Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Regulatory R-loops as facilitators of gene expression and genome stability

Abstract

R-loops are three-stranded structures that harbour an RNA–DNA hybrid and frequently form during transcription. R-loop misregulation is associated with DNA damage, transcription elongation defects, hyper-recombination and genome instability. In contrast to such ‘unscheduled’ R-loops, evidence is mounting that cells harness the presence of RNA–DNA hybrids in scheduled, ‘regulatory’ R-loops to promote DNA transactions, including transcription termination and other steps of gene regulation, telomere stability and DNA repair. R-loops formed by cellular RNAs can regulate histone post-translational modification and may be recognized by dedicated reader proteins. The two-faced nature of R-loops implies that their formation, location and timely removal must be tightly regulated. In this Perspective, we discuss the cellular processes that regulatory R-loops modulate, the regulation of R-loops and the potential differences that may exist between regulatory R-loops and unscheduled R-loops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional RNA–DNA hybrids.
Fig. 2: R-loops across the genome.
Fig. 3: R-loops as regulators of gene expression.
Fig. 4: R-loops can promote transcription termination.
Fig. 5: RNA–DNA hybrids can promote genome stability.
Fig. 6: Unscheduled versus regulatory R-loops — a model.

Similar content being viewed by others

References

  1. Morris, K. V. & Mattick, J. S. The rise of regulatory RNA. Nat. Rev. Genet. 15, 423–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Santos-Pereira, J. M. & Aguilera, A. R loops: new modulators of genome dynamics and function. Nat. Rev. Genet. 16, 583–597 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Muse, T. & Aguilera, A. R. Loops: from physiological to pathological roles. Cell 179, 604–618 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Sollier, J. & Cimprich, K. A. Breaking bad: R-loops and genome integrity. Trends Cell Biol. 25, 514–522 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crossley, M. P., Bocek, M. & Cimprich, K. A. R-loops as cellular regulators and genomic threats. Mol. Cell 73, 398–411 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aguilera, A. & Garcia-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Hamperl, S. & Cimprich, K. A. Conflict resolution in the genome: how transcription and replication make it work. Cell 167, 1455–1467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lang, K. S. et al. Replication–transcription conflicts generate R-loops that orchestrate bacterial stress survival and pathogenesis. Cell 170, 787–799.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hamperl, S., Bocek, M. J., Saldivar, J. C., Swigut, T. & Cimprich, K. A. Transcription–replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170, 774–786.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Cristini, A. et al. Dual processing of R-loops and topoisomerase I induces transcription-dependent DNA double-strand breaks. Cell Rep. 28, 3167–3181.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanz, L. A. et al. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63, 167–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Belotserkovskii, B. P., Tornaletti, S., D'Souza, A. D. & Hanawalt, P. C. R-loop generation during transcription: formation, processing and cellular outcomes. DNA Repair 71, 69–81 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Freudenreich, C. H. R-loops: targets for nuclease cleavage and repeat instability. Curr. Genet. 64, 789–794 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Richard, P. & Manley, J. L. R loops and links to human disease. J. Mol. Biol. 429, 3168–3180 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Skourti-Stathaki, K. & Proudfoot, N. J. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 28, 1384–1396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Costantino, L. & Koshland, D. The Yin and Yang of R-loop biology. Curr. Opin. Cell Biol. 34, 39–45 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aguilera, A. & Gomez-Gonzalez, B. DNA–RNA hybrids: the risks of DNA breakage during transcription. Nat. Struct. Mol. Biol. 24, 439–443 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Stodola, J. L. & Burgers, P. M. Mechanism of lagging-strand DNA replication in eukaryotes. Adv. Exp. Med. Biol. 1042, 117–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Burgers, P. M. Solution to the 50-year-old Okazaki-fragment problem. Proc. Natl Acad. Sci. USA 116, 3358–3360 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sugino, A., Hirose, S. & Okazaki, R. RNA-linked nascent DNA fragments in Escherichia coli. Proc. Natl Acad. Sci. USA 69, 1863–1867 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Greider, C. W. & Blackburn, E. H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Williams, J. S. & Kunkel, T. A. Ribonucleotides in DNA: origins, repair and consequences. DNA Repair 19, 27–37 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lujan, S. A., Williams, J. S., Clausen, A. R., Clark, A. B. & Kunkel, T. A. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 50, 437–443 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghodgaonkar, M. M. et al. Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol. Cell 50, 323–332 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pryor, J. M. et al. Ribonucleotide incorporation enables repair of chromosome breaks by nonhomologous end joining. Science 361, 1126–1129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nick McElhinny, S. A. et al. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc. Natl Acad. Sci. USA 107, 4949–4954 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Westover, K. D., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119, 481–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, L. et al. R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters. Mol. Cell 68, 745–757.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wahba, L., Gore, S. K. & Koshland, D. The homologous recombination machinery modulates the formation of RNA–DNA hybrids and associated chromosome instability. eLife 2, e00505 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Boguslawski, S. J. et al. Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids. J. Immunolo. Methods 89, 123–130 (1986).

    Article  CAS  Google Scholar 

  32. Ginno, P. A., Lott, P. L., Christensen, H. C., Korf, I. & Chedin, F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bhatia, V. et al. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 511, 362–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Vanoosthuyse, V. Strengths and weaknesses of the current strategies to map and characterize R-loops. Noncoding RNA 4, 9 (2018).

    PubMed Central  Google Scholar 

  35. Wahba, L., Amon, J. D., Koshland, D. & Vuica-Ross, M. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol. Cell 44, 978–988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan, Y. A. et al. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLOS Genet. 10, e1004288 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wahba, L., Costantino, L., Tan, F. J., Zimmer, A. & Koshland, D. S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev. 30, 1327–1338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. El Hage, A., Webb, S., Kerr, A. & Tollervey, D. Genome-wide distribution of RNA–DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLOS Genet. 10, e1004716 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Xu, W. et al. The R-loop is a common chromatin feature of the Arabidopsis genome. Nat. Plants 3, 704–714 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Arora, R. et al. RNaseH1 regulates TERRA–telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat. Commun. 5, 5220 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Nadel, J. et al. RNA:DNA hybrids in the human genome have distinctive nucleotide characteristics, chromatin composition, and transcriptional relationships. Epigenetics Chromatin 8, 46 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ginno, P. A., Lim, Y. W., Lott, P. L., Korf, I. & Chedin, F. GC skew at the 5’ and 3’ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res. 23, 1590–1600 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dumelie, J. G. & Jaffrey, S. R. Defining the location of promoter-associated R-loops at near-nucleotide resolution using bisDRIP-seq. eLife 6, e28306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ratmeyer, L., Vinayak, R., Zhong, Y. Y., Zon, G. & Wilson, W. D. Sequence specific thermodynamic and structural properties for DNA.RNA duplexes. Biochemistry 33, 5298–5304 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Roberts, R. W. & Crothers, D. M. Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463–1466 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. De Magis, A. et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc. Natl Acad. Sci. USA 116, 816–825 (2019).

    Article  PubMed  CAS  Google Scholar 

  47. Carrasco-Salas, Y. et al. The extruded non-template strand determines the architecture of R-loops. Nucleic Acids Res. 47, 6783–6795 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Skourti-Stathaki, K., Proudfoot, N. J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao, D. Y. et al. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature 529, 48–53 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Knott, G. J. & Doudna, J. A. CRISPR–Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu, K., Chedin, F., Hsieh, C. L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Reaban, M. E. & Griffin, J. A. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348, 342–344 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Briggs, E., Crouch, K., Lemgruber, L., Lapsley, C. & McCulloch, R. Ribonuclease H1-targeted R-loops in surface antigen gene expression sites can direct trypanosome immune evasion. PLOS Genet. 14, e1007729 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. El Hage, A., French, S. L., Beyer, A. L. & Tollervey, D. Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24, 1546–1558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun, Q., Csorba, T., Skourti-Stathaki, K., Proudfoot, N. J. & Dean, C. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340, 619–621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Conn, V. M. et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat. Plants 3, 17053 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Powell, W. T. et al. R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc. Natl Acad. Sci. USA 110, 13938–13943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakama, M., Kawakami, K., Kajitani, T., Urano, T. & Murakami, Y. DNA–RNA hybrid formation mediates RNAi-directed heterochromatin formation. Genes Cell 17, 218–233 (2012).

    Article  CAS  Google Scholar 

  63. Groh, M., Lufino, M. M., Wade-Martins, R. & Gromak, N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLOS Genet. 10, e1004318 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Skourti-Stathaki, K., Kamieniarz-Gdula, K. & Proudfoot, N. J. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516, 436–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Castellano-Pozo, M. et al. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol. Cell 52, 583–590 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Beckedorff, F. C. et al. The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation. PLOS Genet. 9, e1003705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boque-Sastre, R. et al. Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc. Natl Acad. Sci. USA 112, 5785–5790 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cloutier, S. C. et al. Regulated formation of lncRNA–DNA hybrids enables faster transcriptional induction and environmental adaptation. Mol. Cell 61, 393–404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gibbons, H. R. et al. Divergent lncRNA GATA3–AS1 regulates GATA3 transcription in T-helper 2. Cells. Front. Immunol. 9, 2512 (2018).

    Article  PubMed  CAS  Google Scholar 

  70. Tan-Wong, S. M., Dhir, S. & Proudfoot, N. J. R-loops promote antisense transcription across the mammalian genome. Mol. Cell 76, 600–616.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arab, K. et al. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat. Genet. 51, 217–223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grunseich, C. et al. Senataxin mutation reveals how R-loops promote transcription by blocking DNA methylation at gene promoters. Mol. Cell 69, 426–437 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, P. B., Chen, H. V., Acharya, D., Rando, O. J. & Fazzio, T. G. R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat. Struct. Mol. Biol. 22, 999–1007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Skourti-Stathaki, K. et al. R-loops enhance polycomb repression at a subset of developmental regulator genes. Mol. Cell 73, 930–945 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cristini, A., Groh, M., Kristiansen, M. S. & Gromak, N. RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage. Cell Rep. 23, 1891–1905 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, I. X. et al. Human proteins that interact with RNA/DNA hybrids. Genome Res. 28, 1405–1414 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nguyen, H. D. et al. Functions of replication protein A as a sensor of R loops and a regulator of RNaseH1. Mol. Cell 65, 832–847.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yuan, W. et al. ALBA protein complex reads genic R-loops to maintain genome stability in Arabidopsis. Sci. Adv. 5, eaav9040 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Arab, K. et al. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol. Cell 55, 604–614 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Kienhofer, S. et al. GADD45a physically and functionally interacts with TET1. Differentiation 90, 59–68 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Li, Z. et al. Gadd45a promotes DNA demethylation through TDG. Nucleic Acids Res. 43, 3986–3997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Proudfoot, N. J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352, aad9926 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kireeva, M. L., Komissarova, N. & Kashlev, M. Overextended RNA:DNA hybrid as a negative regulator of RNA polymerase II processivity. J. Mol. Biol. 299, 325–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Belotserkovskii, B. P. et al. Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc. Natl Acad. Sci. USA 107, 12816–12821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang, X. et al. m6A promotes R-loop formation to facilitate transcription termination. Cell Res. 29, 1035–1038 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Abakir, A. et al. N 6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat. Genet. 52, 48–55 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Morales, J. C. et al. XRN2 links transcription termination to DNA damage and replication stress. PLOS Genet. 12, e1006107 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Mersaoui, S. Y. et al. Arginine methylation of the DDX5 helicase RGG/RG motif by PRMT5 regulates resolution of RNA:DNA hybrids. EMBO J. 38, e100986 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Rivosecchi, J. et al. Senataxin homologue Sen1 is required for efficient termination of RNA polymerase III transcription. EMBO J. 38, e101955 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Li, X. & Manley, J. L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Stirling, P. C. et al. R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. Genes Dev. 26, 163–175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Costantino, L. & Koshland, D. Genome-wide map of R-loop-induced damage reveals how a subset of R-loops contributes to genomic instability. Mol. Cell 71, 487–497.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mischo, H. E. et al. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol. Cell 41, 21–32 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pankotai, T., Bonhomme, C., Chen, D. & Soutoglou, E. DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks. Nat. Struct. Mol. Biol. 19, 276–282 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Awwad, S. W., Abu-Zhayia, E. R., Guttmann-Raviv, N. & Ayoub, N. NELF-E is recruited to DNA double-strand break sites to promote transcriptional repression and repair. EMBO Rep. 18, 745–764 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970–981 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gong, F., Clouaire, T., Aguirrebengoa, M., Legube, G. & Miller, K. M. Histone demethylase KDM5A regulates the ZMYND8-NuRD chromatin remodeler to promote DNA repair. J. Cell Biol. 216, 1959–1974 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Savitsky, P. et al. Multivalent histone and DNA engagement by a PHD/BRD/PWWP triple reader cassette recruits ZMYND8 to K14ac-rich chromatin. Cell Rep. 17, 2724–2737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rona, G. et al. PARP1-dependent recruitment of the FBXL10–RNF68–RNF2 ubiquitin ligase to sites of DNA damage controls H2A.Z loading. eLife 7, e38771 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Campbell, S., Ismail, I. H., Young, L. C., Poirier, G. G. & Hendzel, M. J. Polycomb repressive complex 2 contributes to DNA double-strand break repair. Cell Cycle 12, 2675–2683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ginjala, V. et al. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol. Cell. Biol. 31, 1972–1982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ismail, I. H., Andrin, C., McDonald, D. & Hendzel, M. J. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J. Cell Biol. 191, 45–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yasuhara, T. et al. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell 175, 558–570.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Teng, Y. et al. ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nat. Commun. 9, 4115 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ohle, C. et al. Transient RNA–DNA hybrids are required for efficient double-strand break repair. Cell 167, 1001–1013.e7 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Li, L. et al. DEAD Box 1 facilitates removal of RNA and homologous recombination at DNA double-strand breaks. Mol. Cell. Biol. 36, 2794–2810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cohen, S. et al. Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat. Commun. 9, 533 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. D’Alessandro, G. et al. BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat. Commun. 9, 5376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Allison, D. F. & Wang, G. G. R-loops: formation, function, and relevance to cell stress. Cell Stress 3, 38–46 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Michelini, F. et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat. Cell Biol. 19, 1400–1411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Puget, N., Miller, K. M. & Legube, G. Non-canonical DNA/RNA structures during transcription-coupled double-strand break repair: roadblocks or bona fide repair intermediates? DNA Repair 81, 102661 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Zhao, H., Zhu, M., Limbo, O. & Russell, P. RNase H eliminates R-loops that disrupt DNA replication but is nonessential for efficient DSB repair. EMBO Rep. 19, e45335 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Britton, S. et al. DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res. 42, 9047–9062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Balk, B. et al. Telomeric RNA–DNA hybrids affect telomere-length dynamics and senescence. Nat. Struct. Mol. Biol. 20, 1199–1205 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Arora, R. & Azzalin, C. M. Telomere elongation chooses TERRA ALTernatives. RNA Biol. 12, 938–941 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pfeiffer, V., Crittin, J., Grolimund, L. & Lingner, J. The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO J. 32, 2861–2871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rippe, K. & Luke, B. TERRA and the state of the telomere. Nat. Struct. Mol. Biol. 22, 853–858 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Graf, M. et al. Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170, 72–85.e14 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Porro, A., Feuerhahn, S., Reichenbach, P. & Lingner, J. Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol. Cell. Biol. 30, 4808–4817 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cusanelli, E., Romero, C. A. & Chartrand, P. Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol. Cell 51, 780–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Garcia-Rubio, M. et al. Yra1-bound RNA–DNA hybrids cause orientation-independent transcription–replication collisions and telomere instability. Genes Dev. 32, 965–977 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kabeche, L., Nguyen, H. D., Buisson, R. & Zou, L. A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation. Science 359, 108–114 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Chen, C. F., Pohl, T. J., Chan, A., Slocum, J. S. & Zakian, V. A. Saccharomyces cerevisiae centromere RNA is negatively regulated by Cbf1 and its unscheduled synthesis impacts CenH3 binding. Genetics 213, 465–479 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Verdun, R. E. & Karlseder, J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127, 709–720 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Herrera-Moyano, E., Mergui, X., Garcia-Rubio, M. L., Barroso, S. & Aguilera, A. The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription–replication conflicts. Genes Dev. 28, 735–748 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lockhart, A. et al. RNase H1 and H2 are differentially regulated to process RNA–DNA hybrids. Cell Rep. 29, 2890–2900.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Xiao, Y. et al. Structure basis for directional R-loop formation and substrate handover mechanisms in type I CRISPR–Cas system. Cell 170, 48–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kasahara, M., Clikeman, J. A., Bates, D. B. & Kogoma, T. RecA protein-dependent R-loop formation in vitro. Genes Dev. 14, 360–365 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zaitsev, E. N. & Kowalczykowski, S. C. A novel pairing process promoted by Escherichia coli RecA protein: inverse DNA and RNA strand exchange. Genes Dev. 14, 740–749 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stolz, R. et al. Interplay between DNA sequence and negative superhelicity drives R-loop structures. Proc. Natl Acad. Sci. USA 116, 6260–6269 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kuznetsov, V. A., Bondarenko, V., Wongsurawat, T., Yenamandra, S. P. & Jenjaroenpun, P. Toward predictive R-loop computational biology: genome-scale prediction of R-loops reveals their association with complex promoter structures, G-quadruplexes and transcriptionally active enhancers. Nucleic Acids Res. 46, 7566–7585 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose work could not be cited owing to space constraints. They thank R. Otto for help with figures and O. Vydzhak and N. Schindler for feedback on the manuscript. C.N. acknowledges support by a European Research Council (ERC) Advanced Grant (HybReader), and B.L acknowledges support from the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) Heisenberg Program LU 1709/2-1. Both laboratories are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 393547839 – SFB 1361.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Brian Luke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niehrs, C., Luke, B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol 21, 167–178 (2020). https://doi.org/10.1038/s41580-019-0206-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0206-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing