The DNA damage response to transcription stress

Article metrics


The spatiotemporal control of RNA polymerase II (Pol II)-mediated gene transcription is tightly and intricately regulated. In addition, preservation of the integrity of the DNA template is required so as to ensure unperturbed transcription, particularly since DNA is continually challenged by different types of damaging agents that can form transcription-blocking DNA lesions (TBLs), which impede transcription elongation and cause transcription stress. To overcome the highly cytotoxic effects of TBLs, an intricate cellular response has evolved, in which the transcription-coupled nucleotide excision repair (TC-NER) pathway has a central role in removing TBLs specifically from the transcribed strand. Damage detection by stalling of the transcribing Pol II is highly efficient, but a stalled Pol II complex may create an even bigger problem by interfering with repair of the lesions, and overall with transcription and replication. In this Review, we discuss the effects of different types of DNA damage on Pol II, important concepts of transcription stress, the manner in which TBLs are removed by TC-NER and how different tissues respond to TBLs. We also discuss the role of TBLs in ageing and the complex genotype–phenotype correlations of TC-NER hereditary disorders.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Transcription-blocking lesions and overview of DNA damage sensing by RNA polymerase II.
Fig. 2: Transcription-coupled nucleotide excision repair.
Fig. 3: Genotype–phenotype correlations of transcription-coupled nucleotide excision repair disorders.
Fig. 4: DNA-damage-induced transcription regulation.
Fig. 5: The activity of TC-NER and GG-NER depends on cell type and the location of transcription-blocking lesions.


  1. 1.

    Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).

  2. 2.

    Zhou, Q., Li, T. & Price, D. H. RNA polymerase II elongation control. Annu. Rev. Biochem. 81, 119–143 (2012).

  3. 3.

    Haberle, V. & Stark, A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat. Rev. Mol. Cell Biol. 19, 621–637 (2018).

  4. 4.

    Vermeij, W. P., Hoeijmakers, J. H. & Pothof, J. Aging: not all DNA damage is equal. Curr. Opin. Genet. Dev. 26, 124–130 (2014).

  5. 5.

    Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

  6. 6.

    Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

  7. 7.

    Kotsantis, P., Petermann, E. & Boulton, S. J. Mechanisms of oncogene-induced replication stress: jigsaw falling into place. Cancer Discov. 8, 537–555 (2018).

  8. 8.

    Vaisman, A. & Woodgate, R. Translesion DNA polymerases in eukaryotes: what makes them tick? Crit. Rev. Biochem. Mol. Biol. 52, 274–303 (2017).

  9. 9.

    Wang, W., Xu, J., Chong, J. & Wang, D. Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. DNA Repair 71, 43–55 (2018).

  10. 10.

    Crossley, M. P., Bocek, M. & Cimprich, K. A. R-loops as cellular regulators and genomic threats. Mol. Cell 73, 398–411 (2019).

  11. 11.

    Tresini, M. et al. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523, 53–58 (2015). Tresini et al. report that upon TBL induction, late-stage spliceosomes are displaced from the chromatin, and that subsequent R-loop formation activates ATM, resulting in further eviction of the spliceosome from chromatin.

  12. 12.

    Gaillard, H. & Aguilera, A. Transcription as a threat to genome integrity. Annu. Rev. Biochem. 85, 291–317 (2016).

  13. 13.

    Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

  14. 14.

    Ganesan, A., Spivak, G. & Hanawalt, P. C. Transcription-coupled DNA repair in prokaryotes. Prog. Mol. Biol. Transl. Sci. 110, 25–40 (2012).

  15. 15.

    Li, S. Transcription coupled nucleotide excision repair in the yeast Saccharomyces cerevisiae: The ambiguous role of Rad26. DNA Repair 36, 43–48 (2015).

  16. 16.

    Edifizi, D. & Schumacher, B. Genome instability in development and aging: insights from nucleotide excision repair in humans, mice, and worms. Biomolecules 5, 1855–1869 (2015).

  17. 17.

    Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958–970 (2008).

  18. 18.

    Tornaletti, S., Maeda, L. S. & Hanawalt, P. C. Transcription arrest at an abasic site in the transcribed strand of template DNA. Chem. Res. Toxicol. 19, 1215–1220 (2006).

  19. 19.

    Tornaletti, S., Maeda, L. S., Lloyd, D. R., Reines, D. & Hanawalt, P. C. Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. J. Biol. Chem. 276, 45367–45371 (2001).

  20. 20.

    Charlet-Berguerand, N. et al. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J. 25, 5481–5491 (2006).

  21. 21.

    Doetsch, P. W. Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutat Res. 510, 131–140 (2002).

  22. 22.

    Saxowsky, T. T., Meadows, K. L., Klungland, A. & Doetsch, P. W. 8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells. Proc. Natl Acad. Sci. USA 105, 18877–18882 (2008).

  23. 23.

    Zhou, W. & Doetsch, P. W. Effects of abasic sites and DNA single-strand breaks on prokaryotic RNA polymerases. Proc. Natl Acad. Sci. USA 90, 6601–6605 (1993).

  24. 24.

    Bregeon, D. & Doetsch, P. W. Transcriptional mutagenesis: causes and involvement in tumour development. Nat. Rev. Cancer 11, 218–227 (2011).

  25. 25.

    Ezerskyte, M. et al. O(6)-methylguanine-induced transcriptional mutagenesis reduces p53 tumor-suppressor function. Proc. Natl Acad. Sci. USA 115, 4731–4736 (2018).

  26. 26.

    Tornaletti, S., Reines, D. & Hanawalt, P. C. Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J. Biol. Chem. 274, 24124–24130 (1999).

  27. 27.

    Todd, R. C. & Lippard, S. J. Inhibition of transcription by platinum antitumor compounds. Metallomics 1, 280–291 (2009).

  28. 28.

    Brueckner, F., Hennecke, U., Carell, T. & Cramer, P. CPD damage recognition by transcribing RNA polymerase II. Science 315, 859–862 (2007).

  29. 29.

    Perlow, R. A. et al. DNA adducts from a tumorigenic metabolite of benzo[a]pyrene block human RNA polymerase II elongation in a sequence- and stereochemistry-dependent manner. J. Mol. Biol. 321, 29–47 (2002).

  30. 30.

    Donahue, B. A., Fuchs, R. P., Reines, D. & Hanawalt, P. C. Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II. J. Biol. Chem. 271, 10588–10594 (1996).

  31. 31.

    Brooks, P. J. et al. The oxidative DNA lesion 8,5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J. Biol. Chem. 275, 22355–22362 (2000).

  32. 32.

    Damsma, G. E., Alt, A., Brueckner, F., Carell, T. & Cramer, P. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat. Struct. Mol. Biol. 14, 1127–1133 (2007).

  33. 33.

    Brooks, P. J. The 8,5′-cyclopurine-2′-deoxynucleosides: candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair. DNA Repair 7, 1168–1179 (2008).

  34. 34.

    Walmacq, C. et al. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol. Cell 46, 18–29 (2012).

  35. 35.

    Walmacq, C. et al. Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions. Proc. Natl Acad. Sci. USA 112, E410–E419 (2015).

  36. 36.

    Nagel, Z. D. et al. Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis. Proc. Natl Acad. Sci. USA 111, E1823–E1832 (2014).

  37. 37.

    Li, W., Selvam, K., Ko, T. & Li, S. Transcription bypass of DNA lesions enhances cell survival but attenuates transcription coupled DNA repair. Nucleic Acids Res. 42, 13242–13253 (2014).

  38. 38.

    Troelstra, C. et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71, 939–953 (1992).

  39. 39.

    van den Boom, V. et al. DNA damage stabilizes interaction of CSB with the transcription elongation machinery. J. Cell Biol. 166, 27–36 (2004).

  40. 40.

    Tantin, D., Kansal, A. & Carey, M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell Biol. 17, 6803–6814 (1997).

  41. 41.

    van Gool, A. J. et al. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J. 16, 5955–5965 (1997).

  42. 42.

    Xu, J. et al. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature 551, 653–657 (2017). Cryo-electron microscopy structures of lesion-stalled Pol II with the Saccharomyces cerevisiae CSB orthologue show that the CSB ATPase domain promotes the forward movement of Pol II, in order to probe whether Pol II is stalled at a lesion.

  43. 43.

    Selby, C. P. & Sancar, A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl Acad. Sci. USA 94, 11205–11209 (1997).

  44. 44.

    Park, J. S., Marr, M. T. & Roberts, J. W. E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109, 757–767 (2002).

  45. 45.

    Deaconescu, A. M. & Suhanovsky, M. M. From Mfd to TRCF and back again-a perspective on bacterial transcription-coupled nucleotide excision repair. Photochem. Photobiol. 93, 268–279 (2017).

  46. 46.

    Daniel, L. et al. Mechanistic insights in transcription-coupled nucleotide excision repair of ribosomal DNA. Proc. Natl Acad. Sci. USA 115, E6770–E6779 (2018).

  47. 47.

    Wallace, S. S. Base excision repair: a critical player in many games. DNA Repair 19, 14–26 (2014).

  48. 48.

    Ceccaldi, R., Rondinelli, B. & D’Andrea, A. D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64 (2016).

  49. 49.

    Nakagawa, A. et al. Three-dimensional visualization of ultraviolet-induced DNA damage and its repair in human cell nuclei. J. Invest. Dermatol. 110, 143–148 (1998).

  50. 50.

    van Hoffen, A., Venema, J., Meschini, R., van Zeeland, A. A. & Mullenders, L. H. Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. EMBO J. 14, 360–367 (1995).

  51. 51.

    Slyskova, J. et al. Base and nucleotide excision repair facilitate resolution of platinum drugs-induced transcription blockage. Nucleic Acids Res. 46, 9537–9549 (2018).

  52. 52.

    Jaspers, N. G. et al. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair 1, 1027–1038 (2002).

  53. 53.

    Sidorenko, V. S. et al. Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Nucleic Acids Res. 40, 2494–2505 (2012).

  54. 54.

    Batenburg, N. L., Thompson, E. L., Hendrickson, E. A. & Zhu, X. D. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation. EMBO J. 34, 1399–1416 (2015).

  55. 55.

    Teng, Y. et al. ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nat. Commun. 9, 4115 (2018).

  56. 56.

    Menoni, H., Hoeijmakers, J. H. & Vermeulen, W. Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J. Cell Biol. 199, 1037–1046 (2012).

  57. 57.

    Wei, L., Levine, A. S. & Lan, L. Transcription-coupled homologous recombination after oxidative damage. DNA Repair 44, 76–80 (2016).

  58. 58.

    Nudler, E. RNA polymerase backtracking in gene regulation and genome instability. Cell 149, 1438–1445 (2012).

  59. 59.

    Geijer, M. E. & Marteijn, J. A. What happens at the lesion does not stay at the lesion: Transcription-coupled nucleotide excision repair and the effects of DNA damage on transcription in cis and trans. DNA Repair 71, 56–68 (2018).

  60. 60.

    Mullenders, L. DNA damage mediated transcription arrest: Step back to go forward. DNA Repair 36, 28–35 (2015).

  61. 61.

    Sarker, A. H. et al. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol. Cell 20, 187–198 (2005).

  62. 62.

    Chiou, Y. Y., Hu, J., Sancar, A. & Selby, C. P. RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells. J. Biol. Chem. 293, 2476–2486 (2018).

  63. 63.

    Saijo, M. et al. Functional TFIIH is required for UV-induced translocation of CSA to the nuclear matrix. Mol. Cell Biol. 27, 2538–2547 (2007).

  64. 64.

    Kamiuchi, S. et al. Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc. Natl Acad. Sci. USA 99, 201–206 (2002).

  65. 65.

    Zhang, X. et al. Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat. Genet. 44, 593–597 (2012).

  66. 66.

    Nakazawa, Y. et al. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat. Genet. 44, 586–592 (2012).

  67. 67.

    Fei, J. & Chen, J. KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR). J. Biol. Chem. 287, 35118–35126 (2012).

  68. 68.

    Henning, K. A. et al. The cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82, 555–564 (1995).

  69. 69.

    Sin, Y., Tanaka, K. & Saijo, M. The C-terminal region and SUMOylation of Cockayne syndrome group B protein play critical roles in transcription-coupled nucleotide excision repair. J. Biol. Chem. 291, 1387–1397 (2016).

  70. 70.

    Fischer, E. S. et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147, 1024–1039 (2011).

  71. 71.

    Pines, A. et al. TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A. Nat. Commun. 9, 1040 (2018).

  72. 72.

    Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003).

  73. 73.

    Groisman, R. et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 20, 1429–1434 (2006).

  74. 74.

    Bregman, D. B. et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl Acad. Sci. USA 93, 11586–11590 (1996).

  75. 75.

    Higa, M., Tanaka, K. & Saijo, M. Inhibition of UVSSA ubiquitination suppresses transcription-coupled nucleotide excision repair deficiency caused by dissociation from USP7. FEBS J. 285, 965–976 (2018).

  76. 76.

    Higa, M., Zhang, X., Tanaka, K. & Saijo, M. Stabilization of ultraviolet (UV)-stimulated scaffold protein A by interaction with ubiquitin-specific peptidase 7 is essential for transcription-coupled nucleotide excision repair. J. Biol. Chem. 291, 13771–13779 (2016).

  77. 77.

    Schwertman, P. et al. UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat. Genet. 44, 598–602 (2012).

  78. 78.

    Anindya, R., Aygun, O. & Svejstrup, J. Q. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol. Cell 28, 386–397 (2007).

  79. 79.

    Wienholz, F. et al. FACT subunit Spt16 controls UVSSA recruitment to lesion-stalled RNA Pol II and stimulates TC-NER. Nucleic Acids Res. 47, 4011–4025 (2019).

  80. 80.

    Dinant, C. et al. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Mol. Cell 51, 469–479 (2013).

  81. 81.

    Cho, I., Tsai, P. F., Lake, R. J., Basheer, A. & Fan, H. Y. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair. PLOS Genet. 9, e1003407 (2013).

  82. 82.

    Aydin, O. Z. et al. Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription. Nucleic Acids Res. 42, 8473–8485 (2014).

  83. 83.

    Mandemaker, I. K., Vermeulen, W. & Marteijn, J. A. Gearing up chromatin: A role for chromatin remodeling during the transcriptional restart upon DNA damage. Nucleus 5, 203–210 (2014).

  84. 84.

    Lans, H., Marteijn, J. A. & Vermeulen, W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 5, 4 (2012).

  85. 85.

    Adam, S. & Polo, S. E. Blurring the line between the DNA damage response and transcription: the importance of chromatin dynamics. Exp. Cell Res. 329, 148–153 (2014).

  86. 86.

    Compe, E. & Egly, J. M. TFIIH: when transcription met DNA repair. Nat. Rev. Mol. Cell Biol. 13, 343–354 (2012).

  87. 87.

    Okuda, M., Nakazawa, Y., Guo, C., Ogi, T. & Nishimura, Y. Common TFIIH recruitment mechanism in global genome and transcription-coupled repair subpathways. Nucleic Acids Res. 45, 13043–13055 (2017). This study shows that UVSSA has a crucial role in the recruitment of TFIIH to the TC-NER complex by a direct interaction with the p62 subunit of TFIIH, in a manner similar to the recruitment of TFIIH by XPC in GG-NER.

  88. 88.

    Li, C. L. et al. Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol. Cell 59, 1025–1034 (2015).

  89. 89.

    Sugasawa, K., Akagi, J.-I., Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC Complex and DNA strand scanning. Mol. Cell 36, 642–653 (2009).

  90. 90.

    Anindya, R. et al. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol. Cell 38, 637–648 (2010).

  91. 91.

    Coin, F. et al. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol. Cell 31, 9–20 (2008).

  92. 92.

    Hanasoge, S. & Ljungman, M. H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. Carcinogenesis 28, 2298–2304 (2007).

  93. 93.

    Marteijn, J. A. et al. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J. Cell Biol. 186, 835–847 (2009).

  94. 94.

    Giannattasio, M. et al. Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol. Cell 40, 50–62 (2010).

  95. 95.

    Sertic, S. et al. Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proc. Natl Acad. Sci. USA 108, 13647–13652 (2011).

  96. 96.

    Scharer, O. D. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012609 (2013).

  97. 97.

    Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).

  98. 98.

    Nouspikel, T. DNA repair in differentiated cells: some new answers to old questions. Neuroscience 145, 1213–1221 (2007).

  99. 99.

    Nouspikel, T. & Hanawalt, P. C. DNA repair in terminally differentiated cells. DNA Repair 1, 59–75 (2002).

  100. 100.

    Liu, S. C., Parsons, S. & Hanawalt, P. C. DNA repair in cultured keratinocytes. J. Invest. Dermatol. 81, 179s–183s (1983).

  101. 101.

    Lans, H. et al. Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLOS Genet. 6, e1000941 (2010). This study reports that in differentiated somatic cells of C. elegans , TC-NER rather than GG-NER is important for cell function. However, impairing GG-NER further aggravates the UV hypersensitivity of TC-NER-deficient postmitotic cells, indicating that GG-NER is also important for TBL removal.

  102. 102.

    Lans, H. & Vermeulen, W. Tissue specific response to DNA damage: C. elegans as role model. DNA Repair 32, 141–148 (2015).

  103. 103.

    Andressoo, J. O., Hoeijmakers, J. H. & Mitchell, J. R. Nucleotide excision repair disorders and the balance between cancer and aging. Cell Cycle 5, 2886–2888 (2006).

  104. 104.

    de Boer, J. et al. Premature aging in mice deficient in DNA repair and transcription. Science 296, 1276–1279 (2002).

  105. 105.

    Nouspikel, T. P., Hyka-Nouspikel, N. & Hanawalt, P. C. Transcription domain-associated repair in human cells. Mol. Cell Biol. 26, 8722–8730 (2006).

  106. 106.

    Itoh, T., Ono, T. & Yamaizumi, M. A new UV-sensitive syndrome not belonging to any complementation groups of xeroderma pigmentosum or Cockayne syndrome: siblings showing biochemical characteristics of Cockayne syndrome without typical clinical manifestations. Mutat. Res. 314, 233–248 (1994).

  107. 107.

    Spivak, G. UV-sensitive syndrome. Mutat. Res. 577, 162–169 (2005).

  108. 108.

    Laugel, V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech. Ageing Dev. 134, 161–170 (2013).

  109. 109.

    Kraemer, K. H. et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience 145, 1388–1396 (2007).

  110. 110.

    Natale, V. & Raquer, H. Xeroderma pigmentosum–Cockayne syndrome complex. Orphanet. J. Rare Dis. 12, 65 (2017).

  111. 111.

    Lambert, W. C., Gagna, C. E. & Lambert, M. W. Trichothiodystrophy: photosensitive, TTD-P, TTD, Tay syndrome. Adv. Exp. Med. Biol. 685, 106–110 (2010).

  112. 112.

    Ferri, D., Orioli, D. & Botta, E. Heterogeneity and overlaps in nucleotide excision repair disorders. Clin. Genet. (2019).

  113. 113.

    Nardo, T. et al. A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc. Natl Acad. Sci. USA 106, 6209–6214 (2009).

  114. 114.

    Horibata, K. et al. Complete absence of Cockayne syndrome group B gene product gives rise to UV-sensitive syndrome but not Cockayne syndrome. Proc. Natl Acad. Sci. USA 101, 15410–15415 (2004).

  115. 115.

    Ljungman, M. & Zhang, F. Blockage of RNA polymerase as a possible trigger for U.V. light-induced apoptosis. Oncogene 13, 823–831 (1996).

  116. 116.

    Mayne, L. V. & Lehmann, A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res. 42, 1473–1478 (1982).

  117. 117.

    Aamann, M. D. et al. Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane. FASEB J. 24, 2334–2346 (2010).

  118. 118.

    Kamenisch, Y. et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 207, 379–390 (2010).

  119. 119.

    Wang, Y. et al. Dysregulation of gene expression as a cause of Cockayne syndrome neurological disease. Proc. Natl Acad. Sci. USA 111, 14454–14459 (2014).

  120. 120.

    Pascucci, B. et al. An altered redox balance mediates the hypersensitivity of Cockayne syndrome primary fibroblasts to oxidative stress. Aging Cell 11, 520–529 (2012).

  121. 121.

    Banerjee, D. et al. Preferential repair of oxidized base damage in the transcribed genes of mammalian cells. J. Biol. Chem. 286, 6006–6016 (2011).

  122. 122.

    Guo, J., Hanawalt, P. C. & Spivak, G. Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells. Nucleic Acids Res. 41, 7700–7712 (2013).

  123. 123.

    Stevnsner, T., Muftuoglu, M., Aamann, M. D. & Bohr, V. A. The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech. Ageing Dev. 129, 441–448 (2008).

  124. 124.

    Enoiu, M., Jiricny, J. & Scharer, O. D. Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res. 40, 8953–8964 (2012).

  125. 125.

    Iyama, T. et al. CSB interacts with SNM1A and promotes DNA interstrand crosslink processing. Nucleic Acids Res. 43, 247–258 (2015).

  126. 126.

    Garaycoechea, J. I. et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature 553, 171–177 (2018).

  127. 127.

    Kashiyama, K. et al. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am. J. Hum. Genet. 92, 807–819 (2013).

  128. 128.

    Sabatella, M. et al. Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features. Nucleic Acids Res. 46, 9563–9577 (2018).

  129. 129.

    Andressoo, J. O. et al. An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell 10, 121–132 (2006).

  130. 130.

    Godon, C. et al. Generation of DNA single-strand displacement by compromised nucleotide excision repair. EMBO J. 31, 3550–3563 (2012).

  131. 131.

    Fan, L. et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789–800 (2008).

  132. 132.

    Sugitani, N., Sivley, R. M., Perry, K. E., Capra, J. A. & Chazin, W. J. XPA: A key scaffold for human nucleotide excision repair. DNA Repair 44, 123–135 (2016).

  133. 133.

    Vermeij, W. P. et al. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature 537, 427–431 (2016). This research shows that in progeroid DNA-repair-deficient mice, DNA-damage-induced transcription stress correlates with ageing-dependent, genome-wide decline of gene expression in a gene-length-dependent manner. Additionally, a strong overall health improvement is exerted by dietary restriction in NER-deficient mouse models.

  134. 134.

    van der Pluijm, I. et al. Impaired genome maintenance suppresses the growth hormone-insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLOS Biol. 5, e2 (2007).

  135. 135.

    Barnhoorn, S. et al. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency. PLOS Genet. 10, e1004686 (2014).

  136. 136.

    Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).

  137. 137.

    Trego, K. S. et al. Non-catalytic Roles for XPG with BRCA1 and BRCA2 in homologous recombination and genome stability. Mol. Cell 61, 535–546 (2016).

  138. 138.

    Faridounnia, M., Folkers, G. E. & Boelens, R. Function and Interactions of ERCC1-XPF in DNA Damage Response. Molecules 23, E3205 (2018).

  139. 139.

    Prasher, J. M. et al. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1-/- mice. EMBO J. 24, 861–871 (2005).

  140. 140.

    Dzagnidze, A. et al. Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy. J. Neurosci. 27, 9451–9457 (2007).

  141. 141.

    Kelley, M. R. et al. Role of the DNA base excision repair protein, APE1 in cisplatin, oxaliplatin, or carboplatin induced sensory neuropathy. PLOS ONE 9, e106485 (2014).

  142. 142.

    Gorgels, T. G. et al. Retinal degeneration and ionizing radiation hypersensitivity in a mouse model for Cockayne syndrome. Mol. Cell Biol. 27, 1433–1441 (2007).

  143. 143.

    Rainey, R. N., Ng, S. Y., Llamas, J., van der Horst, G. T. & Segil, N. Mutations in cockayne syndrome-associated genes (Csa and Csb) predispose to cisplatin-induced hearing loss in mice. J. Neurosci. 36, 4758–4770 (2016).

  144. 144.

    Avan, A. et al. Platinum-induced neurotoxicity and preventive strategies: past, present, and future. Oncologist 20, 411–432 (2015).

  145. 145.

    Balducci, L. Management of chemotherapy-induced neutropenia in the older cancer patient. Oncology 20, 26–31 (2006).

  146. 146.

    Jung, Y. & Lippard, S. J. Direct cellular responses to platinum-induced DNA damage. Chem. Rev. 107, 1387–1407 (2007).

  147. 147.

    Ta, L. E., Espeset, L., Podratz, J. & Windebank, A. J. Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum-DNA binding. Neurotoxicology 27, 992–1002 (2006).

  148. 148.

    McDonald, E. S., Randon, K. R., Knight, A. & Windebank, A. J. Cisplatin preferentially binds to DNA in dorsal root ganglion neurons in vitro and in vivo: a potential mechanism for neurotoxicity. Neurobiol Dis. 18, 305–313 (2005).

  149. 149.

    Yan, F., Liu, J. J., Ip, V., Jamieson, S. M. & McKeage, M. J. Role of platinum DNA damage-induced transcriptional inhibition in chemotherapy-induced neuronal atrophy and peripheral neurotoxicity. J. Neurochem. 135, 1099–1112 (2015).

  150. 150.

    Furuta, T. et al. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res. 62, 4899–4902 (2002).

  151. 151.

    McKay, B. C., Becerril, C. & Ljungman, M. P53 plays a protective role against UV- and cisplatin-induced apoptosis in transcription-coupled repair proficient fibroblasts. Oncogene 20, 6805–6808 (2001).

  152. 152.

    Scheibye-Knudsen, M. et al. A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in Cockayne syndrome. Cell Metab. 20, 840–855 (2014).

  153. 153.

    Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147 (2017).

  154. 154.

    Chen, R. et al. PP2B and PP1α cooperatively disrupt 7SK snRNP to release P-TEFb for transcription in response to Ca2+ signaling. Genes Dev. 22, 1356–1368 (2008).

  155. 155.

    Nguyen, V. T., Kiss, T., Michels, A. A. & Bensaude, O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414, 322–325 (2001).

  156. 156.

    Bugai, A. et al. p-TEFb activation by RBM7 shapes a pro-survival transcriptional response to genotoxic stress. Mol. Cell 4, 254–267 (2019).

  157. 157.

    Borisova, M. E. et al. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. Nat. Commun. 9, 1017 (2018).

  158. 158.

    Lavigne, M. D., Konstantopoulos, D., Ntakou-Zamplara, K. Z., Liakos, A. & Fousteri, M. Global unleashing of transcription elongation waves in response to genotoxic stress restricts somatic mutation rate. Nat. Commun. 8, 2076 (2017). Bugai et al., Borisova et al. and Lavigne et al. report that following DNA damage, promoter-paused Pol II is released into the gene body by NELF phosphorylation and p-TEFb activation through p38–MK2 signalling.

  159. 159.

    Helmrich, A., Ballarino, M., Nudler, E. & Tora, L. Transcription-replication encounters, consequences and genomic instability. Nat. Struct. Mol. Biol. 20, 412–418 (2013).

  160. 160.

    Williamson, L. et al. UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell 168, 843–855 (2017). Williamson et al. report that upon TBL induction, gene activity is mainly restricted to the 5′ part of the gene, owing to alternative last exon splicing. This can result in a short, non-coding transcript that has a function during the cellular response to TBLs.

  161. 161.

    Lang, K. S. et al. Replication-transcription conflicts generate R-Loops that orchestrate bacterial stress survival and pathogenesis. Cell 170, 787–799.e718 (2017).

  162. 162.

    Hamperl, S., Bocek, M. J., Saldivar, J. C., Swigut, T. & Cimprich, K. A. Transcription-replication conflict orientation modulates r-loop levels and activates distinct DNA damage responses. Cell 170, 774–786.e719 (2017).

  163. 163.

    Aguilera, A. & Garcia-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

  164. 164.

    Wilson, M. D., Harreman, M. & Svejstrup, J. Q. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta 1829, 151–157 (2013).

  165. 165.

    Ratner, J. N., Balasubramanian, B., Corden, J., Warren, S. L. & Bregman, D. B. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 273, 5184–5189 (1998).

  166. 166.

    Woudstra, E. C. et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929–933 (2002).

  167. 167.

    van Cuijk, L., Vermeulen, W. & Marteijn, J. A. Ubiquitin at work: the ubiquitous regulation of the damage recognition step of NER. Exp. Cell Res. 329, 101–109 (2014).

  168. 168.

    Verma, R., Oania, R., Fang, R., Smith, G. T. & Deshaies, R. J. Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. Mol. Cell 41, 82–92 (2011).

  169. 169.

    Wilson, M. D. et al. Proteasome-mediated processing of Def1, a critical step in the cellular response to transcription stress. Cell 154, 983–995 (2013).

  170. 170.

    Mone, M. J. et al. Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep. 2, 1013–1017 (2001).

  171. 171.

    Rockx, D. A. et al. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc. Natl Acad. Sci. USA 97, 10503–10508 (2000).

  172. 172.

    Vichi, P. et al. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J. 16, 7444–7456 (1997).

  173. 173.

    Gyenis, A. et al. UVB induces a genome-wide acting negative regulatory mechanism that operates at the level of transcription initiation in human cells. PLOS Genet. 10, e1004483 (2014).

  174. 174.

    Epanchintsev, A. et al. Cockayne’s syndrome A and B proteins regulate transcription arrest after genotoxic stress by promoting ATF3 degradation. Mol. Cell 68, 1054–1066 (2017).

  175. 175.

    Kristensen, U. et al. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. Proc. Natl Acad. Sci. USA 110, E2261–E2270 (2013).

  176. 176.

    Muñoz, M. J. et al. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137, 708–720 (2009).

  177. 177.

    Sanchez, A. et al. BMI1-UBR5 axis regulates transcriptional repression at damaged chromatin. Proc. Natl Acad. Sci. USA 113, 11243–11248 (2016).

  178. 178.

    Sigurdsson, S., Dirac-Svejstrup, A. B. & Svejstrup, J. Q. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol. Cell 38, 202–210 (2010).

  179. 179.

    Dutta, A. et al. Ccr4-Not and TFIIS function cooperatively to rescue arrested RNA polymerase II. Mol. Cell Biol. 35, 1915–1925 (2015).

  180. 180.

    Kruk, J. A., Dutta, A., Fu, J., Gilmour, D. S. & Reese, J. C. The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev. 25, 581–593 (2011).

  181. 181.

    Mourgues, S. et al. ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair. Proc. Natl Acad. Sci. USA 110, 17927–17932 (2013).

  182. 182.

    Oksenych, V. et al. Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLOS Genet. 9, e1003611 (2013).

  183. 183.

    Adam, S., Polo, S. E. & Almouzni, G. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 155, 94–106 (2013).

  184. 184.

    Hamperl, S. & Cimprich, K. A. Conflict resolution in the genome: how transcription and replication make it work. Cell 167, 1455–1467 (2016).

  185. 185.

    Achar, Y. J. & Foiani, M. Coordinating replication with transcription. Adv. Exp. Med. Biol. 1042, 455–487 (2017).

  186. 186.

    Lenstra, T. L., Rodriguez, J., Chen, H. & Larson, D. R. Transcription dynamics in living cells. Annu. Rev. Biophys. 45, 25–47 (2016).

  187. 187.

    Tantale, K. et al. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat. Commun. 7, 12248 (2016).

  188. 188.

    Andrade-Lima, L. C., Veloso, A., Paulsen, M. T., Menck, C. F. & Ljungman, M. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Nucleic Acids Res. 43, 2744–2756 (2015). This study demonstrates that transcription recovery occurs as a wave in the 5′-to-3′ direction and that GG-NER contributes to TBL removal in the 3′ part of long genes.

  189. 189.

    Hu, J., Adar, S., Selby, C. P., Lieb, J. D. & Sancar, A. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes Dev. 29, 948–960 (2015). A genome-wide approach to mapping DNA excision repair shows that TC-NER is exclusively active in transcribed strands and mostly takes place at the beginning of genes.

  190. 190.

    Xiang, Y. et al. RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature 543, 573–576 (2017).

  191. 191.

    Tornaletti, S., Maeda, L. S., Kolodner, R. D. & Hanawalt, P. C. Effect of 8-oxoguanine on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. DNA Repair 3, 483–494 (2004).

  192. 192.

    Larsen, E., Kwon, K., Coin, F., Egly, J. M. & Klungland, A. Transcription activities at 8-oxoG lesions in DNA. DNA Repair 3, 1457–1468 (2004).

  193. 193.

    Kathe, S. D., Shen, G. P. & Wallace, S. S. Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. J. Biol. Chem. 279, 18511–18520 (2004).

  194. 194.

    Khobta, A., Kitsera, N., Speckmann, B. & Epe, B. 8-Oxoguanine DNA glycosylase (Ogg1) causes a transcriptional inactivation of damaged DNA in the absence of functional Cockayne syndrome B (Csb) protein. DNA Repair 8, 309–317 (2009).

  195. 195.

    Kitsera, N. et al. 8-Oxo-7,8-dihydroguanine in DNA does not constitute a barrier to transcription, but is converted into transcription-blocking damage by OGG1. Nucleic Acids Res. 39, 5926–5934 (2011).

  196. 196.

    Menoni, H. et al. The transcription-coupled DNA repair-initiating protein CSB promotes XRCC1 recruitment to oxidative DNA damage. Nucleic Acids Res. 46, 7747–7756 (2018).

  197. 197.

    Aamann, M. D., Muftuoglu, M., Bohr, V. A. & Stevnsner, T. Multiple interaction partners for Cockayne syndrome proteins: implications for genome and transcriptome maintenance. Mech. Ageing Dev. 134, 212–224 (2013).

  198. 198.

    Tuo, J., Chen, C., Zeng, X., Christiansen, M. & Bohr, V. A. Functional crosstalk between hOgg1 and the helicase domain of Cockayne syndrome group B protein. DNA Repair 1, 913–927 (2002).

  199. 199.

    Thorslund, T. et al. Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress. Mol. Cell Biol. 25, 7625–7636 (2005).

  200. 200.

    Wong, H. K. et al. Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Res. 35, 4103–4113 (2007).

  201. 201.

    Ranes, M. et al. A ubiquitylation site in Cockayne syndrome B required for repair of oxidative DNA damage, but not for transcription-coupled nucleotide excision repair. Nucleic Acids Res. 44, 5246–5255 (2016).

  202. 202.

    Pankotai, T., Bonhomme, C., Chen, D. & Soutoglou, E. DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks. Nat. Struct. Mol. Biol. 19, 276–282 (2012).

  203. 203.

    Chou, D. M. et al. A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc. Natl Acad. Sci. USA 107, 18475–18480 (2010).

  204. 204.

    Marnef, A., Cohen, S. & Legube, G. Transcription-coupled DNA double-strand break repair: active genes need special care. J. Mol. Biol. 429, 1277–1288 (2017).

  205. 205.

    Shkreta, L. & Chabot, B. The RNA splicing response to DNA damage. Biomolecules 5, 2935–2977 (2015).

  206. 206.

    Giono, L. E. et al. The RNA response to DNA damage. J. Mol. Biol. 428, 2636–2651 (2016).

  207. 207.

    Dutertre, M., Sanchez, G., Barbier, J., Corcos, L. & Auboeuf, D. The emerging role of pre-messenger RNA splicing in stress responses: sending alternative messages and silent messengers. RNA Biol. 8, 740–747 (2011).

  208. 208.

    Lenzken, S. C., Loffreda, A. & Barabino, S. M. RNA splicing: a new player in the DNA damage response. Int. J. Cell Biol. 2013, 153634 (2013).

  209. 209.

    Chandler, D. S., Singh, R. K., Caldwell, L. C., Bitler, J. L. & Lozano, G. Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Cancer Res. 66, 9502–9508 (2006).

  210. 210.

    Dutertre, M. et al. Cotranscriptional exon skipping in the genotoxic stress response. Nat. Struct. Mol. Biol. 17, 1358–1366 (2010).

  211. 211.

    de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).

  212. 212.

    Paronetto, M. P., Minana, B. & Valcarcel, J. The Ewing sarcoma protein regulates DNA damage-induced alternative splicing. Mol. Cell 43, 353–368 (2011).

  213. 213.

    Dujardin, G. et al. How slow RNA polymerase II elongation favors alternative exon skipping. Mol. Cell 54, 683–690 (2014).

  214. 214.

    Fong, N. et al. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev. 28, 2663–2676 (2014).

  215. 215.

    Chansky, H. A., Hu, M., Hickstein, D. D. & Yang, L. Oncogenic TLS/ERG and EWS/Fli-1 fusion proteins inhibit RNA splicing mediated by YB-1 protein. Cancer Res. 61, 3586–3590 (2001).

  216. 216.

    Tresini, M., Marteijn, J. A. & Vermeulen, W. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage. RNA Biol. 13, 272–278 (2016).

  217. 217.

    Munoz, M. J. et al. Major roles for pyrimidine dimers, nucleotide excision repair, and ATR in the alternative splicing response to UV irradiation. Cell Rep. 18, 2868–2879 (2017).

  218. 218.

    Katzenberger, R. J., Marengo, M. S. & Wassarman, D. A. ATM and ATR pathways signal alternative splicing of Drosophila TAF1 pre-mRNA in response to DNA damage. Mol. Cell Biol. 26, 9256–9267 (2006).

  219. 219.

    Sordet, O. et al. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep. 10, 887–893 (2009).

  220. 220.

    Mei Kwei, J. S. et al. Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct. Biochem. Biophys. Res. Commun. 320, 1133–1138 (2004).

  221. 221.

    Shi, Y. B., Gamper, H. & Hearst, J. E. Interaction of T7 RNA polymerase with DNA in an elongation complex arrested at a specific psoralen adduct site. J. Biol. Chem. 263, 527–534 (1988).

  222. 222.

    Schinecker, T. M., Perlow, R. A., Broyde, S., Geacintov, N. E. & Scicchitano, D. A. Human RNA polymerase II is partially blocked by DNA adducts derived from tumorigenic benzo[c]phenanthrene diol epoxides: relating biological consequences to conformational preferences. Nucleic Acids Res. 31, 6004–6015 (2003).

  223. 223.

    Malik, S., Bagla, S., Chaurasia, P., Duan, Z. & Bhaumik, S. R. Elongating RNA polymerase II is disassembled through specific degradation of its largest but not other subunits in response to DNA damage in vivo. J. Biol. Chem. 283, 6897–6905 (2008).

  224. 224.

    Fielden, J., Ruggiano, A., Popovic, M. & Ramadan, K. DNA protein crosslink proteolysis repair: from yeast to premature ageing and cancer in humans. DNA Repair 71, 198–204 (2018).

  225. 225.

    Solier, S. et al. Transcription poisoning by topoisomerase I is controlled by gene length, splice sites, and miR-142-3p. Cancer Res. 73, 4830–4839 (2013).

  226. 226.

    Veloso, A. et al. Genome-wide transcriptional effects of the anti-cancer agent camptothecin. PLOS ONE 8, e78190 (2013).

Download references


This work is part of the Oncode Institute, which is partly financed by the Dutch Cancer Society. The authors also acknowledge financial support from the Dutch Cancer Society (grants KWF 10506 and KWF 11446); Worldwide Cancer Research (grant 15-1274); the Dutch Organization for Scientific Research, ZonMW TOP (912.12.132), ENW TOP (714.017.003 and TOP.017.010) and Gravitation Cancer (024.001.028) grants; the National Institutes of Health (NIH)/National Institute on Aging (NIA) (PO1 AG017242); Deutsche Forschungsgemeinschaft (Project 73111208-SFB 829); Dutch Organization for Scientific Research VIDI (864.13.004) and VICI (VI.C.182.025) grants to J.M.; European Research Council Advanced Grants to J.H.J.H. (233424 ‘DamAge’ and 742426 ‘Dam2Age’) and W.V. (340988 ‘ERC-ID’); and the Royal Academy of Arts and Sciences of the Netherlands (academia professorship to J.H.J.H.).

Author information

The authors contributed equally to all aspects of the article.

Correspondence to Wim Vermeulen or Jurgen A. Marteijn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks George Garinis, Leona Samson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


Translesion synthesis

(TLS). DNA polymerization by specialized polymerases past an obstructive DNA modification or damage, which comes at the cost of fidelity and mutagenesis.


Three-stranded nucleic acid structures composed of an RNA–DNA hybrid and the complementary single-stranded DNA.

Transcription-blocking DNA lesions

(TBL). Any type of DNA modification, crosslink or damage that strongly impedes or blocks the elongation of RNA polymerases.

Abasic sites

Sites in DNA that lack a purine or pyrimidine base, arising either by spontaneous depurination or by cleavage of the N-glycosidic bond by base excision repair glycosylases.

Cyclobutane pyrimidine dimers

(CPDs). The most frequent type of ultraviolet-induced photolesion; formed by covalent linkage of the C5 and C6 carbon atoms of two adjacent pyrimidines.


A form of oxidative DNA damage that is repaired by nucleotide excision repair (NER) but not by base excision repair (BER); cyclopurines are formed by linkage of the C5 carbon atom of 2-deoxyribose and the C8 carbon atom of purine.

Transcription pause sites

Promoter-proximal sites where transcription is stalled, to maintain chromatin open and allow 5′ capping of the nascent RNA, as well as to regulate the timing of transcription.

Oxidative DNA damage

A type of DNA damage formed by oxidation of nucleotides, which is caused mainly by reactive oxygen species. 8-Oxo-2′-deoxyguanosine is the most common type of oxidative DNA lesion.

Base excision repair

(BER). A DNA repair pathway initiated by lesion-specific glycosylases that recognize and remove small base modifications such as oxidative and alkylating DNA lesions.

6–4 pyrimidine–pyrimidone photoproduct

(6–4PP). The second most frequent type of ultraviolet-induced photolesion; formed by covalent linkage of the C4 and C6 carbon atoms of two adjacent pyrimidines.


An adjective to indicate resemblance to accelerated ageing.


Method for sequencing excised oligomers generated during nucleotide excision repair, which allows genome-wide mapping of repair sites.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark