Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Applications of CRISPR–Cas in agriculture and plant biotechnology

An Author Correction to this article was published on 04 November 2020

A Publisher Correction to this article was published on 12 October 2020

This article has been updated


The prokaryote-derived CRISPR–Cas genome editing technology has altered plant molecular biology beyond all expectations. Characterized by robustness and high target specificity and programmability, CRISPR–Cas allows precise genetic manipulation of crop species, which provides the opportunity to create germplasms with beneficial traits and to develop novel, more sustainable agricultural systems. Furthermore, the numerous emerging biotechnologies based on CRISPR–Cas platforms have expanded the toolbox of fundamental research and plant synthetic biology. In this Review, we first briefly describe gene editing by CRISPR–Cas, focusing on the newest, precise gene editing technologies such as base editing and prime editing. We then discuss the most important applications of CRISPR–Cas in increasing plant yield, quality, disease resistance and herbicide resistance, breeding and accelerated domestication. We also highlight the most recent breakthroughs in CRISPR–Cas-related plant biotechnologies, including CRISPR–Cas reagent delivery, gene regulation, multiplexed gene editing and mutagenesis and directed evolution technologies. Finally, we discuss prospective applications of this game-changing technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Deaminase-mediated and reverse transcriptase-mediated precise genome editing technologies in plants.
Fig. 2: Applications of CRISPR–Cas9 in breeding technologies.
Fig. 3: Strategies for CRISPR–Cas delivery.
Fig. 4: Multiplexed genome editing strategies.
Fig. 5: Directed evolution of herbicide resistance genes using CRISPR–Cas based technologies.

Change history

  • 12 October 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 04 November 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS  Google Scholar 

  2. 2.

    Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).

    CAS  Google Scholar 

  3. 3.

    Puchta, H., Dujon, B. & Hohn, B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 21, 5034–5040 (1993).

    CAS  Google Scholar 

  4. 4.

    Wright, D. A. et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693–705 (2005).

    CAS  Google Scholar 

  5. 5.

    Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761 (2010).

    CAS  Google Scholar 

  6. 6.

    Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  Google Scholar 

  7. 7.

    Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686–688 (2013).

    CAS  Google Scholar 

  8. 8.

    Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. & Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691–693 (2013).

    CAS  Google Scholar 

  9. 9.

    Li, J. F. et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688–691 (2013).

    CAS  Google Scholar 

  10. 10.

    Zhang, Y., Pribil, M., Palmgren, M. & Gao, C. A CRISPR way for accelerating improvement of food crops. Nat. Food 1, 200–205 (2020).

    Google Scholar 

  11. 11.

    Atkins, P. A. & Voytas, D. F. Overcoming bottlenecks in plant gene editing. Curr. Opin. Plant Biol. 54, 79–84 (2020).

    CAS  Google Scholar 

  12. 12.

    Huang, T. K. & Puchta, H. CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. Plant Cell Rep. 38, 443–453 (2019).

    CAS  Google Scholar 

  13. 13.

    Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016). This study describes the first DNA CBE in human cells.

    CAS  Google Scholar 

  14. 14.

    Shimatani, Z. et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441–443 (2017).

    CAS  Google Scholar 

  15. 15.

    Zong, Y. et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950–953 (2018).

    CAS  Google Scholar 

  16. 16.

    Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438–440 (2017).

    CAS  Google Scholar 

  17. 17.

    Ren, B. et al. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol. Plant 11, 623–626 (2018).

    CAS  Google Scholar 

  18. 18.

    Jin, S. et al. Rationally designed APOBEC3B cytosine base editors with improved specificity. Mol. Cell 79, 1–13 (2020).

    Google Scholar 

  19. 19.

    Li, C. et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. 38, 875–882 (2020). This study reports that saturation mutagenesis using dual base editors increases the herbicide resistance of rice.

    CAS  Google Scholar 

  20. 20.

    Hua, K., Tao, X. & Zhu, J. K. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol. J. 17, 499–504 (2019).

    Google Scholar 

  21. 21.

    Gaudelli, N. M. et al. Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017). This study reports the first evolved ABE of DNA in human cells.

    CAS  Google Scholar 

  22. 22.

    Li, C. et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 19, 59 (2018).

    Google Scholar 

  23. 23.

    Kang, B. C. et al. Precision genome engineering through adenine base editing in plants. Nat. Plants 4, 427–431 (2018).

    CAS  Google Scholar 

  24. 24.

    Hua, K. et al. Simplified adenine base editors improve adenine base editing efficiency in rice. Plant Biotechnol. J. 18, 770–778 (2020).

    CAS  Google Scholar 

  25. 25.

    Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    CAS  Google Scholar 

  26. 26.

    Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).

    CAS  Google Scholar 

  27. 27.

    Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    CAS  Google Scholar 

  28. 28.

    Wang, S. et al. Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC- Cas9. Nat Biotechnol. (2020). This study reports a suite of APOBEC–Cas9 fusion proteins for predictable and targeted deletions in plant genomes.

    Article  Google Scholar 

  29. 29.

    Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019). This study reports a highly promising technology for precise base substitutions, as well as insertions or deletions.

    CAS  Google Scholar 

  30. 30.

    Lin, Q. et al. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582–585 (2020).

    CAS  Google Scholar 

  31. 31.

    Xu, R. et al. Development of plant prime-editing systems for precise genome editing. Plant Commun. 1, 100043 (2020).

    Google Scholar 

  32. 32.

    Xu, W. et al. Versatile nucleotides substitution in plant using an improved prime editing system. Mol. Plant 13, 675–678 (2020).

    CAS  Google Scholar 

  33. 33.

    Wang, C. et al. A cytokinin-activation enzyme-like gene improves grain yield under various field conditions in rice. Plant Mol. Biol. 102, 373–388 (2020).

    CAS  Google Scholar 

  34. 34.

    Zhang, Z. et al. Development of an agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol. J. 17, 1623–1635 (2019).

    CAS  Google Scholar 

  35. 35.

    Lu, K. et al. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol. J. 16, 1710–1722 (2018).

    CAS  Google Scholar 

  36. 36.

    Zhou, J. et al. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep. 38, 475–485 (2019).

    CAS  Google Scholar 

  37. 37.

    Zhang, Y. et al. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant J. 94, 857–866 (2018).

    CAS  Google Scholar 

  38. 38.

    Zeng, Y., Wen, J., Zhao, W., Wang, Q. & Huang, W. Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR-Cas9 system. Front. Plant Sci. 10, 1663 (2019).

    Google Scholar 

  39. 39.

    Liu, J. et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat. Plants 3, 17043 (2017).

    CAS  Google Scholar 

  40. 40.

    Rodriguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480 e478 (2017). This study proves that editing CREs in promoter regions could generate a continuum of phenotypes.

    CAS  Google Scholar 

  41. 41.

    Yuste-Lisbona, F. J. et al. ENO regulates tomato fruit size through the floral meristem development network. Proc. Natl Acad. Sci. USA 117, 8187–8195 (2020).

    CAS  Google Scholar 

  42. 42.

    Gao, H. et al. Superior field performance of waxy corn engineered using CRISPR-Cas9. Nat. Biotechnol. 38, 579–581 (2020). This study introduces waxy alleles in 12 elite inbred maize lines without linkage drag.

    CAS  Google Scholar 

  43. 43.

    Xu, Y. et al. Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnol. J. (2020).

    Article  Google Scholar 

  44. 44.

    Sun, Y. et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. 8, 298 (2017).

    Google Scholar 

  45. 45.

    Sánchez-León, S. et al. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 16, 902–910 (2018).

    Google Scholar 

  46. 46.

    Li, X. et al. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant Sci. 9, 559 (2018).

    Google Scholar 

  47. 47.

    Dong, O. X. et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat. Commun. 11, 1178 (2020).

    CAS  Google Scholar 

  48. 48.

    Li, R. et al. Multiplexed CRISPR/Cas9-mediated metabolic engineering of gamma-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol. J. 16, 415–427 (2018).

    CAS  Google Scholar 

  49. 49.

    Khan, M. S. S., Basnet, R., Islam, S. A. & Shu, Q. Mutational analysis of OsPLDalpha1 reveals its involvement in phytic acid biosynthesis in rice grains. J. Agric. Food Chem. 67, 11436–11443 (2019).

    CAS  Google Scholar 

  50. 50.

    Do, P. T. et al. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and alpha-linolenic acid phenotype in soybean. BMC Plant Biol. 19, 311 (2019).

    Google Scholar 

  51. 51.

    Xu, Z. et al. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol. Plant 12, 1434–1446 (2019).

    CAS  Google Scholar 

  52. 52.

    Oliva, R. et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37, 1344–1350 (2019).

    CAS  Google Scholar 

  53. 53.

    Peng, A. et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15, 1509–1519 (2017).

    CAS  Google Scholar 

  54. 54.

    Zhang, Y. et al. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91, 714–724 (2017).

    CAS  Google Scholar 

  55. 55.

    Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014).

    CAS  Google Scholar 

  56. 56.

    Nekrasov, V. et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 7, 482 (2017).

    Google Scholar 

  57. 57.

    Ji, X. et al. Conferring DNA virus resistance with high specificity in plants using virus-inducible genome-editing system. Genome Biol. 19, 197 (2018).

    CAS  Google Scholar 

  58. 58.

    Liu, H. et al. CRISPR/Cas9-mediated resistance to cauliflower mosaic virus. Plant Direct. 2, e00047 (2018).

    Google Scholar 

  59. 59.

    Zhang, T. et al. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol. J. 16, 1415–1423 (2018).

    CAS  Google Scholar 

  60. 60.

    Mahas, A., Aman, R. & Mahfouz, M. CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biol. 20, 263 (2019).

    CAS  Google Scholar 

  61. 61.

    Chandrasekaran, J. et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17, 1140–1153 (2016).

    CAS  Google Scholar 

  62. 62.

    Powles, S. B. & Yu, Q. Evolution in action: plants resistant to herbicides. Annu. Rev. Plant Biol. 61, 317–347 (2010).

    CAS  Google Scholar 

  63. 63.

    Sun, Y. et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol. Plant 9, 628–631 (2016).

    CAS  Google Scholar 

  64. 64.

    Zhang, R. et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat. Plants 5, 480–485 (2019).

    CAS  Google Scholar 

  65. 65.

    Hummel, A. W. et al. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol. J. 16, 1275–1282 (2018).

    CAS  Google Scholar 

  66. 66.

    de Pater, S., Klemann, B. & Hooykaas, P. J. J. True gene-targeting events by CRISPR/Cas-induced DSB repair of the PPO locus with an ectopically integrated repair template. Sci. Rep. 8, 3338 (2018).

    Google Scholar 

  67. 67.

    Liu, L. et al. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2. Plant Biotechnol. J. (2020).

    Article  Google Scholar 

  68. 68.

    Butt, H. et al. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biol. 20, 73 (2019).

    Google Scholar 

  69. 69.

    Waltz, E. With a free pass, CRISPR-edited plants reach market in record time. Nat. Biotechnol. 36, 6–7 (2018).

    CAS  Google Scholar 

  70. 70.

    Liu, C. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Mol. Plant 10, 520–522 (2017).

    CAS  Google Scholar 

  71. 71.

    Liu, C. et al. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol. J. 18, 316–318 (2020).

    Google Scholar 

  72. 72.

    Yao, L. et al. OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants 4, 530–533 (2018).

    CAS  Google Scholar 

  73. 73.

    Kuppu, S. et al. A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotechnol. J. (2020).

    Article  Google Scholar 

  74. 74.

    Zhong, Y. et al. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nat. Plants 6, 466–472 (2020).

    CAS  Google Scholar 

  75. 75.

    Zhong, Y. et al. Mutation of ZmDMP enhances haploid induction in maize. Nat. Plants 5, 575–580 (2019).

    Google Scholar 

  76. 76.

    Okada, A. et al. CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol. J. 17, 1905–1913 (2019).

    CAS  Google Scholar 

  77. 77.

    Singh, M., Kumar, M., Albertsen, M. C., Young, J. K. & Cigan, A. M. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol. Biol. 97, 371–383 (2018).

    CAS  Google Scholar 

  78. 78.

    Du, M. et al. A biotechnology-based male-sterility system for hybrid seed production in tomato. Plant J. 102, 1090–1100 (2020).

    CAS  Google Scholar 

  79. 79.

    Li, J. et al. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J. Genet. Genomics 44, 465–468 (2017).

    Google Scholar 

  80. 80.

    Gu, W., Zhang, D., Qi, Y. & Yuan, Z. Generating photoperiod-sensitive genic male sterile rice lines with CRISPR/Cas9. Methods Mol. Biol. 1917, 97–107 (2019).

    CAS  Google Scholar 

  81. 81.

    Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).

    CAS  Google Scholar 

  82. 82.

    Wang, C. et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat. Biotechnol. 37, 283–286 (2019). This study demonstrates that simultaneously editing genes related to meiosis and fertilization can induce clonal propagation and thus fix hybrid vigour.

    CAS  Google Scholar 

  83. 83.

    Qin, X. et al. A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase-independent unilateral incompatibility. Plant J. 93, 417–430 (2018).

    CAS  Google Scholar 

  84. 84.

    Chen, F. et al. Functional analysis of M-Locus protein kinase revealed a novel regulatory mechanism of self-incompatibility in Brassica napus L. Int. J. Mol. Sci. 20, 3303 (2019).

    CAS  Google Scholar 

  85. 85.

    Ma, C. et al. CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic. Res. 6, 20 (2019).

    Google Scholar 

  86. 86.

    Shen, R. et al. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nat. Commun. 8, 1310 (2017).

    Google Scholar 

  87. 87.

    Xie, Y. et al. Interspecific hybrid sterility in rice is mediated by OgTPR1 at the S1 locus encoding a peptidase-like protein. Mol. Plant 10, 1137–1140 (2017).

    CAS  Google Scholar 

  88. 88.

    Hayut, S., Melamed Bessudo, C. & Levy, A. A. Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat. Commun. 8, 15605 (2017).

    Google Scholar 

  89. 89.

    Beying, N., Schmidt, C., Pacher, M., Houben, A. & Puchta, H. CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nat. Plants 6, 638–645 (2020).

    CAS  Google Scholar 

  90. 90.

    Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. Cell 127, 1309–1321 (2006).

    CAS  Google Scholar 

  91. 91.

    Fernie, A. R. & Yan, J. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12, 615–631 (2019).

    CAS  Google Scholar 

  92. 92.

    Yang, X. P., Yu, A. & Xu, C. De novo domestication to create new crops. Yi Chuan 41, 827–835 (2019).

    Google Scholar 

  93. 93.

    Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–1163 (2018). This study demonstrates the de novo domestication of wild tomatoes through gene editing of domestication-related loci.

    CAS  Google Scholar 

  94. 94.

    Zsogon, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    CAS  Google Scholar 

  95. 95.

    Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).

    CAS  Google Scholar 

  96. 96.

    Ran, Y., Liang, Z. & Gao, C. Current and future editing reagent delivery systems for plant genome editing. Sci. China Life Sci. 60, 490–505 (2017).

    CAS  Google Scholar 

  97. 97.

    DeHaan, L. et al. Roadmap for accelerated domestication of an emerging perennial grain crop. Trends Plant Sci. 25, 525–537 (2020).

    CAS  Google Scholar 

  98. 98.

    Sedbrook, J. C., Phippen, W. B. & Marks, M. D. New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.). Plant Sci. 227, 122–132 (2014).

    CAS  Google Scholar 

  99. 99.

    Lowe, K. et al. Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).

    CAS  Google Scholar 

  100. 100.

    Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38, 84–89 (2020). This study explores a tissue culture-free way to obtain gene-edited plants through de novo meristem induction.

    CAS  Google Scholar 

  101. 101.

    Ali, Z. et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant 8, 1288–1291 (2015).

    CAS  Google Scholar 

  102. 102.

    Ali, Z., Eid, A., Ali, S. & Mahfouz, M. M. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Res. 244, 333–337 (2018).

    CAS  Google Scholar 

  103. 103.

    Cody, W. B., Scholthof, H. B. & Mirkov, T. E. Multiplexed gene editing and protein overexpression using a tobacco mosaic virus viral vector. Plant Physiol. 175, 23–35 (2017).

    CAS  Google Scholar 

  104. 104.

    Hu, J. et al. A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize. Mol. Plant Pathol. 20, 1463–1474 (2019).

    CAS  Google Scholar 

  105. 105.

    Mei, Y. et al. Protein expression and gene editing in monocots using foxtail mosaic virus vectors. Plant Direct 3, e00181 (2019).

    Google Scholar 

  106. 106.

    Jiang, N. et al. Development of beet necrotic yellow vein virus-based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. Plant Biotechnol. J. 17, 1302–1315 (2019).

    CAS  Google Scholar 

  107. 107.

    Yin, K. et al. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci. Rep. 5, 14926 (2015).

    CAS  Google Scholar 

  108. 108.

    Gao, Q. et al. Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies. N. Phytol. 223, 2120–2133 (2019).

    CAS  Google Scholar 

  109. 109.

    Ma, X., Zhang, X., Liu, H. & Li, Z. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. Nat. Plants 6, 773–779 (2020).

    CAS  Google Scholar 

  110. 110.

    Ellison, E. E. et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat. Plants 6, 620–624 (2020). This study demonstrates that an engineered RNA virus can induce heritable gene editing in planta.

    CAS  Google Scholar 

  111. 111.

    Kelliher, T. et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 37, 287–292 (2019). This study explores a CRISPR–Cas delivery strategy using a haploid inducer.

    CAS  Google Scholar 

  112. 112.

    Wang, B. et al. Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol. Plant 12, 597–602 (2019).

    Google Scholar 

  113. 113.

    Budhagatapalli, N. et al. Site-directed mutagenesis in bread and durum wheat via pollination by cas9/guide RNA-transgenic maize used as haploidy inducer. Plant Biotechnol. J. (2020).

    Article  Google Scholar 

  114. 114.

    Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS  Google Scholar 

  115. 115.

    Shariati, S. A. et al. Reversible disruption of specific transcription factor-DNA interactions using CRISPR/Cas9. Mol. Cell 74, 622–633 e624 (2019).

    CAS  Google Scholar 

  116. 116.

    Li, Z. et al. A potent Cas9-derived gene activator for plant and mammalian cells. Nat. Plants 3, 930–936 (2017).

    CAS  Google Scholar 

  117. 117.

    Lowder, L. G. et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169, 971–985 (2015).

    Google Scholar 

  118. 118.

    Lowder, L. G. et al. Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems. Mol. Plant 11, 245–256 (2018).

    CAS  Google Scholar 

  119. 119.

    Gallego-Bartolome, J. et al. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc. Natl Acad. Sci. USA 115, e2125–e2134 (2018).

    Google Scholar 

  120. 120.

    Papikian, A., Liu, W., Gallego-Bartolome, J. & Jacobsen, S. E. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat. Commun. 10, 729 (2019).

    CAS  Google Scholar 

  121. 121.

    Morgan, S. L. et al. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat. Commun. 8, 15993 (2017).

    CAS  Google Scholar 

  122. 122.

    Cui, Y. et al. Production of novel beneficial alleles of a rice yield-related QTL by CRISPR/Cas9. Plant Biotechnol. J. (2020).

    Article  Google Scholar 

  123. 123.

    Huang, L. et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnol. J. (2020).

    Article  Google Scholar 

  124. 124.

    Jia, H. & Wang, N. Generation of homozygous canker-resistant citrus in the T0 generation using CRISPR-SpCas9p. Plant Biotechnol. J. (2020).

    Article  Google Scholar 

  125. 125.

    Abudayyeh, O. O. et al. RNA targeting with CRISPR-Cas13. Nature 550, 280–284 (2017).

    Google Scholar 

  126. 126.

    Li, Z., Xiong, X., Wang, F., Liang, J. & Li, J. F. Gene disruption through base editing-induced messenger RNA missplicing in plants. N. Phytol. 222, 1139–1148 (2019).

    CAS  Google Scholar 

  127. 127.

    Zeng, D. et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5’UTR-intron editing improves grain quality in rice. Plant Biotechnol. J. (2020).

    Article  Google Scholar 

  128. 128.

    Xue, C., Zhang, H., Lin, Q., Fan, R. & Gao, C. Manipulating mRNA splicing by base editing in plants. Sci. China Life Sci. 61, 1293–1300 (2018).

    CAS  Google Scholar 

  129. 129.

    Zhang, H. et al. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 36, 894–898 (2018). This study illustrates CRISPR–Cas editing of a uORF could translationally upregulate the expression of the primary ORF.

    CAS  Google Scholar 

  130. 130.

    Xing, S. et al. Fine-tuning sugar content in strawberry. Genome Biol. Rev. 21, 230 (2020).

    CAS  Google Scholar 

  131. 131.

    Lloyd, J. P., Seddon, A. E., Moghe, G. D., Simenc, M. C. & Shiu, S. H. Characteristics of plant essential genes allow for within- and between-species prediction of lethal mutant phenotypes. Plant Cell 27, 2133–2147 (2015).

    CAS  Google Scholar 

  132. 132.

    Decaestecker, W. et al. CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis. Plant Cell 31, 2868–2887 (2019).

    CAS  Google Scholar 

  133. 133.

    Wang, X. et al. An inducible genome editing system for plants. Nat. Plants 6, 766–772 (2020).

    CAS  Google Scholar 

  134. 134.

    Ochoa-Fernandez, R. et al. Optogenetic control of gene expression in plants in the presence of ambient white light. Nat. Methods 17, 717–725 (2020).

    CAS  Google Scholar 

  135. 135.

    Barone, P. et al. Efficient gene targeting in maize using inducible CRISPR-Cas9 and marker-free donor template. Preprint at BioRxiv (2020).

    Article  Google Scholar 

  136. 136.

    Xing, H. L. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14, 327 (2014).

    Google Scholar 

  137. 137.

    Ma, X. & Liu, Y. G. CRISPR/Cas9-based multiplex genome editing in monocot and dicot plants. Curr. Protoc. Mol. Biol. 115, 31.6.1–31.6.21 (2016).

    Google Scholar 

  138. 138.

    Xie, K., Minkenberg, B. & Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl Acad. Sci. USA 112, 3570–3575 (2015).

    CAS  Google Scholar 

  139. 139.

    Gao, Y. & Zhao, Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. 56, 343–349 (2014).

    CAS  Google Scholar 

  140. 140.

    Ding, D., Chen, K., Chen, Y., Li, H. & Xie, K. Engineering introns to express RNA guides for Cas9- and Cpf1-mediated multiplex genome editing. Mol. Plant 11, 542–552 (2018).

    CAS  Google Scholar 

  141. 141.

    Mikami, M., Toki, S. & Endo, M. In planta processing of the SpCas9-gRNA complex. Plant Cell Physiol. 58, 1857–1867 (2017).

    CAS  Google Scholar 

  142. 142.

    Cermak, T. et al. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29, 1196–1217 (2017).

    CAS  Google Scholar 

  143. 143.

    Wang, M., Mao, Y., Lu, Y., Tao, X. & Zhu, J. K. Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol. Plant 10, 1011–1013 (2017).

    CAS  Google Scholar 

  144. 144.

    Zalatan, J. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).

    CAS  Google Scholar 

  145. 145.

    Dahlman, J. E. et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat. Biotechnol. 33, 1159–1161 (2015).

    CAS  Google Scholar 

  146. 146.

    Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D. & Platt, R. J. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat. Methods 16, 887–893 (2019).

    CAS  Google Scholar 

  147. 147.

    Lian, J., HamediRad, M., Hu, S. & Zhao, H. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nat. Commun. 8, 1688 (2017).

    Google Scholar 

  148. 148.

    Li, C. et al. SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds. Genome Biol. 21, 141 (2020). This study establishes a trifunctional multiplexed orthogonal genome editing system that performs cytosine base editing, adenine base editing and insertions and deletions in plants.

    CAS  Google Scholar 

  149. 149.

    Fan, R. et al. Shortening the sgRNA-DNA interface enables SpCas9 and eSpCas9(1.1) to nick the target DNA strand. Sci. China Life Sci. (2020).

  150. 150.

    Meng, X. et al. Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol. Plant 10, 1238–1241 (2017). This study demonstrates the applicability of large-scale CRISPR–Cas libraries in rice.

    CAS  Google Scholar 

  151. 151.

    Lu, Y. et al. Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system. Mol. Plant 10, 1242–1245 (2017).

    CAS  Google Scholar 

  152. 152.

    Liu, H. J. et al. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32, 1397–1413 (2020).

    CAS  Google Scholar 

  153. 153.

    Jacobs, T. B., Zhang, N., Patel, D. & Martin, G. B. Generation of a collection of mutant tomato lines using pooled CRISPR libraries. Plant Physiol. 174, 2023–2037 (2017).

    CAS  Google Scholar 

  154. 154.

    Bai, M. et al. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol. J. 18, 721–731 (2020).

    CAS  Google Scholar 

  155. 155.

    Kuang, Y. et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Mol. Plant 13, 565–572 (2020).

    CAS  Google Scholar 

  156. 156.

    Liu, X. et al. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice. Plant Biotechnol. J. (2020).

    Article  Google Scholar 

  157. 157.

    Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    CAS  Google Scholar 

  158. 158.

    Kwak, S. Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    CAS  Google Scholar 

  159. 159.

    Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl Acad. Sci. USA 116, 7543–7548 (2019).

    CAS  Google Scholar 

  160. 160.

    Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).

    CAS  Google Scholar 

  161. 161.

    Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).

    CAS  Google Scholar 

  162. 162.

    Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).

    CAS  Google Scholar 

  163. 163.

    Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).

    CAS  Google Scholar 

  164. 164.

    Lowe, K. et al. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. Vitro Cell Dev. Biol. Plant 54, 240–252 (2018).

    CAS  Google Scholar 

  165. 165.

    Nelson-Vasilchik, K., Hague, J., Mookkan, M., Zhang, Z. J. & Kausch, A. Transformation of recalcitrant sorghum varieties facilitated by Baby Boom and Wuschel2. Curr. Protoc. Plant Biol. 3, e20076 (2018).

    CAS  Google Scholar 

  166. 166.

    Zhang, Q. et al. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiol. 181, 1441–1448 (2019).

    CAS  Google Scholar 

  167. 167.

    Mehta, D. et al. Linking CRISPR–Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biol. 20, 80 (2019).

    Google Scholar 

Download references


The authors apologize to those colleagues whose work was not cited due to restrictions on the number of references. This work was supported by grants from the National Natural Science Foundation of China (31788103), the Strategic Priority Research Program of the Chinese Academy of Sciences (Precision Seed Design and Breeding, XDA24020102) and the Chinese Academy of Sciences (QYZDY-SSW-SMC030).

Author information




H.Z. and C.L. researched data for the article, substantially contributed to discussion of the content and wrote the article. C.G. substantially contributed to discussion of the content, wrote the article and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Caixia Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Hervé Vanderschuren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


Green revolution

Refers to a great increase in crop production in the second half of the twentieth century through the use of fertilizers, the sue of agrochemicals, cultivation of high-yield crop varieties and mechanization.


A nucleic acid (single-stranded DNA, double-stranded DNA or RNA) that has some homology with the region flanking a CRISPR–Cas-generated DNA break that can serve as a template during homology-directed repair.

Gene targeting

A genome editing technology that creates genome modifications, such as gene substitutions, insertions and deletions, through homology-directed repair.

Cas9 nickase

(nCas9). A term for catalytically defective Cas9 variants that cut only one strand of the target DNA; they include Cas9 bearing the mutations D10A or H840A, which cut the target strand and non-target strand, respectively.

Base transitions

Single-nucleotide changes that substitute one pyrimidine for another or one purine for another.

Single guide RNA

(sgRNA). An artificial fusion of CRISPR RNA and trans-activating CRISPR RNA, which guides Cas9 to the target site through DNA–RNA recognition.


A nucleic acid structure formed when the Cas9–single guide RNA (sgRNA) complex invades the target DNA and the sgRNA forms a DNA–RNA hybrid with the target strand while displacing the non-target strand.

Editing windows

Regions of the target DNA in which base substitutions are induced by base editors; the window is usually numbered in ascending order from the distal end of the protospacer adjacent motif.


A two- to six-nucleotide sequence within the guide RNA that determines the target site of CRISPR–Cas. It is located at the 5′ terminus of the single guide RNA in Cas9 and the 3′ terminus of the CRISPR RNA in Cas12a.

Protospacer adjacent motif

(PAM). The DNA motif flanking the target sequence, which is indispensable for target recognition and cleavage by CRISPR–Cas. For Streptococcus pyogenes Cas9, the PAM is 5′-NGG-3′.

Editing scope

The length of the genomic sequence that can be targeted for editing given the requirements of the particular protospacer adjacent motif.

sgRNA scaffold

(scRNA). A single guide RNA harbouring RNA aptamer hairpins in its tetraloop, stem loop 2 or 3′ end.

Directed evolution

A protein engineering method that generates user-defined proteins or DNA by mimicking the process of natural selection.

Hybrid vigour

The phenomenon of heterozygotes formed from homozygous parents often exhibiting better agronomic performance than either parent.


Situations in which female and male gametes are both fertile but the pollen cannot germinate on stigmas with the same or a similar genotype.

Orphan crops

Crops cultivated and consumed regionally, which are generally not fully domesticated and are especially essential in developing countries.


Particles with specific nanoscale structures that can load biomacromolecules and deliver them into intact plant cells.

Polyethylene glycol

A high molecular weight polymer that enables uptake by plant protoplasts of biomacromolecules, including DNA, RNA and protein.

RNA aptamers

RNA oligonucleotides that form a secondary structure to bind a specific protein with high specificity and affinity.

CRISPR library

A high-throughput tool for functional genomics studies, comprising a collection of single guide RNAs or CRISPR RNAs, which target a set of predefined loci.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Li, C. & Gao, C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21, 661–677 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing