, J. Inhibition of angiogenesis through modulation of collagen metabolism. Lab. Invest. 59, 44–51 (1988). This is a visionary work exploring the use of metabolic drugs to harness the ability of endothelial cells to remodel the ECM and to build up a stiffer niche supporting cell growth and migration. It preceded by 1 year the publication, by the same authors, that the ECM can regulate endothelial growth by influencing the response to growth factor signalling.

    CAS  PubMed  Google Scholar 

  166. Ingber, D. E. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl Acad. Sci. USA 87, 3579–3583 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Dornier, E. et al. Glutaminolysis drives membrane trafficking to promote invasiveness of breast cancer cells. Nat. Commun. 8, 2255 (2017).

    PubMed  PubMed Central  Google Scholar 

  168. Tang, Y. et al. MT1-MMP-dependent control of skeletal stem cell commitment via a β1-integrin/YAP/TAZ signaling axis. Dev. Cell 25, 402–416 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    CAS  PubMed  Google Scholar 

  170. Sciacovelli, M. & Frezza, C. Oncometabolites: unconventional triggers of oncogenic signalling cascades. Free Radic. Biol. Med. 100, 175–181 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Miroshnikova, Y. A. et al. Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nat. Cell Biol. 18, 1336–1345 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Sasaki, M. et al. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev. 26, 2038–2049 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Miller, C. G., Pozzi, A., Zent, R. & Schwarzbauer, J. E. Effects of high glucose on integrin activity and fibronectin matrix assembly by mesangial cells. Mol. Biol. Cell 25, 2342–2350 (2014).

    PubMed  PubMed Central  Google Scholar 

  174. Muranen, T. et al. Starved epithelial cells uptake extracellular matrix for survival. Nat. Commun. 8, 13989 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Rainero, E. et al. Ligand-occupied integrin internalization links nutrient signaling to invasive migration. Cell Rep. 10, 398–413 (2015).

    CAS  PubMed  Google Scholar 

  176. Olivares, O. et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun. 8, 16031 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. DelNero, P., Hopkins, B. D., Cantley, L. C. & Fischbach, C. Cancer metabolism gets physical. Sci. Transl. Med. 10, eaaq1011 (2018).

    PubMed  PubMed Central  Google Scholar 

  178. Muir, A., Danai, L. V. & Vander Heiden, M. G. Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies. Dis. Model. Mech. 11, dmm035758 (2018).

    PubMed  PubMed Central  Google Scholar 

  179. Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 8, e44235 (2019). The authors develop a method to study the metabolic milieu within cancers, which indicates how a tissue’s metabolic microenvironments are different, and correspondingly impose different constraints on cancer cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Sullivan, M. R. et al. Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting. Cell Metab. 29, 1410–1421.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272.e17 (2017). This article describes the implementation of the first tissue-culture medium matching the composition of interstitial fluids and blood plasma, which uncovers metabolic liabilities of cancer cells that had been previously underestimated due to the use of non-physiological media.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S. & Searson, P. C. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front. Bioeng. Biotechnol. 4, 12 (2016).

    PubMed  PubMed Central  Google Scholar 

  183. Rodenhizer, D. et al. A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients. Nat. Mater. 15, 227–234 (2016).

    CAS  PubMed  Google Scholar 

  184. Wozniak, M. A. et al. Adhesion regulates MAP kinase-ternary complex factor exchange to control a proliferative transcriptional switch. Curr. Biol. 22, 2017–2026 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Mammoto, A. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457, 1103–1108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Moro, A. et al. microRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis. Nat. Cell Biol. 21, 348–358 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Miroshnikova, Y. A. et al. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 20, 69–80 (2018).

    CAS  PubMed  Google Scholar 

  189. Rath, N. et al. ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Mol. Med. 9, 198–218 (2017).

    CAS  PubMed  Google Scholar 

  190. Aragona, M. et al. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature 584, 268–273 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Xia, P., Gütl, D., Zheden, V. & Heisenberg, C.-P. Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity. Cell 176, 1379–1392.e14 (2019).

    CAS  PubMed  Google Scholar 

  192. Uroz, M. et al. Traction forces at the cytokinetic ring regulate cell division and polyploidy in the migrating zebrafish epicardium. Nat. Mater. 18, 1015–1023 (2019).

    CAS  PubMed  Google Scholar 

  193. Shyer, A. E. et al. Villification: how the gut gets its villi. Science 342, 212–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Shyer, A. E., Huycke, T. R., Lee, C., Mahadevan, L. & Tabin, C. J. Bending gradients: how the intestinal stem cell gets its home. Cell 161, 569–580 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Mammoto, T. et al. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev. Cell 21, 758–769 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Tschumperlin, D. J., Ligresti, G., Hilscher, M. B. & Shah, V. H. Mechanosensing and fibrosis. J. Clin. Invest. 128, 74–84 (2018).

    PubMed  PubMed Central  Google Scholar 

  197. Eming, S. A., Wynn, T. A. & Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science 356, 1026–1030 (2017).

    CAS  PubMed  Google Scholar 

  198. Harn, H. I.-C. et al. The tension biology of wound healing. Exp. Dermatol. 28, 464–471 (2019).

    PubMed  Google Scholar 

  199. Kutys, M. L. & Chen, C. S. Forces and mechanotransduction in 3D vascular biology. Curr. Opin. Cell Biol. 42, 73–79 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Lacolley, P., Regnault, V. & Laurent, S. Mechanisms of arterial stiffening: from mechanotransduction to epigenetics. Arterioscler. Thromb. Vasc. Biol. 40, 1055–1062 (2020).

    CAS  PubMed  Google Scholar 

  201. Humphrey, J. D., Schwartz, M. A., Tellides, G. & Milewicz, D. M. Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ. Res. 116, 1448–1461 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Ramirez, F., Caescu, C., Wondimu, E. & Galatioto, J. Marfan syndrome; a connective tissue disease at the crossroads of mechanotransduction, TGFβ signaling and cell stemness. Matrix Biol. 71–72, 82–89 (2018).

    PubMed  Google Scholar 

  203. Baeyens, N., Bandyopadhyay, C., Coon, B. G., Yun, S. & Schwartz, M. A. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Invest. 126, 821–828 (2016).

    PubMed  PubMed Central  Google Scholar 

  204. Zarychanski, R. et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120, 1908–1915 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Ma, S. et al. Common PIEZO1 allele in African populations causes RBC dehydration and attenuates plasmodium infection. Cell 173, 443–455.e12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Kariuki, S. N. et al. Red blood cell tension protects against severe malaria in the Dantu blood group. Nature 585, 579–583 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Papachroni, K. K., Karatzas, D. N., Papavassiliou, K. A., Basdra, E. K. & Papavassiliou, A. G. Mechanotransduction in osteoblast regulation and bone disease. Trends Mol. Med. 15, 208–216 (2009).

    CAS  PubMed  Google Scholar 

  208. Jorgenson, K. W., Phillips, S. M. & Hornberger, T. A. Identifying the structural adaptations that drive the mechanical load-induced growth of skeletal muscle: a scoping review. Cells 9, 1658 (2020).

    PubMed Central  Google Scholar 

  209. Felsenthal, N. & Zelzer, E. Mechanical regulation of musculoskeletal system development. Development 144, 4271–4283 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Rot, C., Stern, T., Blecher, R., Friesem, B. & Zelzer, E. A mechanical jack-like mechanism drives spontaneous fracture healing in neonatal mice. Dev. Cell 31, 159–170 (2014).

    CAS  PubMed  Google Scholar 

  211. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Urciuolo, A. et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat. Commun. 4, 1964 (2013).

    PubMed  Google Scholar 

  213. Kirby, T. J. Mechanosensitive pathways controlling translation regulatory processes in skeletal muscle and implications for adaptation. J. Appl. Physiol. 127, 608–618 (2019).

    CAS  PubMed  Google Scholar 

  214. Uhler, C. & Shivashankar, G. V. Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat. Rev. Mol. Cell Biol. 18, 717–727 (2017).

    CAS  PubMed  Google Scholar 

  215. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  216. Vazquez, A. et al. Cancer metabolism at a glance. J. Cell Sci. 129, 3367–3373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science 368, eaaw5473 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the S.D. laboratory is supported by an AIRC Foundation Investigator Grant (21392), a Worldwide Cancer Research Grant (21-0156), and a CARIPARO Foundation Eccellenza 2017 grant. P.R. is a recipient of a Veronesi Foundation postdoctoral fellowship. L.V.-J. is recipient of a Federation of European Biochemical Societies postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.D. conceptualized the article. S.D., C.F., P.R. and L.V.-J. wrote the article and edited the manuscript. All authors approved the final content.

Corresponding authors

Correspondence to Christian Frezza or Sirio Dupont.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks T. Barker, T. Bertero, Z. Schafer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mechanical forces

Cells in tissues are subjected to multiple forces, including applied, frictional, tension and spring (that is, stretch or compression) forces.

Tension forces

The action–reaction forces acting at the cell–extracellular matrix contact sites, and the opposite of compression.

Stiffness

The extent to which an object resists deformation in response to an applied force.

Cell geometry

Intended here as the degree of cell spreading on an adhesive substratum.

Dystrophin-associated complexes

Specialized protein complexes that anchor muscle cells to their extracellular matrix, which is required to transmit force generated in the muscle cytoskeletal contractile units to the extracellular matrix and to stabilize the plasma membrane during repeated cycles of contraction.

Progeria

A rare autosomal dominant genetic disorder characterized by premature ageing symptoms.

Myocardin-related transcription factors

(MRTFs). Transcription factors whose nucleocytoplasmic shuttling is directly regulated by monomeric actin. They act as co-activators for the DNA-binding protein serum response factor (SRF).

YAP/TAZ

Yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), whose activity as co-activators for the TEAD family of DNA-binding proteins is regulated by multiple mechanical cues and by the Hippo pathway.

Phosphofructokinase

(PFK). The rate-limiting glycolytic enzyme that phosphorylates fructose 6-phosphate to fructose 1,6-bisphosphate.

Glycolysis

The cytoplasmic energy-yielding pathway that consists in the breakdown of glucose into two molecules of pyruvate and the production of ATP.

Mitochondrial respiration

The energy-yielding pathway in which the electrochemical gradient generated across the inner mitochondrial membrane by the respiratory chain complexes is exploited to generate ATP by ATP synthase.

Aldolase

Glycolytic enzyme that reversibly converts fructose 1,6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate.

RHO-family GTPases

A family of small monomeric GTPases including RHO proteins, RAC proteins and CDC42 that function as molecular switches in response to chemical or mechanical stimuli to regulate actin organization.

Phosphoinositide 3-kinase

(PI3K). Enzymes involved in the activation of signalling pathways associated with proliferation, survival and motility. Elevated PI3K signalling due to gene mutation or activation by upstream inputs is a hallmark of cancer.

Metabolomics

The systematic study of the composition and relative abundance of the small-molecule metabolites (including sugars, amino acids, lipids, nucleotides and the intermediate molecules involved in their synthesis and degradation) in a cell or tissue.

Diacylglycerol

Lipid species with the structure of a glyceride that can act both as intermediates in lipid biosynthetic pathways and as second-messenger signalling molecules.

SREBP–SCAP complex

The complex formed in the endoplasmic reticulum by SREBP1 and SREBP2 and by the SREBP cleavage-activating proteins (SCAP), which regulates the transport of SREBP to the Golgi apparatus, where it is activated, in response to insufficient cholesterol levels.

Lipidomics

Metabolomic analyses specifically focusing on the lipid species composition.

Lipid droplets

Cellular structures for the storage of neutral lipids.

Spheroids

Three-dimensional cellular aggregates that cells form when cultured on non-adhesive plates, or in conditions offering very low levels of extracellular matrix resistance.

Saturation

The predominance of single chemical bonds between the carbon atoms of a molecule, as opposed to the presence of double bonds that are not yet saturated by hydrogen atoms.

Cardiolipin

Lipid species with the structure of a bisphosphatidylglycerol that constitutes about 20% of the total lipids of the inner mitochondrial membrane.

Viscoelastic properties

The ability of a material to exhibit both viscous and elastic characteristics when undergoing deformation.

Fatty acid oxidation

The process of breaking down a fatty acid molecule into acetyl-CoA molecules to feed the mitochondrial tricarboxylic acid cycle and ATP production.

Cancer-associated fibroblasts

A population of cells found in tumours that are negative for epithelial, endothelial and leukocyte markers, with an elongated morphology, lacking the mutations found within cancer cells and likely deriving from the fibroblastic lineage(s).

Senescence

The irreversible arrest of cell proliferation observed in normal non-transformed cells cultured in vitro, associated with telomere shortening and altered cell function, including altered cell morphology and expression of distinct secretory cytokines.

Hepatocyte metabolic zonation

The spatial organization of the various metabolic pathways and functions of hepatocytes within the liver lobules.

Tricarboxylic acid cycle

A series of chemical reactions occurring in mitochondria and used by cells to release energy by the oxidation of acetyl-CoA molecules derived from carbohydrates, fats or proteins. It is coupled to mitochondrial respiration that produces ATP, but also provides precursors for the synthesis of macromolecules.

Pentose phosphate pathway

A metabolic pathway fuelled by glucose and acting in parallel to glycolysis. It generates NADPH (an antioxidant molecule) and five-carbon sugars for the synthesis of nucleotides.

Autophagosome

A double-membrane vesicle incorporating cellular structures fated to lysosomal degradation in the process of autophagy

Lipid peroxides

The toxic products of the oxidation of membrane lipid molecules, which negatively affect the physical and chemical properties of the membrane lipid bilayers and the biological properties of membrane-associated proteins.

Epithelial–mesenchymal transition

The process by which cells lose epithelial identity and the ability to form stable adherens junctions and gain expression of mesenchymal markers, associated with increased migratory ability.

Hippo pathway

An intracellular signalling pathway centred on the activity of two protein kinase families, the kinases MST1/MST2 and LATS1/LATS2, which phosphorylate the YAP and TAZ proteins, controlling their nucleocytoplasmic shuttling, and thereby their activity as nuclear transcriptional co-activators.

Central carbon metabolism

The metabolic pathways, comprising glycolysis, the pentose phosphate pathway and the tricarboxylic acid cycle, that convert sugars into metabolic precursors.

Leader cells

The cells at the forefront of migration during collective cell migration.

Phosphocreatine

A molecule that provides high-energy phosphates to rapidly recycle ATP, acting in parallel to mitochondrial ATP synthesis.

AMP-activated protein kinase

(AMPK). A key energy-sensing protein kinase activated in response to nutrient stress.

Energy charge

An index used to measure the energy status of cells and calculated from the abundance of adenylate phosphates AMP, ADP and ATP.

Phosphoglycerate mutase

A glycolytic enzyme that converts 3-phosphoglycerate to 2-phosphoglycerate.

Lipid rafts

Discrete lipid domains present in the external side of the plasma membrane. These are enriched in cholesterol, glycosphingolipids, and glycosylphosphatidylinositol-anchored proteins.

Caveolae

Small invaginations of the plasma membrane involved in endocytosis.

Metalloproteinease

A proteolytic enzyme whose catalytic domain involves a metal.

Isocitrate dehydrogenase 1

Cytoplasmic enzyme that mediates the reversible decarboxylation of isocitrate to α-ketoglutarate.

Oncometabolite

A metabolite aberrantly accumulated and causing signalling dysregulation in cancer cells.

Mesangial cells

Specialized cells that surround the capillaries of the glomerulus in the kidney.

mTOR

Mechanistic target of rapamycin (mTOR), a core component of protein complexes involved in nutrient sensing. As a protein kinase, it regulates several processes, including cell growth and survival.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romani, P., Valcarcel-Jimenez, L., Frezza, C. et al. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol 22, 22–38 (2021). https://doi.org/10.1038/s41580-020-00306-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-00306-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research