The many functions of ESCRTs


Cellular membranes can form two principally different involutions, which either exclude or contain cytosol. The ‘classical’ budding reactions, such as those occurring during endocytosis or formation of exocytic vesicles, involve proteins that assemble on the cytosol-excluding face of the bud neck. Inverse membrane involution occurs in a wide range of cellular processes, supporting cytokinesis, endosome maturation, autophagy, membrane repair and many other processes. Such inverse membrane remodelling is mediated by a heteromultimeric protein machinery known as endosomal sorting complex required for transport (ESCRT). ESCRT proteins assemble on the cytosolic (or nucleoplasmic) face of the neck of the forming involution and cooperate with the ATPase VPS4 to drive membrane scission or sealing. Here, we review similarities and differences of various ESCRT-dependent processes, with special emphasis on mechanisms of ESCRT recruitment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of ESCRT-mediated biological processes.
Fig. 2: Cytokinetic abscission and neuronal pruning.
Fig. 3: ESCRT recruitment and function in repair and budding of the plasma membrane.
Fig. 4: ESCRT recruitment and functions at the nuclear envelope.
Fig. 5: ESCRT recruitment and function at MVEs, phagophores and lysosomes.
Fig. 6: ESCRT-mediated viral budding and replication.


  1. 1.

    Mettlen, M., Chen, P. H., Srinivasan, S., Danuser, G. & Schmid, S. L. Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem. 87, 871–896 (2018).

  2. 2.

    Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001). Identification and characterization of ESCRT-I, and demonstration of the involvement of the ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. This paper also coined the ‘ESCRT’ acronym.

  3. 3.

    Schoneberg, J., Lee, I. H., Iwasa, J. H. & Hurley, J. H. Reverse-topology membrane scission by the ESCRT proteins. Nat. Rev. Mol. Cell Biol. 18, 5–17 (2017).

  4. 4.

    Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT- II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283–289 (2002). Identification and characterization of ESCRT-II, and demonstration of its function in ILV biogenesis.

  5. 5.

    Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. ESCRT-III: an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell 3, 271–282 (2002). Identification and characterization of ESCRT-III, and demonstration of its function in ILV biogenesis.

  6. 6.

    Kostelansky, M. J. et al. Structural and functional organization of the ESCRT-I trafficking complex. Cell 125, 113–126 (2006).

  7. 7.

    Hierro, A. et al. Structure of the ESCRT-II endosomal trafficking complex. Nature 431, 221–225 (2004).

  8. 8.

    Teis, D., Saksena, S. & Emr, S. D. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev. Cell 15, 578–589 (2008).

  9. 9.

    Saksena, S., Wahlman, J., Teis, D., Johnson, A. E. & Emr, S. D. Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136, 97–109 (2009).

  10. 10.

    Mierzwa, B. E. et al. Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat. Cell Biol. 19, 787–798 (2017).

  11. 11.

    Adell, M. A. et al. Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. J. Cell Biol. 205, 33–49 (2014).

  12. 12.

    Chiaruttini, N. et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163, 866–879 (2015).

  13. 13.

    Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007). First demonstration that ESCRTs mediate cytokinetic abscission, and that TSG101 and ALIX are recruited to the midbody ring by binding CEP55.

  14. 14.

    Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007). Together with Carlton et al.13, this paper established the function of ESCRT proteins in cytokinetic abscission, and that TSG101 and ALIX are recruited to the midbody ring by binding CEP55.

  15. 15.

    Lens, S. M. A. & Medema, R. H. Cytokinesis defects and cancer. Nat. Rev. Cancer 19, 32–45 (2019).

  16. 16.

    Zhao, W. M., Seki, A. & Fang, G. Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. Mol. Biol. Cell 17, 3881–3896 (2006).

  17. 17.

    Bastos, R. N. & Barr, F. A. Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J. Cell Biol. 191, 751–760 (2010).

  18. 18.

    Carlton, J. G., Agromayor, M. & Martin-Serrano, J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl Acad. Sci. USA 105, 10541–10546 (2008).

  19. 19.

    Lee, H. H., Elia, N., Ghirlando, R., Lippincott-Schwartz, J. & Hurley, J. H. Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322, 576–580 (2008).

  20. 20.

    Mierzwa, B. & Gerlich, D. W. Cytokinetic abscission: molecular mechanisms and temporal control. Dev. Cell 31, 525–538 (2014).

  21. 21.

    Goliand, I., Nachmias, D., Gershony, O. & Elia, N. Inhibition of ESCRT-II-CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Mol. Biol. Cell 25, 3740–3748 (2014).

  22. 22.

    Christ, L. et al. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J. Cell Biol. 212, 499–513 (2016).

  23. 23.

    Tang, S. et al. ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. eLife 5, e15507 (2016).

  24. 24.

    Agromayor, M. et al. Essential role of hIST1 in cytokinesis. Mol. Biol. Cell 20, 1374–1387 (2009).

  25. 25.

    Bajorek, M. et al. Biochemical analyses of human IST1 and its function in cytokinesis. Mol. Biol. Cell 20, 1360–1373 (2009).

  26. 26.

    Hadders, M. A. et al. ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes. Proc. Natl Acad. Sci. USA 109, 17424–17429 (2012).

  27. 27.

    Lee, S. et al. MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis. Mol. Biol. Cell 23, 4347–4361 (2012).

  28. 28.

    Karasmanis, E. P. et al. A septin double ring controls the spatiotemporal organization of the ESCRT machinery in cytokinetic abscission. Curr. Biol. 29, 2174–2182 (2019).

  29. 29.

    Schoneberg, J. et al. ATP-dependent force generation and membrane scission by ESCRT-III and Vps4. Science 362, 1423–1428 (2018).

  30. 30.

    Goliand, I. et al. Resolving ESCRT-III spirals at the intercellular bridge of dividing cells using 3D STORM. Cell Rep. 24, 1756–1764 (2018).

  31. 31.

    Fremont, S. et al. Oxidation of F-actin controls the terminal steps of cytokinesis. Nat. Commun. 8, 14528 (2017).

  32. 32.

    Terry, S. J., Dona, F., Osenberg, P., Carlton, J. G. & Eggert, U. S. Capping protein regulates actin dynamics during cytokinetic midbody maturation. Proc. Natl Acad. Sci. USA 115, 2138–2143 (2018).

  33. 33.

    Dema, A. et al. Citron kinase-dependent F-actin maintenance at midbody secondary ingression sites mediates abscission. J. Cell Sci. 131, jcs209080 (2018).

  34. 34.

    Schiel, J. A. et al. Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. J. Cell Sci. 124, 1411–1424 (2011).

  35. 35.

    Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616–1620 (2011).

  36. 36.

    Elia, N., Sougrat, R., Spurlin, T. A., Hurley, J. H. & Lippincott-Schwartz, J. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc. Natl Acad. Sci. USA 108, 4846–4851 (2011).

  37. 37.

    Reid, E. et al. The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum. Mol. Genet. 14, 19–38 (2005).

  38. 38.

    Yang, D. et al. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nat. Struct. Mol. Biol. 15, 1278–1286 (2008).

  39. 39.

    Connell, J. W., Lindon, C., Luzio, J. P. & Reid, E. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10, 42–56 (2009).

  40. 40.

    Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in Archaea. Science 322, 1710–1713 (2008).

  41. 41.

    Samson, R. Y. et al. Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. Mol. Cell 41, 186–196 (2011).

  42. 42.

    Matias, N. R., Mathieu, J. & Huynh, J. R. Abscission is regulated by the ESCRT-III protein shrub in Drosophila germline stem cells. PLOS Genet. 11, e1004653 (2015).

  43. 43.

    Eikenes, A. H. et al. ALIX and ESCRT-III coordinately control cytokinetic abscission during germline stem cell division in vivo. PLOS Genet. 11, e1004904 (2015).

  44. 44.

    Konig, J., Frankel, E. B., Audhya, A. & Muller-Reichert, T. Membrane remodeling during embryonic abscission in Caenorhabditis elegans. J. Cell Biol. 216, 1277–1286 (2017).

  45. 45.

    Lie-Jensen, A. et al. Centralspindlin recruits ALIX to the midbody during cytokinetic abscission in Drosophila via a mechanism analogous to virus budding. Curr. Biol. 29, 3538–3548 (2019).

  46. 46.

    Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

  47. 47.

    Bhowmick, R. et al. The RIF1–PP1 axis controls abscission timing in human cells. Curr. Biol. 29, 1232–1242 (2019).

  48. 48.

    Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

  49. 49.

    Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125, 85–98 (2006).

  50. 50.

    Mendoza, M. et al. A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat. Cell Biol. 11, 477–483 (2009).

  51. 51.

    Bembenek, J. N., Verbrugghe, K. J., Khanikar, J., Csankovszki, G. & Chan, R. C. Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos. Curr. Biol. 23, 937–946 (2013).

  52. 52.

    Mackay, D. R. & Ullman, K. S. ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Mol. Biol. Cell 26, 2217–2226 (2015).

  53. 53.

    Mackay, D. R., Makise, M. & Ullman, K. S. Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint. J. Cell Biol. 191, 923–931 (2010).

  54. 54.

    Lafaurie-Janvore, J. et al. ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science 339, 1625–1629 (2013).

  55. 55.

    Carlton, J. G., Caballe, A., Agromayor, M., Kloc, M. & Martin-Serrano, J. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336, 220–225 (2012). This study provided a mechanistic link between the abscission checkpoint and the ESCRT machinery via the ESCRT-III component CHMP4C, which contains a phosphorylation site for Aurora B.

  56. 56.

    Capalbo, L. et al. The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open Biol. 2, 120070 (2012).

  57. 57.

    McCullough, J., Fisher, R. D., Whitby, F. G., Sundquist, W. I. & Hill, C. P. ALIX-CHMP4 interactions in the human ESCRT pathway. Proc. Natl Acad. Sci. USA 105, 7687–7691 (2008).

  58. 58.

    Sadler, J. B. A. et al. A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability. Proc. Natl Acad. Sci. USA 115, E8900–E8908 (2018).

  59. 59.

    Thoresen, S. B. et al. ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat. Cell Biol. 16, 550–560 (2014).

  60. 60.

    Capalbo, L. et al. Coordinated regulation of the ESCRT-III component CHMP4C by the chromosomal passenger complex and centralspindlin during cytokinesis. Open Biol. 6, 160248 (2016).

  61. 61.

    Caballe, A. et al. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins. eLife 4, e06547 (2015).

  62. 62.

    Dimaano, C., Jones, C. B., Hanono, A., Curtiss, M. & Babst, M. Ist1 regulates Vps4 localization and assembly. Mol. Biol. Cell 19, 465–474 (2008).

  63. 63.

    Pharoah, P. D. et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat. Genet. 45, 362–370 (2013). 370e1-2.

  64. 64.

    Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 37, 806–808 (2005).

  65. 65.

    Zivony-Elboum, Y. et al. A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. J. Med. Genet. 49, 462–472 (2012).

  66. 66.

    Loncle, N., Agromayor, M., Martin-Serrano, J. & Williams, D. W. An ESCRT module is required for neuron pruning. Sci. Rep. 5, 8461 (2015). Together with Zhang et al.67, this paper demonstrated that ESCRTs mediate neuronal pruning. This paper proposes a non-endocytic mechanism that acts directly on the plasma membrane.

  67. 67.

    Zhang, H. et al. Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila. Dev. Cell 30, 463–478 (2014). Together with Loncle et al.66, this paper demonstrated that ESCRTs are required for dendritic pruning. This paper focuses on the role of the MVE pathway in neuronal pruning.

  68. 68.

    Andrews, N. W., Almeida, P. E. & Corrotte, M. Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol. 24, 734–742 (2014).

  69. 69.

    Jimenez, A. J. et al. ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014). Demonstration that ESCRT-III is required for repair of small wounds in the plasma membrane, and that extracellular buds are found at the site of ESCRT-III recruitment.

  70. 70.

    Scheffer, L. L. et al. Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair. Nat. Commun. 5, 5646 (2014). Identification of Ca 2+ as a signal for ESCRT recruitment to wounds of the plasma membrane, and identification of a mechanism that involves the Ca 2+-binding protein ALG2 and its ESCRT interaction partner ALIX.

  71. 71.

    Sonder, S. L. et al. Annexin A7 is required for ESCRT III-mediated plasma membrane repair. Sci. Rep. 9, 6726 (2019).

  72. 72.

    Sun, S. et al. ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction. Cell Discov. 1, 15018 (2015).

  73. 73.

    Okumura, M. et al. Penta-EF-hand protein ALG-2 functions as a Ca2+-dependent adaptor that bridges Alix and TSG101. Biochem. Biophys. Res. Commun. 386, 237–241 (2009).

  74. 74.

    Katoh, K. et al. The penta-EF-hand protein ALG-2 interacts directly with the ESCRT-I component TSG101, and Ca2+-dependently co-localizes to aberrant endosomes with dominant-negative AAA ATPase SKD1/Vps4B. Biochem. J. 391, 677–685 (2005).

  75. 75.

    Ruhl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

  76. 76.

    Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300 (2017).

  77. 77.

    Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008).

  78. 78.

    Matusek, T. et al. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature 516, 99–103 (2014). Demonstration that the ESCRT machinery mediates secretion and long-range activity of Hedgehog via plasma membrane-derived microvesicles.

  79. 79.

    Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N. & Lu, Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl Acad. Sci. USA 109, 4146–4151 (2012).

  80. 80.

    Robijns, J., Houthaeve, G., Braeckmans, K. & De Vos, W. H. Loss of nuclear envelope integrity in aging and disease. Int. Rev. Cell Mol. Biol. 336, 205–222 (2018).

  81. 81.

    Guttinger, S., Laurell, E. & Kutay, U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat. Rev. Mol. Cell Biol. 10, 178–191 (2009).

  82. 82.

    Haraguchi, T. et al. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J. Cell Sci. 121, 2540–2554 (2008).

  83. 83.

    Vietri, M. et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522, 231–235 (2015). Together with Olmos et al.84, this paper demonstrated that ESCRT-III mediates closure of the nascent nuclear envelope during mitotic exit. It also identified CHMP7 as a recruiter of ESCRT-III to the nuclear envelope, and demonstrated that spastin is recruited by IST1 to coordinate mitotic spindle disassembly with nuclear envelope sealing.

  84. 84.

    Olmos, Y., Hodgson, L., Mantell, J., Verkade, P. & Carlton, J. G. ESCRT-III controls nuclear envelope reformation. Nature 522, 236–239 (2015). Together with Vietri et al.83, this paper demonstrated that ESCRT-III mediates closure of the nascent nuclear envelope during mitotic exit. It also identified UFD1 as an upstream factor of ESCRT-III recruitment.

  85. 85.

    Ventimiglia, L. N. et al. CC2D1B coordinates ESCRT-III activity during the mitotic reformation of the nuclear envelope. Dev. Cell 47, 547–563 (2018).

  86. 86.

    Martinelli, N. et al. CC2D1A is a regulator of ESCRT-III CHMP4B. J. Mol. Biol. 419, 75–88 (2012).

  87. 87.

    Pieper, G., Sprenger, S., Teis, D. & Oliferenko, S. ESCRT-III/Vps4 controls heterochromatin-nuclear envelope attachments. bioRxiv (2019).

  88. 88.

    Hatch, E. & Hetzer, M. Breaching the nuclear envelope in development and disease. J. Cell Biol. 205, 133–141 (2014).

  89. 89.

    Houthaeve, G., Robijns, J., Braeckmans, K. & De Vos, W. H. Bypassing border control: nuclear envelope rupture in disease. Physiology 33, 39–49 (2018).

  90. 90.

    Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

  91. 91.

    Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016). Together with Denais et al. (ref. 90), this paper demonstrated that ESCRT-III repairs ruptures in the nuclear envelope during cell migration through confined spaces.

  92. 92.

    Penfield, L. et al. Dynein-pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair. Mol. Biol. Cell 29, 852–868 (2018).

  93. 93.

    Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

  94. 94.

    Sagona, A. P., Nezis, I. P. & Stenmark, H. Association of CHMP4B and autophagy with micronuclei: implications for cataract formation. Biomed. Res. Int. 2014, 974393 (2014).

  95. 95.

    Willan, J. et al. ESCRT-III is necessary for the integrity of the nuclear envelope in micronuclei but is aberrant at ruptured micronuclear envelopes generating damage. Oncogenesis 8, 29 (2019).

  96. 96.

    Vietri, M. et al. Unrestrained ESCRT-III drives chromosome fragmentation and micronuclear catastrophe. bioRxiv (2019).

  97. 97.

    Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

  98. 98.

    Halfmann, C. T. et al. Repair of nuclear ruptures requires barrier-to-autointegration factor. J. Cell Biol. 218, 2136–2149 (2019).

  99. 99.

    Webster, B. M., Colombi, P., Jager, J. & Lusk, C. P. Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4. Cell 159, 388–401 (2014). Demonstration that the LEM domain protein Heh2 recruits ESCRT-III and Vps4 to the nuclear envelope to destabilize and clear defective nuclear pore complex assembly intermediates in budding yeast.

  100. 100.

    Frost, A. et al. Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions. Cell 149, 1339–1352 (2012).

  101. 101.

    Toyama, B. H. et al. Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. J. Cell Biol. 218, 433–444 (2019).

  102. 102.

    Mettenleiter, T. C., Muller, F., Granzow, H. & Klupp, B. G. The way out: what we know and do not know about herpesvirus nuclear egress. Cell Microbiol. 15, 170–178 (2013).

  103. 103.

    Arii, J. et al. ESCRT-III mediates budding across the inner nuclear membrane and regulates its integrity. Nat. Commun. 9, 3379 (2018). Demonstration that ESCRT-III mediates budding of HSV-1 across the inner nuclear membrane, and that ESCRT-III-mediated budding of the inner nuclear membrane in non-infected cells plays a role in nuclear envelope homeostasis.

  104. 104.

    Jokhi, V. et al. Torsin mediates primary envelopment of large ribonucleoprotein granules at the nuclear envelope. Cell Rep. 3, 988–995 (2013).

  105. 105.

    D’Angelo, M. A., Raices, M., Panowski, S. H. & Hetzer, M. W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136, 284–295 (2009).

  106. 106.

    Olmos, Y., Perdrix-Rosell, A. & Carlton, J. G. Membrane binding by CHMP7 coordinates ESCRT-III-dependent nuclear envelope reformation. Curr. Biol. 26, 2635–2641 (2016).

  107. 107.

    Webster, B. M. et al. Chm7 and Heh1 collaborate to link nuclear pore complex quality control with nuclear envelope sealing. EMBO J. 35, 2447–2467 (2016).

  108. 108.

    Gu, M. et al. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proc. Natl Acad. Sci. USA 114, E2166–E2175 (2017).

  109. 109.

    Bauer, I., Brune, T., Preiss, R. & Kolling, R. Evidence for a non-endosomal function of the Saccharomyces cerevisiae ESCRT-III like protein Chm7. Genetics 201, 1439–1452 (2015).

  110. 110.

    Horii, M. et al. CHMP7, a novel ESCRT-III-related protein, associates with CHMP4b and functions in the endosomal sorting pathway. Biochem. J. 400, 23–32 (2006).

  111. 111.

    Thaller, D. J. et al. An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. eLife 8, e45284 (2019).

  112. 112.

    Wenzel, E. M. et al. Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation. Nat. Commun. 9, 2932 (2018).

  113. 113.

    Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

  114. 114.

    Bache, K. G., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent Ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278, 12513–12521 (2003).

  115. 115.

    Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

  116. 116.

    Lu, Q., Hope, L. W., Brasch, M., Reinhard, C. & Cohen, S. N. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl Acad. Sci. USA 100, 7626–7631 (2003).

  117. 117.

    Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162, 413–423 (2003).

  118. 118.

    Pornillos, O. et al. HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J. Cell Biol. 162, 425–434 (2003).

  119. 119.

    Mayers, J. R. et al. ESCRT-0 assembles as a heterotetrameric complex on membranes and binds multiple ubiquitinylated cargoes simultaneously. J. Biol. Chem. 286, 9636–9645 (2011).

  120. 120.

    Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci. 114, 2255–2263 (2001).

  121. 121.

    Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

  122. 122.

    Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

  123. 123.

    Raiborg, C., Wesche, J., Malerød, L. & Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci. 119, 2414–2424 (2006).

  124. 124.

    Stefani, F. et al. UBAP1 is a component of an endosome-specific ESCRT-I complex that is essential for MVB sorting. Curr. Biol. 21, 1245–1250 (2011).

  125. 125.

    Agromayor, M. et al. The UBAP1 subunit of ESCRT-I interacts with ubiquitin via a SOUBA domain. Structure 20, 414–428 (2012).

  126. 126.

    Wollert, T. & Hurley, J. H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864–869 (2010).

  127. 127.

    Amerik, A. Y., Nowak, J., Swaminathan, S. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell 11, 3365–3380 (2000).

  128. 128.

    Van Engelenburg, S. B. et al. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343, 653–656 (2014).

  129. 129.

    Henne, W. M., Buchkovich, N. J., Zhao, Y. & Emr, S. D. The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151, 356–371 (2012).

  130. 130.

    Clague, M. J., Liu, H. & Urbe, S. Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev. Cell 23, 457–467 (2012).

  131. 131.

    Hoeller, D. et al. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat. Cell Biol. 8, 163–169 (2006).

  132. 132.

    Adell, M. A. Y. et al. Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding. eLife 6, e31652 (2017).

  133. 133.

    Quinney, K. B. et al. Growth factor stimulation promotes multivesicular endosome biogenesis by prolonging recruitment of the late-acting ESCRT machinery. Proc. Natl Acad. Sci. USA 116, 6858–6867 (2019).

  134. 134.

    Korbei, B. et al. Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein. Curr. Biol. 23, 2500–2505 (2013).

  135. 135.

    Pashkova, N. et al. The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes. Dev. Cell 25, 520–533 (2013).

  136. 136.

    Dores, M. R. et al. AP-3 regulates PAR1 ubiquitin-independent MVB/lysosomal sorting via an ALIX-mediated pathway. Mol. Biol. Cell 23, 3612–3623 (2012).

  137. 137.

    Dores, M. R., Lin, H., Grimsey, N. J., Mendez, F. & Trejo, J. The α-arrestin ARRDC3 mediates ALIX ubiquitination and G protein-coupled receptor lysosomal sorting. Mol. Biol. Cell 26, 4660–4673 (2015).

  138. 138.

    Dores, M. R., Grimsey, N. J., Mendez, F. & Trejo, J. ALIX regulates the ubiquitin-independent lysosomal sorting of the P2Y1 purinergic receptor via a YPX3L motif. PLOS ONE 11, e0157587 (2016).

  139. 139.

    Gahloth, D. et al. The open architecture of HD-PTP phosphatase provides new insights into the mechanism of regulation of ESCRT function. Sci. Rep. 7, 9151 (2017).

  140. 140.

    Yan, Q. et al. CART: an Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling. Mol. Biol. Cell 16, 2470–2482 (2005).

  141. 141.

    MacDonald, E. et al. HRS-WASH axis governs actin-mediated endosomal recycling and cell invasion. J. Cell Biol. 217, 2549–2564 (2018).

  142. 142.

    van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

  143. 143.

    Gibbings, D. J., Ciaudo, C., Erhardt, M. & Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 11, 1143–1149 (2009).

  144. 144.

    Baietti, M. F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012).

  145. 145.

    Takahashi, Y. et al. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat. Commun. 9, 2855 (2018). Demonstration that ESCRT-III mediates phagophore closure during starvation-induced autophagy.

  146. 146.

    Zhou, F. et al. Rab5-dependent autophagosome closure by ESCRT. J. Cell Biol. 218, 1908–1927 (2019).

  147. 147.

    Zhen, Y. et al. ESCRT-mediated phagophore sealing during mitophagy. Autophagy (2019).

  148. 148.

    Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485–500 (2007).

  149. 149.

    Rusten, T. E. et al. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr. Biol. 17, 1817–1825 (2007).

  150. 150.

    Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).

  151. 151.

    Djeddi, A. et al. Induction of autophagy in ESCRT mutants is an adaptive response for cell survival in C. elegans. J. Cell Sci. 125, 685–694 (2012).

  152. 152.

    Sahu, R. et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20, 131–139 (2011). Demonstration that ESCRT-I and ESCRT-III mediate microautophagy of cytosolic proteins in concert with HSC70.

  153. 153.

    Mejlvang, J. et al. Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J. Cell Biol. 217, 3640–3655 (2018).

  154. 154.

    Lawrence, R. E. & Zoncu, R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol. 21, 133–142 (2019).

  155. 155.

    Papadopoulos, C. & Meyer, H. Detection and clearance of damaged lysosomes by the endo-lysosomal damage response and lysophagy. Curr. Biol. 27, R1330–R1341 (2017).

  156. 156.

    Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347 (2013).

  157. 157.

    Skowyra, M. L., Schlesinger, P. H., Naismith, T. V. & Hanson, P. I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science 360, eaar5078 (2018). First demonstration that ESCRTs promote sealing of damaged lysosomes, and identification of Ca 2+ and ALG2 as triggers of ESCRT recruitment to the sites of membrane damage.

  158. 158.

    Radulovic, M. et al. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival. EMBO J. 37, e99753 (2018). Together with Skowyra et al.157, this paper established that ESCRTs promote sealing of damaged lysosomes. It also showed that this mechanism sustains cell viability upon lysosomal damage and promotes replication of Coxiella burnetii in the host phagolysosomes.

  159. 159.

    Lopez-Jimenez, A. T. et al. The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection. PLOS Pathog. 14, e1007501 (2018).

  160. 160.

    Christensen, K. A., Myers, J. T. & Swanson, J. A. pH-dependent regulation of lysosomal calcium in macrophages. J. Cell Sci. 115, 599–607 (2002).

  161. 161.

    Mercier, V. et al. Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. bioRxiv (2019).

  162. 162.

    Mansilla Pareja, M. E., Bongiovanni, A., Lafont, F. & Colombo, M. I. Alterations of the Coxiella burnetii replicative vacuole membrane integrity and interplay with the autophagy pathway. Front. Cell Infect. Microbiol. 7, 112 (2017).

  163. 163.

    Mittal, E. et al. Mycobacterium tuberculosis type VII secretion system effectors differentially impact the ESCRT endomembrane damage response. mBio 9, e01765 (2018).

  164. 164.

    Votteler, J. & Sundquist, W. I. Virus budding and the ESCRT pathway. Cell Host Microbe 14, 232–241 (2013).

  165. 165.

    Scourfield, E. J. & Martin-Serrano, J. Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem. Soc. Trans. 45, 613–634 (2017).

  166. 166.

    Snyder, J. C., Samson, R. Y., Brumfield, S. K., Bell, S. D. & Young, M. J. Functional interplay between a virus and the ESCRT machinery in Archaea. Proc. Natl Acad. Sci. USA 110, 10783–10787 (2013).

  167. 167.

    Johnson, D. C. & Baines, J. D. Herpesviruses remodel host membranes for virus egress. Nat. Rev. Microbiol. 9, 382–394 (2011).

  168. 168.

    Bigalke, J. M., Heuser, T., Nicastro, D. & Heldwein, E. E. Membrane deformation and scission by the HSV-1 nuclear egress complex. Nat. Commun. 5, 4131 (2014).

  169. 169.

    Zeev-Ben-Mordehai, T. et al. Crystal structure of the herpesvirus nuclear egress complex provides insights into inner nuclear membrane remodeling. Cell Rep. 13, 2645–2652 (2015).

  170. 170.

    Lee, C. P. et al. The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein–Barr virus. PLOS Pathog. 8, e1002904 (2012).

  171. 171.

    Yadav, S. et al. EBV early lytic protein BFRF1 alters emerin distribution and post-translational modification. Virus Res. 232, 113–122 (2017).

  172. 172.

    Lee, C. P. et al. The ubiquitin ligase itch and ubiquitination regulate BFRF1-mediated nuclear envelope modification for Epstein–Barr virus maturation. J. Virol. 90, 8994–9007 (2016).

  173. 173.

    Miller, S. & Krijnse-Locker, J. Modification of intracellular membrane structures for virus replication. Nat. Rev. Microbiol. 6, 363–374 (2008).

  174. 174.

    Barajas, D., Jiang, Y. & Nagy, P. D. A unique role for the host ESCRT proteins in replication of Tomato bushy stunt virus. PLOS Pathog. 5, e1000705 (2009). Demonstration that ESCRT-III and Vps4 mediate formation and function of the replication compartment of TBSV in the peroxisome membrane.

  175. 175.

    Kovalev, N. et al. Role of viral RNA and co-opted cellular ESCRT-I and ESCRT-III factors in formation of tombusvirus spherules harboring the tombusvirus replicase. J. Virol. 90, 3611–3626 (2016).

  176. 176.

    Richardson, L. G. et al. A unique N-terminal sequence in the Carnation Italian ringspot virus p36 replicase-associated protein interacts with the host cell ESCRT-I component Vps23. J. Virol. 88, 6329–6344 (2014).

  177. 177.

    Diaz, A., Zhang, J., Ollwerther, A., Wang, X. & Ahlquist, P. Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function. PLOS Pathog. 11, e1004742 (2015). Demonstration that formation and function of the BMV replication compartment in invaginations of the ER depend on ESCRT components.

  178. 178.

    Barajas, D., Martin, I. F., Pogany, J., Risco, C. & Nagy, P. D. Noncanonical role for the host Vps4 AAA+ATPase ESCRT protein in the formation of Tomato bushy stunt virus replicase. PLOS Pathog. 10, e1004087 (2014).

  179. 179.

    Tabata, K. et al. Unique requirement for ESCRT factors in flavivirus particle formation on the endoplasmic reticulum. Cell Rep. 16, 2339–2347 (2016).

  180. 180.

    Martin-Serrano, J., Eastman, S. W., Chung, W. & Bieniasz, P. D. HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J. Cell Biol. 168, 89–101 (2005).

  181. 181.

    Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001). Together with Martin-Serrano et al.184, this paper demonstrated that the ESCRT-I protein TSG101 is required for HIV-1 budding. It also showed that HIV-1 Gag contains a specific motif (P(S/T)AP) that recruits TSG101 and thereby mediates viral budding.

  182. 182.

    Langelier, C. et al. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol. 80, 9465–9480 (2006).

  183. 183.

    VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl Acad. Sci. USA 98, 7724–7729 (2001).

  184. 184.

    Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7, 1313–1319 (2001). Together with Garrus et al.181, this paper demonstrated that the ESCRT-I protein TSG101 is required for HIV-1 budding via recognition of specific Gag motifs. It also showed an equivalent mechanism during Ebola virus budding.

  185. 185.

    Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

  186. 186.

    Fisher, R. D. et al. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128, 841–852 (2007).

  187. 187.

    Zhai, Q. et al. Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV. Nat. Struct. Mol. Biol. 15, 43–49 (2008).

  188. 188.

    Lee, S., Joshi, A., Nagashima, K., Freed, E. O. & Hurley, J. H. Structural basis for viral late-domain binding to Alix. Nat. Struct. Mol. Biol. 14, 194–199 (2007).

  189. 189.

    Bleck, M. et al. Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding. Proc. Natl Acad. Sci. USA 111, 12211–12216 (2014).

  190. 190.

    Baumgartel, V. et al. Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat. Cell Biol. 13, 469–474 (2011).

  191. 191.

    Jouvenet, N. Dynamics of ESCRT proteins. Cell Mol. Life Sci. 69, 4121–4133 (2012).

  192. 192.

    Johnson, D. S., Bleck, M. & Simon, S. M. Timing of ESCRT-III protein recruitment and membrane scission during HIV-1 assembly. eLife 7, e36221 (2018).

  193. 193.

    Morita, E. et al. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 9, 235–242 (2011).

  194. 194.

    Kieffer, C. et al. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev. Cell 15, 62–73 (2008).

  195. 195.

    Chung, H. Y. et al. NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains. J. Virol. 82, 4884–4897 (2008).

  196. 196.

    Usami, Y., Popov, S., Popova, E. & Gottlinger, H. G. Efficient and specific rescue of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase. J. Virol. 82, 4898–4907 (2008).

  197. 197.

    Weiss, E. R. et al. Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag. PLOS Pathog. 6, e1001107 (2010).

  198. 198.

    Han, Z. et al. Small-molecule probes targeting the viral PPxY-host Nedd4 interface block egress of a broad range of RNA viruses. J. Virol. 88, 7294–7306 (2014).

  199. 199.

    Madara, J. J., Han, Z., Ruthel, G., Freedman, B. D. & Harty, R. N. The multifunctional Ebola virus VP40 matrix protein is a promising therapeutic target. Future Virol. 10, 537–546 (2015).

  200. 200.

    McCullough, J. et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350, 1548–1551 (2015).

  201. 201.

    Allison, R. et al. An ESCRT-spastin interaction promotes fission of recycling tubules from the endosome. J. Cell Biol. 202, 527–543 (2013).

  202. 202.

    Chang, C. L. et al. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J. Cell Biol. 218, 2583–2599 (2019).

  203. 203.

    Mast, F.D. Herricks, T., Strehler, K.M., Miller, L.R., Saleem, R.A., Rachubinski, R.A. & Aitchison, J.D. ESCRT-III is required for scissioning new peroxisomes from the endoplasmic reticulum. J. Cell Biol. 217, 2087–2102 (2018).

  204. 204.

    Alfred, V. & Vaccari, T. When membranes need an ESCRT: endosomal sorting and membrane remodelling in health and disease. Swiss Med. Wkly 146, w14347 (2016).

  205. 205.

    Ruland, J. et al. p53 accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101. Proc. Natl Acad. Sci. USA 98, 1859–1864 (2001).

  206. 206.

    Stuffers, S., Sem Wegner, C., Stenmark, H. & Brech, A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10, 925–937 (2009).

  207. 207.

    Hurley, J. H. ESCRTs are everywhere. EMBO J. 34, 2398–2407 (2015).

  208. 208.

    Christ, L., Raiborg, C., Wenzel, E. M., Campsteijn, C. & Stenmark, H. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem. Sci. 42, 42–56 (2017).

  209. 209.

    Gill, D. J. et al. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J. 26, 600–612 (2007).

  210. 210.

    Bissig, C. & Gruenberg, J. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol. 24, 19–25 (2014).

  211. 211.

    Tabernero, L. & Woodman, P. Dissecting the role of His domain protein tyrosine phosphatase/PTPN23 and ESCRTs in sorting activated epidermal growth factor receptor to the multivesicular body. Biochem. Soc. Trans. 46, 1037–1046 (2018).

  212. 212.

    Banjade, S., Tang, S., Shah, Y. H. & Emr, S. D. Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly. eLife 8, e46207 (2019).

  213. 213.

    Stuchell-Brereton, M. D. et al. ESCRT-III recognition by VPS4 ATPases. Nature 449, 740–744 (2007).

  214. 214.

    Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998).

Download references


The authors thank Camilla Raiborg and Eva M. Wenzel for critical reading of the manuscript. M.V. is a senior scientist and M.R. a postdoctoral fellow of the South-Eastern Norway Regional Health Authority (grant numbers 2018043 and 2016087, respectively). H.S. is supported by the Norwegian Cancer Society (grant no. 182698) and the Trond Paulsen InvaCell project (grant no. 35248). This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 262652.

Author information

The authors contributed equally to all aspects of the article.

Correspondence to Harald Stenmark.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks J. Hurley, J. Martin-Serrano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


Midbody ring

Also called Flemming body. The central region of the intercellular bridge between dividing cells where plus-end anti-parallel central spindle microtubule bundles overlap and where several components crucial for cytokinesis and abscission are localized.

Chromosomal instability

An elevated frequency of chromosome segregation errors during cell division.


A heterotetrameric motor protein complex consisting of MKLP1–RACGAP1 dimers that is a key component of the midbody ring, where it bundles spindle microtubules and tethers the spindle apparatus to the cell cortex, thus stabilizing the intercellular bridge.


Septins are highly conserved GTP-binding proteins that assemble as monomers into hetero-oligomeric complexes and higher-order structures, including filaments and rings, that can associate with membranes and the cytoskeleton.

Cell cortex

Actin-rich network that is attached to the inner face of the plasma membrane and regulates cell shape.


MIT domain-containing ATPase that utilizes ATP hydrolysis to sever microtubules.

Cdv fission machinery

Archaeal membrane fission machinery involved in cell division, virus budding and microvesicle secretion, with subunits sharing homology with ESCRT-III proteins and VPS4.

Lagging chromosomes

Single chromosomes that lag between the two nascent daughter nuclei of dividing cells, often arising when a single kinetochore is attached to both spindle poles during metaphase.

Aurora B

A serine/threonine-protein kinase that is the enzymatic subunit of the chromosome passenger complex.

Chromosome passenger complex

(CPC). Protein complex that surveys fidelity of genome segregation throughout the cell cycle. It consists of Aurora B kinase, Borealin, survivin and INCENP.

Abscission/NoCut checkpoint regulator

(ANCHR). Protein that participates in Aurora B-mediated regulation of the abscission checkpoint through retaining VPS4 at the midbody ring and thereby delaying abscission.

Unc51-like kinase 3

(ULK3). A serine/threonine-protein kinase with tandem MIT domains that allow it to bind and phosphorylate MIM-containing ESCRT-III proteins.

Dendritic arborization neurons

Nerve cells with highly branched dendrites.


A common phospholipid in cellular membranes, normally enriched on the cytosolic face.

Annexin A7

Member of the annexin protein family that consists of Ca2+-sensitive phospholipid-binding proteins that regulate various processes at endomembranes.


A programmed form of caspase-independent, pro-inflammatory cell death that is activated downstream of death receptor signalling and mediated by RIPK1 and RIPK3 kinases.


Mixed lineage kinase domain-like pseudokinase, a key effector of necroptotic cell death. Following activation by RIPK3 kinase, it oligomerizes and forms pores in the plasma membrane, permeabilizing the cell.


Pro-inflammatory programmed cell death induced by the activation of complexes known as inflammasomes, prominently by intracellular pathogens. It is executed by gasdermin D protein, which permeabilizes the plasma membrane.

Nuclear lamina

Protein network that provides rigidity and mechanical support to the nuclear envelope as well as functions in genome organization and regulation of transcription.


Intermediate filament proteins expressed in most eukaryotes and that constitute the nuclear lamina.


DNA structures, derived from chromosome segregation errors, that are not integrated within the cell nucleus but acquire a functional nuclear envelope after mitosis.

Barrier-to-autoantigen factor

(BAF). Adaptor protein that bridges DNA with the nuclear envelope via direct binding to DNA or chromatin-associated proteins as well as to LEM domain-containing proteins of the inner nuclear membrane.

LEM domain

A LAP2, emerin, MAN1 domain found in a subgroup of proteins that reside in the inner nuclear membrane or nucleoplasm.


Large mRNA-containing ribonucleoprotein granules localized within the nucleoplasm of eukaryotic cells.

FYVE domain

An evolutionarily conserved protein domain that binds specifically to PtdIns3P.

Giant unilamellar vesicle

A vesicle of 1–100 μm diameter bounded by a single bilayer and containing an aqueous solution, used for biochemical and biophysical studies of membrane biology.

Actin-mediated endosomal recycling

Recycling of cargoes from endosomes to the plasma membrane, mediated by small actin-containing tubules that pinch off from endosomes.

Syntaxin 17

A protein encoded by the STX17 gene, recruited to autophagosomes where it forms a tight complex with a cytosolic protein, SNAP29, and a lysosomal protein, VAMP8, to mediate autophagosome–lysosome fusion.


An intracellular compartment, derived from the plasma membrane and containing phagocytosed material.


Fusion products between a phagosome and a lysosome.


A retroviral polyprotein processed during maturation into four separate proteins: matrix protein, capsid protein, nucleocapsid protein and p6, which together make the viral core.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vietri, M., Radulovic, M. & Stenmark, H. The many functions of ESCRTs. Nat Rev Mol Cell Biol 21, 25–42 (2020).

Download citation

Further reading