Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The DNA damage response to transcription stress

Abstract

The spatiotemporal control of RNA polymerase II (Pol II)-mediated gene transcription is tightly and intricately regulated. In addition, preservation of the integrity of the DNA template is required so as to ensure unperturbed transcription, particularly since DNA is continually challenged by different types of damaging agents that can form transcription-blocking DNA lesions (TBLs), which impede transcription elongation and cause transcription stress. To overcome the highly cytotoxic effects of TBLs, an intricate cellular response has evolved, in which the transcription-coupled nucleotide excision repair (TC-NER) pathway has a central role in removing TBLs specifically from the transcribed strand. Damage detection by stalling of the transcribing Pol II is highly efficient, but a stalled Pol II complex may create an even bigger problem by interfering with repair of the lesions, and overall with transcription and replication. In this Review, we discuss the effects of different types of DNA damage on Pol II, important concepts of transcription stress, the manner in which TBLs are removed by TC-NER and how different tissues respond to TBLs. We also discuss the role of TBLs in ageing and the complex genotype–phenotype correlations of TC-NER hereditary disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcription-blocking lesions and overview of DNA damage sensing by RNA polymerase II.
Fig. 2: Transcription-coupled nucleotide excision repair.
Fig. 3: Genotype–phenotype correlations of transcription-coupled nucleotide excision repair disorders.
Fig. 4: DNA-damage-induced transcription regulation.
Fig. 5: The activity of TC-NER and GG-NER depends on cell type and the location of transcription-blocking lesions.

Similar content being viewed by others

References

  1. Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).

    CAS  PubMed  Google Scholar 

  2. Zhou, Q., Li, T. & Price, D. H. RNA polymerase II elongation control. Annu. Rev. Biochem. 81, 119–143 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Haberle, V. & Stark, A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat. Rev. Mol. Cell Biol. 19, 621–637 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vermeij, W. P., Hoeijmakers, J. H. & Pothof, J. Aging: not all DNA damage is equal. Curr. Opin. Genet. Dev. 26, 124–130 (2014).

    CAS  PubMed  Google Scholar 

  5. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    CAS  PubMed  Google Scholar 

  6. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Kotsantis, P., Petermann, E. & Boulton, S. J. Mechanisms of oncogene-induced replication stress: jigsaw falling into place. Cancer Discov. 8, 537–555 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vaisman, A. & Woodgate, R. Translesion DNA polymerases in eukaryotes: what makes them tick? Crit. Rev. Biochem. Mol. Biol. 52, 274–303 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, W., Xu, J., Chong, J. & Wang, D. Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. DNA Repair 71, 43–55 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Crossley, M. P., Bocek, M. & Cimprich, K. A. R-loops as cellular regulators and genomic threats. Mol. Cell 73, 398–411 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tresini, M. et al. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523, 53–58 (2015). Tresini et al. report that upon TBL induction, late-stage spliceosomes are displaced from the chromatin, and that subsequent R-loop formation activates ATM, resulting in further eviction of the spliceosome from chromatin.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaillard, H. & Aguilera, A. Transcription as a threat to genome integrity. Annu. Rev. Biochem. 85, 291–317 (2016).

    CAS  PubMed  Google Scholar 

  13. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ganesan, A., Spivak, G. & Hanawalt, P. C. Transcription-coupled DNA repair in prokaryotes. Prog. Mol. Biol. Transl. Sci. 110, 25–40 (2012).

    CAS  PubMed  Google Scholar 

  15. Li, S. Transcription coupled nucleotide excision repair in the yeast Saccharomyces cerevisiae: The ambiguous role of Rad26. DNA Repair 36, 43–48 (2015).

    PubMed  Google Scholar 

  16. Edifizi, D. & Schumacher, B. Genome instability in development and aging: insights from nucleotide excision repair in humans, mice, and worms. Biomolecules 5, 1855–1869 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958–970 (2008).

    CAS  PubMed  Google Scholar 

  18. Tornaletti, S., Maeda, L. S. & Hanawalt, P. C. Transcription arrest at an abasic site in the transcribed strand of template DNA. Chem. Res. Toxicol. 19, 1215–1220 (2006).

    CAS  PubMed  Google Scholar 

  19. Tornaletti, S., Maeda, L. S., Lloyd, D. R., Reines, D. & Hanawalt, P. C. Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. J. Biol. Chem. 276, 45367–45371 (2001).

    CAS  PubMed  Google Scholar 

  20. Charlet-Berguerand, N. et al. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J. 25, 5481–5491 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Doetsch, P. W. Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutat Res. 510, 131–140 (2002).

    CAS  PubMed  Google Scholar 

  22. Saxowsky, T. T., Meadows, K. L., Klungland, A. & Doetsch, P. W. 8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells. Proc. Natl Acad. Sci. USA 105, 18877–18882 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, W. & Doetsch, P. W. Effects of abasic sites and DNA single-strand breaks on prokaryotic RNA polymerases. Proc. Natl Acad. Sci. USA 90, 6601–6605 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bregeon, D. & Doetsch, P. W. Transcriptional mutagenesis: causes and involvement in tumour development. Nat. Rev. Cancer 11, 218–227 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ezerskyte, M. et al. O(6)-methylguanine-induced transcriptional mutagenesis reduces p53 tumor-suppressor function. Proc. Natl Acad. Sci. USA 115, 4731–4736 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tornaletti, S., Reines, D. & Hanawalt, P. C. Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J. Biol. Chem. 274, 24124–24130 (1999).

    CAS  PubMed  Google Scholar 

  27. Todd, R. C. & Lippard, S. J. Inhibition of transcription by platinum antitumor compounds. Metallomics 1, 280–291 (2009).

    CAS  PubMed  Google Scholar 

  28. Brueckner, F., Hennecke, U., Carell, T. & Cramer, P. CPD damage recognition by transcribing RNA polymerase II. Science 315, 859–862 (2007).

    CAS  PubMed  Google Scholar 

  29. Perlow, R. A. et al. DNA adducts from a tumorigenic metabolite of benzo[a]pyrene block human RNA polymerase II elongation in a sequence- and stereochemistry-dependent manner. J. Mol. Biol. 321, 29–47 (2002).

    CAS  PubMed  Google Scholar 

  30. Donahue, B. A., Fuchs, R. P., Reines, D. & Hanawalt, P. C. Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II. J. Biol. Chem. 271, 10588–10594 (1996).

    CAS  PubMed  Google Scholar 

  31. Brooks, P. J. et al. The oxidative DNA lesion 8,5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J. Biol. Chem. 275, 22355–22362 (2000).

    CAS  PubMed  Google Scholar 

  32. Damsma, G. E., Alt, A., Brueckner, F., Carell, T. & Cramer, P. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat. Struct. Mol. Biol. 14, 1127–1133 (2007).

    CAS  PubMed  Google Scholar 

  33. Brooks, P. J. The 8,5′-cyclopurine-2′-deoxynucleosides: candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair. DNA Repair 7, 1168–1179 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Walmacq, C. et al. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol. Cell 46, 18–29 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Walmacq, C. et al. Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions. Proc. Natl Acad. Sci. USA 112, E410–E419 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nagel, Z. D. et al. Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis. Proc. Natl Acad. Sci. USA 111, E1823–E1832 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, W., Selvam, K., Ko, T. & Li, S. Transcription bypass of DNA lesions enhances cell survival but attenuates transcription coupled DNA repair. Nucleic Acids Res. 42, 13242–13253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Troelstra, C. et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71, 939–953 (1992).

    CAS  PubMed  Google Scholar 

  39. van den Boom, V. et al. DNA damage stabilizes interaction of CSB with the transcription elongation machinery. J. Cell Biol. 166, 27–36 (2004).

    PubMed  PubMed Central  Google Scholar 

  40. Tantin, D., Kansal, A. & Carey, M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell Biol. 17, 6803–6814 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. van Gool, A. J. et al. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J. 16, 5955–5965 (1997).

    PubMed  PubMed Central  Google Scholar 

  42. Xu, J. et al. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature 551, 653–657 (2017). Cryo-electron microscopy structures of lesion-stalled Pol II with the Saccharomyces cerevisiae CSB orthologue show that the CSB ATPase domain promotes the forward movement of Pol II, in order to probe whether Pol II is stalled at a lesion.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Selby, C. P. & Sancar, A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl Acad. Sci. USA 94, 11205–11209 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Park, J. S., Marr, M. T. & Roberts, J. W. E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109, 757–767 (2002).

    CAS  PubMed  Google Scholar 

  45. Deaconescu, A. M. & Suhanovsky, M. M. From Mfd to TRCF and back again-a perspective on bacterial transcription-coupled nucleotide excision repair. Photochem. Photobiol. 93, 268–279 (2017).

    CAS  PubMed  Google Scholar 

  46. Daniel, L. et al. Mechanistic insights in transcription-coupled nucleotide excision repair of ribosomal DNA. Proc. Natl Acad. Sci. USA 115, E6770–E6779 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. Wallace, S. S. Base excision repair: a critical player in many games. DNA Repair 19, 14–26 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ceccaldi, R., Rondinelli, B. & D’Andrea, A. D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64 (2016).

    CAS  PubMed  Google Scholar 

  49. Nakagawa, A. et al. Three-dimensional visualization of ultraviolet-induced DNA damage and its repair in human cell nuclei. J. Invest. Dermatol. 110, 143–148 (1998).

    CAS  PubMed  Google Scholar 

  50. van Hoffen, A., Venema, J., Meschini, R., van Zeeland, A. A. & Mullenders, L. H. Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. EMBO J. 14, 360–367 (1995).

    PubMed  PubMed Central  Google Scholar 

  51. Slyskova, J. et al. Base and nucleotide excision repair facilitate resolution of platinum drugs-induced transcription blockage. Nucleic Acids Res. 46, 9537–9549 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jaspers, N. G. et al. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair 1, 1027–1038 (2002).

    CAS  PubMed  Google Scholar 

  53. Sidorenko, V. S. et al. Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Nucleic Acids Res. 40, 2494–2505 (2012).

    CAS  PubMed  Google Scholar 

  54. Batenburg, N. L., Thompson, E. L., Hendrickson, E. A. & Zhu, X. D. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation. EMBO J. 34, 1399–1416 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Teng, Y. et al. ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nat. Commun. 9, 4115 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Menoni, H., Hoeijmakers, J. H. & Vermeulen, W. Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J. Cell Biol. 199, 1037–1046 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei, L., Levine, A. S. & Lan, L. Transcription-coupled homologous recombination after oxidative damage. DNA Repair 44, 76–80 (2016).

    CAS  PubMed  Google Scholar 

  58. Nudler, E. RNA polymerase backtracking in gene regulation and genome instability. Cell 149, 1438–1445 (2012).

    CAS  PubMed  Google Scholar 

  59. Geijer, M. E. & Marteijn, J. A. What happens at the lesion does not stay at the lesion: Transcription-coupled nucleotide excision repair and the effects of DNA damage on transcription in cis and trans. DNA Repair 71, 56–68 (2018).

    CAS  PubMed  Google Scholar 

  60. Mullenders, L. DNA damage mediated transcription arrest: Step back to go forward. DNA Repair 36, 28–35 (2015).

    CAS  PubMed  Google Scholar 

  61. Sarker, A. H. et al. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol. Cell 20, 187–198 (2005).

    CAS  PubMed  Google Scholar 

  62. Chiou, Y. Y., Hu, J., Sancar, A. & Selby, C. P. RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells. J. Biol. Chem. 293, 2476–2486 (2018).

    CAS  PubMed  Google Scholar 

  63. Saijo, M. et al. Functional TFIIH is required for UV-induced translocation of CSA to the nuclear matrix. Mol. Cell Biol. 27, 2538–2547 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kamiuchi, S. et al. Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc. Natl Acad. Sci. USA 99, 201–206 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, X. et al. Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat. Genet. 44, 593–597 (2012).

    CAS  PubMed  Google Scholar 

  66. Nakazawa, Y. et al. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat. Genet. 44, 586–592 (2012).

    CAS  PubMed  Google Scholar 

  67. Fei, J. & Chen, J. KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR). J. Biol. Chem. 287, 35118–35126 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Henning, K. A. et al. The cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82, 555–564 (1995).

    CAS  PubMed  Google Scholar 

  69. Sin, Y., Tanaka, K. & Saijo, M. The C-terminal region and SUMOylation of Cockayne syndrome group B protein play critical roles in transcription-coupled nucleotide excision repair. J. Biol. Chem. 291, 1387–1397 (2016).

    CAS  PubMed  Google Scholar 

  70. Fischer, E. S. et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147, 1024–1039 (2011).

    CAS  PubMed  Google Scholar 

  71. Pines, A. et al. TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A. Nat. Commun. 9, 1040 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003).

    CAS  PubMed  Google Scholar 

  73. Groisman, R. et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 20, 1429–1434 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bregman, D. B. et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl Acad. Sci. USA 93, 11586–11590 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Higa, M., Tanaka, K. & Saijo, M. Inhibition of UVSSA ubiquitination suppresses transcription-coupled nucleotide excision repair deficiency caused by dissociation from USP7. FEBS J. 285, 965–976 (2018).

    CAS  PubMed  Google Scholar 

  76. Higa, M., Zhang, X., Tanaka, K. & Saijo, M. Stabilization of ultraviolet (UV)-stimulated scaffold protein A by interaction with ubiquitin-specific peptidase 7 is essential for transcription-coupled nucleotide excision repair. J. Biol. Chem. 291, 13771–13779 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwertman, P. et al. UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat. Genet. 44, 598–602 (2012).

    CAS  PubMed  Google Scholar 

  78. Anindya, R., Aygun, O. & Svejstrup, J. Q. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol. Cell 28, 386–397 (2007).

    CAS  PubMed  Google Scholar 

  79. Wienholz, F. et al. FACT subunit Spt16 controls UVSSA recruitment to lesion-stalled RNA Pol II and stimulates TC-NER. Nucleic Acids Res. 47, 4011–4025 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dinant, C. et al. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Mol. Cell 51, 469–479 (2013).

    CAS  PubMed  Google Scholar 

  81. Cho, I., Tsai, P. F., Lake, R. J., Basheer, A. & Fan, H. Y. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair. PLOS Genet. 9, e1003407 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Aydin, O. Z. et al. Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription. Nucleic Acids Res. 42, 8473–8485 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mandemaker, I. K., Vermeulen, W. & Marteijn, J. A. Gearing up chromatin: A role for chromatin remodeling during the transcriptional restart upon DNA damage. Nucleus 5, 203–210 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. Lans, H., Marteijn, J. A. & Vermeulen, W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 5, 4 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Adam, S. & Polo, S. E. Blurring the line between the DNA damage response and transcription: the importance of chromatin dynamics. Exp. Cell Res. 329, 148–153 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Compe, E. & Egly, J. M. TFIIH: when transcription met DNA repair. Nat. Rev. Mol. Cell Biol. 13, 343–354 (2012).

    CAS  PubMed  Google Scholar 

  87. Okuda, M., Nakazawa, Y., Guo, C., Ogi, T. & Nishimura, Y. Common TFIIH recruitment mechanism in global genome and transcription-coupled repair subpathways. Nucleic Acids Res. 45, 13043–13055 (2017). This study shows that UVSSA has a crucial role in the recruitment of TFIIH to the TC-NER complex by a direct interaction with the p62 subunit of TFIIH, in a manner similar to the recruitment of TFIIH by XPC in GG-NER.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, C. L. et al. Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol. Cell 59, 1025–1034 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sugasawa, K., Akagi, J.-I., Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC Complex and DNA strand scanning. Mol. Cell 36, 642–653 (2009).

    CAS  PubMed  Google Scholar 

  90. Anindya, R. et al. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol. Cell 38, 637–648 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Coin, F. et al. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol. Cell 31, 9–20 (2008).

    CAS  PubMed  Google Scholar 

  92. Hanasoge, S. & Ljungman, M. H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. Carcinogenesis 28, 2298–2304 (2007).

    CAS  PubMed  Google Scholar 

  93. Marteijn, J. A. et al. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J. Cell Biol. 186, 835–847 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Giannattasio, M. et al. Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol. Cell 40, 50–62 (2010).

    CAS  PubMed  Google Scholar 

  95. Sertic, S. et al. Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proc. Natl Acad. Sci. USA 108, 13647–13652 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Scharer, O. D. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012609 (2013).

    PubMed  PubMed Central  Google Scholar 

  97. Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).

    CAS  PubMed  Google Scholar 

  98. Nouspikel, T. DNA repair in differentiated cells: some new answers to old questions. Neuroscience 145, 1213–1221 (2007).

    CAS  PubMed  Google Scholar 

  99. Nouspikel, T. & Hanawalt, P. C. DNA repair in terminally differentiated cells. DNA Repair 1, 59–75 (2002).

    CAS  PubMed  Google Scholar 

  100. Liu, S. C., Parsons, S. & Hanawalt, P. C. DNA repair in cultured keratinocytes. J. Invest. Dermatol. 81, 179s–183s (1983).

    CAS  PubMed  Google Scholar 

  101. Lans, H. et al. Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLOS Genet. 6, e1000941 (2010). This study reports that in differentiated somatic cells of C. elegans, TC-NER rather than GG-NER is important for cell function. However, impairing GG-NER further aggravates the UV hypersensitivity of TC-NER-deficient postmitotic cells, indicating that GG-NER is also important for TBL removal.

    PubMed  PubMed Central  Google Scholar 

  102. Lans, H. & Vermeulen, W. Tissue specific response to DNA damage: C. elegans as role model. DNA Repair 32, 141–148 (2015).

    CAS  PubMed  Google Scholar 

  103. Andressoo, J. O., Hoeijmakers, J. H. & Mitchell, J. R. Nucleotide excision repair disorders and the balance between cancer and aging. Cell Cycle 5, 2886–2888 (2006).

    CAS  PubMed  Google Scholar 

  104. de Boer, J. et al. Premature aging in mice deficient in DNA repair and transcription. Science 296, 1276–1279 (2002).

    PubMed  Google Scholar 

  105. Nouspikel, T. P., Hyka-Nouspikel, N. & Hanawalt, P. C. Transcription domain-associated repair in human cells. Mol. Cell Biol. 26, 8722–8730 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Itoh, T., Ono, T. & Yamaizumi, M. A new UV-sensitive syndrome not belonging to any complementation groups of xeroderma pigmentosum or Cockayne syndrome: siblings showing biochemical characteristics of Cockayne syndrome without typical clinical manifestations. Mutat. Res. 314, 233–248 (1994).

    CAS  PubMed  Google Scholar 

  107. Spivak, G. UV-sensitive syndrome. Mutat. Res. 577, 162–169 (2005).

    CAS  PubMed  Google Scholar 

  108. Laugel, V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech. Ageing Dev. 134, 161–170 (2013).

    CAS  PubMed  Google Scholar 

  109. Kraemer, K. H. et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience 145, 1388–1396 (2007).

    CAS  PubMed  Google Scholar 

  110. Natale, V. & Raquer, H. Xeroderma pigmentosum–Cockayne syndrome complex. Orphanet. J. Rare Dis. 12, 65 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Lambert, W. C., Gagna, C. E. & Lambert, M. W. Trichothiodystrophy: photosensitive, TTD-P, TTD, Tay syndrome. Adv. Exp. Med. Biol. 685, 106–110 (2010).

    CAS  PubMed  Google Scholar 

  112. Ferri, D., Orioli, D. & Botta, E. Heterogeneity and overlaps in nucleotide excision repair disorders. Clin. Genet. https://doi.org/10.1111/cge.13545 (2019).

  113. Nardo, T. et al. A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc. Natl Acad. Sci. USA 106, 6209–6214 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Horibata, K. et al. Complete absence of Cockayne syndrome group B gene product gives rise to UV-sensitive syndrome but not Cockayne syndrome. Proc. Natl Acad. Sci. USA 101, 15410–15415 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ljungman, M. & Zhang, F. Blockage of RNA polymerase as a possible trigger for U.V. light-induced apoptosis. Oncogene 13, 823–831 (1996).

    CAS  PubMed  Google Scholar 

  116. Mayne, L. V. & Lehmann, A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res. 42, 1473–1478 (1982).

    CAS  PubMed  Google Scholar 

  117. Aamann, M. D. et al. Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane. FASEB J. 24, 2334–2346 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kamenisch, Y. et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 207, 379–390 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, Y. et al. Dysregulation of gene expression as a cause of Cockayne syndrome neurological disease. Proc. Natl Acad. Sci. USA 111, 14454–14459 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Pascucci, B. et al. An altered redox balance mediates the hypersensitivity of Cockayne syndrome primary fibroblasts to oxidative stress. Aging Cell 11, 520–529 (2012).

    CAS  PubMed  Google Scholar 

  121. Banerjee, D. et al. Preferential repair of oxidized base damage in the transcribed genes of mammalian cells. J. Biol. Chem. 286, 6006–6016 (2011).

    CAS  PubMed  Google Scholar 

  122. Guo, J., Hanawalt, P. C. & Spivak, G. Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells. Nucleic Acids Res. 41, 7700–7712 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Stevnsner, T., Muftuoglu, M., Aamann, M. D. & Bohr, V. A. The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech. Ageing Dev. 129, 441–448 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Enoiu, M., Jiricny, J. & Scharer, O. D. Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res. 40, 8953–8964 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Iyama, T. et al. CSB interacts with SNM1A and promotes DNA interstrand crosslink processing. Nucleic Acids Res. 43, 247–258 (2015).

    CAS  PubMed  Google Scholar 

  126. Garaycoechea, J. I. et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature 553, 171–177 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kashiyama, K. et al. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am. J. Hum. Genet. 92, 807–819 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sabatella, M. et al. Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features. Nucleic Acids Res. 46, 9563–9577 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Andressoo, J. O. et al. An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell 10, 121–132 (2006).

    CAS  PubMed  Google Scholar 

  130. Godon, C. et al. Generation of DNA single-strand displacement by compromised nucleotide excision repair. EMBO J. 31, 3550–3563 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Fan, L. et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789–800 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sugitani, N., Sivley, R. M., Perry, K. E., Capra, J. A. & Chazin, W. J. XPA: A key scaffold for human nucleotide excision repair. DNA Repair 44, 123–135 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Vermeij, W. P. et al. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature 537, 427–431 (2016). This research shows that in progeroid DNA-repair-deficient mice, DNA-damage-induced transcription stress correlates with ageing-dependent, genome-wide decline of gene expression in a gene-length-dependent manner. Additionally, a strong overall health improvement is exerted by dietary restriction in NER-deficient mouse models.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. van der Pluijm, I. et al. Impaired genome maintenance suppresses the growth hormone-insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLOS Biol. 5, e2 (2007).

    PubMed  Google Scholar 

  135. Barnhoorn, S. et al. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency. PLOS Genet. 10, e1004686 (2014).

    PubMed  PubMed Central  Google Scholar 

  136. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).

    CAS  PubMed  Google Scholar 

  137. Trego, K. S. et al. Non-catalytic Roles for XPG with BRCA1 and BRCA2 in homologous recombination and genome stability. Mol. Cell 61, 535–546 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Faridounnia, M., Folkers, G. E. & Boelens, R. Function and Interactions of ERCC1-XPF in DNA Damage Response. Molecules 23, E3205 (2018).

    PubMed  Google Scholar 

  139. Prasher, J. M. et al. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1-/- mice. EMBO J. 24, 861–871 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Dzagnidze, A. et al. Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy. J. Neurosci. 27, 9451–9457 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kelley, M. R. et al. Role of the DNA base excision repair protein, APE1 in cisplatin, oxaliplatin, or carboplatin induced sensory neuropathy. PLOS ONE 9, e106485 (2014).

    PubMed  PubMed Central  Google Scholar 

  142. Gorgels, T. G. et al. Retinal degeneration and ionizing radiation hypersensitivity in a mouse model for Cockayne syndrome. Mol. Cell Biol. 27, 1433–1441 (2007).

    CAS  PubMed  Google Scholar 

  143. Rainey, R. N., Ng, S. Y., Llamas, J., van der Horst, G. T. & Segil, N. Mutations in cockayne syndrome-associated genes (Csa and Csb) predispose to cisplatin-induced hearing loss in mice. J. Neurosci. 36, 4758–4770 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Avan, A. et al. Platinum-induced neurotoxicity and preventive strategies: past, present, and future. Oncologist 20, 411–432 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Balducci, L. Management of chemotherapy-induced neutropenia in the older cancer patient. Oncology 20, 26–31 (2006).

    PubMed  Google Scholar 

  146. Jung, Y. & Lippard, S. J. Direct cellular responses to platinum-induced DNA damage. Chem. Rev. 107, 1387–1407 (2007).

    CAS  PubMed  Google Scholar 

  147. Ta, L. E., Espeset, L., Podratz, J. & Windebank, A. J. Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum-DNA binding. Neurotoxicology 27, 992–1002 (2006).

    CAS  PubMed  Google Scholar 

  148. McDonald, E. S., Randon, K. R., Knight, A. & Windebank, A. J. Cisplatin preferentially binds to DNA in dorsal root ganglion neurons in vitro and in vivo: a potential mechanism for neurotoxicity. Neurobiol Dis. 18, 305–313 (2005).

    CAS  PubMed  Google Scholar 

  149. Yan, F., Liu, J. J., Ip, V., Jamieson, S. M. & McKeage, M. J. Role of platinum DNA damage-induced transcriptional inhibition in chemotherapy-induced neuronal atrophy and peripheral neurotoxicity. J. Neurochem. 135, 1099–1112 (2015).

    CAS  PubMed  Google Scholar 

  150. Furuta, T. et al. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res. 62, 4899–4902 (2002).

    CAS  PubMed  Google Scholar 

  151. McKay, B. C., Becerril, C. & Ljungman, M. P53 plays a protective role against UV- and cisplatin-induced apoptosis in transcription-coupled repair proficient fibroblasts. Oncogene 20, 6805–6808 (2001).

    CAS  PubMed  Google Scholar 

  152. Scheibye-Knudsen, M. et al. A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in Cockayne syndrome. Cell Metab. 20, 840–855 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen, R. et al. PP2B and PP1α cooperatively disrupt 7SK snRNP to release P-TEFb for transcription in response to Ca2+ signaling. Genes Dev. 22, 1356–1368 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Nguyen, V. T., Kiss, T., Michels, A. A. & Bensaude, O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414, 322–325 (2001).

    CAS  PubMed  Google Scholar 

  156. Bugai, A. et al. p-TEFb activation by RBM7 shapes a pro-survival transcriptional response to genotoxic stress. Mol. Cell 4, 254–267 (2019).

    Google Scholar 

  157. Borisova, M. E. et al. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. Nat. Commun. 9, 1017 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Lavigne, M. D., Konstantopoulos, D., Ntakou-Zamplara, K. Z., Liakos, A. & Fousteri, M. Global unleashing of transcription elongation waves in response to genotoxic stress restricts somatic mutation rate. Nat. Commun. 8, 2076 (2017). Bugai et al., Borisova et al. and Lavigne et al. report that following DNA damage, promoter-paused Pol II is released into the gene body by NELF phosphorylation and p-TEFb activation through p38–MK2 signalling.

    PubMed  PubMed Central  Google Scholar 

  159. Helmrich, A., Ballarino, M., Nudler, E. & Tora, L. Transcription-replication encounters, consequences and genomic instability. Nat. Struct. Mol. Biol. 20, 412–418 (2013).

    CAS  PubMed  Google Scholar 

  160. Williamson, L. et al. UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell 168, 843–855 (2017). Williamson et al. report that upon TBL induction, gene activity is mainly restricted to the 5′ part of the gene, owing to alternative last exon splicing. This can result in a short, non-coding transcript that has a function during the cellular response to TBLs.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Lang, K. S. et al. Replication-transcription conflicts generate R-Loops that orchestrate bacterial stress survival and pathogenesis. Cell 170, 787–799.e718 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Hamperl, S., Bocek, M. J., Saldivar, J. C., Swigut, T. & Cimprich, K. A. Transcription-replication conflict orientation modulates r-loop levels and activates distinct DNA damage responses. Cell 170, 774–786.e719 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Aguilera, A. & Garcia-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    CAS  PubMed  Google Scholar 

  164. Wilson, M. D., Harreman, M. & Svejstrup, J. Q. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta 1829, 151–157 (2013).

    CAS  PubMed  Google Scholar 

  165. Ratner, J. N., Balasubramanian, B., Corden, J., Warren, S. L. & Bregman, D. B. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 273, 5184–5189 (1998).

    CAS  PubMed  Google Scholar 

  166. Woudstra, E. C. et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929–933 (2002).

    CAS  PubMed  Google Scholar 

  167. van Cuijk, L., Vermeulen, W. & Marteijn, J. A. Ubiquitin at work: the ubiquitous regulation of the damage recognition step of NER. Exp. Cell Res. 329, 101–109 (2014).

    PubMed  Google Scholar 

  168. Verma, R., Oania, R., Fang, R., Smith, G. T. & Deshaies, R. J. Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. Mol. Cell 41, 82–92 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wilson, M. D. et al. Proteasome-mediated processing of Def1, a critical step in the cellular response to transcription stress. Cell 154, 983–995 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mone, M. J. et al. Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep. 2, 1013–1017 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Rockx, D. A. et al. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc. Natl Acad. Sci. USA 97, 10503–10508 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Vichi, P. et al. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J. 16, 7444–7456 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Gyenis, A. et al. UVB induces a genome-wide acting negative regulatory mechanism that operates at the level of transcription initiation in human cells. PLOS Genet. 10, e1004483 (2014).

    PubMed  PubMed Central  Google Scholar 

  174. Epanchintsev, A. et al. Cockayne’s syndrome A and B proteins regulate transcription arrest after genotoxic stress by promoting ATF3 degradation. Mol. Cell 68, 1054–1066 (2017).

    CAS  PubMed  Google Scholar 

  175. Kristensen, U. et al. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. Proc. Natl Acad. Sci. USA 110, E2261–E2270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Muñoz, M. J. et al. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137, 708–720 (2009).

    PubMed  Google Scholar 

  177. Sanchez, A. et al. BMI1-UBR5 axis regulates transcriptional repression at damaged chromatin. Proc. Natl Acad. Sci. USA 113, 11243–11248 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Sigurdsson, S., Dirac-Svejstrup, A. B. & Svejstrup, J. Q. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol. Cell 38, 202–210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Dutta, A. et al. Ccr4-Not and TFIIS function cooperatively to rescue arrested RNA polymerase II. Mol. Cell Biol. 35, 1915–1925 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Kruk, J. A., Dutta, A., Fu, J., Gilmour, D. S. & Reese, J. C. The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev. 25, 581–593 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Mourgues, S. et al. ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair. Proc. Natl Acad. Sci. USA 110, 17927–17932 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Oksenych, V. et al. Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLOS Genet. 9, e1003611 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Adam, S., Polo, S. E. & Almouzni, G. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 155, 94–106 (2013).

    CAS  PubMed  Google Scholar 

  184. Hamperl, S. & Cimprich, K. A. Conflict resolution in the genome: how transcription and replication make it work. Cell 167, 1455–1467 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Achar, Y. J. & Foiani, M. Coordinating replication with transcription. Adv. Exp. Med. Biol. 1042, 455–487 (2017).

    CAS  PubMed  Google Scholar 

  186. Lenstra, T. L., Rodriguez, J., Chen, H. & Larson, D. R. Transcription dynamics in living cells. Annu. Rev. Biophys. 45, 25–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Tantale, K. et al. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat. Commun. 7, 12248 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Andrade-Lima, L. C., Veloso, A., Paulsen, M. T., Menck, C. F. & Ljungman, M. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Nucleic Acids Res. 43, 2744–2756 (2015). This study demonstrates that transcription recovery occurs as a wave in the 5′-to-3′ direction and that GG-NER contributes to TBL removal in the 3′ part of long genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Hu, J., Adar, S., Selby, C. P., Lieb, J. D. & Sancar, A. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes Dev. 29, 948–960 (2015). A genome-wide approach to mapping DNA excision repair shows that TC-NER is exclusively active in transcribed strands and mostly takes place at the beginning of genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Xiang, Y. et al. RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature 543, 573–576 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Tornaletti, S., Maeda, L. S., Kolodner, R. D. & Hanawalt, P. C. Effect of 8-oxoguanine on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. DNA Repair 3, 483–494 (2004).

    CAS  PubMed  Google Scholar 

  192. Larsen, E., Kwon, K., Coin, F., Egly, J. M. & Klungland, A. Transcription activities at 8-oxoG lesions in DNA. DNA Repair 3, 1457–1468 (2004).

    CAS  PubMed  Google Scholar 

  193. Kathe, S. D., Shen, G. P. & Wallace, S. S. Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. J. Biol. Chem. 279, 18511–18520 (2004).

    CAS  PubMed  Google Scholar 

  194. Khobta, A., Kitsera, N., Speckmann, B. & Epe, B. 8-Oxoguanine DNA glycosylase (Ogg1) causes a transcriptional inactivation of damaged DNA in the absence of functional Cockayne syndrome B (Csb) protein. DNA Repair 8, 309–317 (2009).

    CAS  PubMed  Google Scholar 

  195. Kitsera, N. et al. 8-Oxo-7,8-dihydroguanine in DNA does not constitute a barrier to transcription, but is converted into transcription-blocking damage by OGG1. Nucleic Acids Res. 39, 5926–5934 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Menoni, H. et al. The transcription-coupled DNA repair-initiating protein CSB promotes XRCC1 recruitment to oxidative DNA damage. Nucleic Acids Res. 46, 7747–7756 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Aamann, M. D., Muftuoglu, M., Bohr, V. A. & Stevnsner, T. Multiple interaction partners for Cockayne syndrome proteins: implications for genome and transcriptome maintenance. Mech. Ageing Dev. 134, 212–224 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Tuo, J., Chen, C., Zeng, X., Christiansen, M. & Bohr, V. A. Functional crosstalk between hOgg1 and the helicase domain of Cockayne syndrome group B protein. DNA Repair 1, 913–927 (2002).

    CAS  PubMed  Google Scholar 

  199. Thorslund, T. et al. Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress. Mol. Cell Biol. 25, 7625–7636 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Wong, H. K. et al. Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Res. 35, 4103–4113 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Ranes, M. et al. A ubiquitylation site in Cockayne syndrome B required for repair of oxidative DNA damage, but not for transcription-coupled nucleotide excision repair. Nucleic Acids Res. 44, 5246–5255 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Pankotai, T., Bonhomme, C., Chen, D. & Soutoglou, E. DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks. Nat. Struct. Mol. Biol. 19, 276–282 (2012).

    CAS  PubMed  Google Scholar 

  203. Chou, D. M. et al. A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc. Natl Acad. Sci. USA 107, 18475–18480 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Marnef, A., Cohen, S. & Legube, G. Transcription-coupled DNA double-strand break repair: active genes need special care. J. Mol. Biol. 429, 1277–1288 (2017).

    CAS  PubMed  Google Scholar 

  205. Shkreta, L. & Chabot, B. The RNA splicing response to DNA damage. Biomolecules 5, 2935–2977 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Giono, L. E. et al. The RNA response to DNA damage. J. Mol. Biol. 428, 2636–2651 (2016).

    CAS  PubMed  Google Scholar 

  207. Dutertre, M., Sanchez, G., Barbier, J., Corcos, L. & Auboeuf, D. The emerging role of pre-messenger RNA splicing in stress responses: sending alternative messages and silent messengers. RNA Biol. 8, 740–747 (2011).

    CAS  PubMed  Google Scholar 

  208. Lenzken, S. C., Loffreda, A. & Barabino, S. M. RNA splicing: a new player in the DNA damage response. Int. J. Cell Biol. 2013, 153634 (2013).

    PubMed  PubMed Central  Google Scholar 

  209. Chandler, D. S., Singh, R. K., Caldwell, L. C., Bitler, J. L. & Lozano, G. Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Cancer Res. 66, 9502–9508 (2006).

    CAS  PubMed  Google Scholar 

  210. Dutertre, M. et al. Cotranscriptional exon skipping in the genotoxic stress response. Nat. Struct. Mol. Biol. 17, 1358–1366 (2010).

    CAS  PubMed  Google Scholar 

  211. de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).

    PubMed  Google Scholar 

  212. Paronetto, M. P., Minana, B. & Valcarcel, J. The Ewing sarcoma protein regulates DNA damage-induced alternative splicing. Mol. Cell 43, 353–368 (2011).

    CAS  PubMed  Google Scholar 

  213. Dujardin, G. et al. How slow RNA polymerase II elongation favors alternative exon skipping. Mol. Cell 54, 683–690 (2014).

    CAS  PubMed  Google Scholar 

  214. Fong, N. et al. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev. 28, 2663–2676 (2014).

    PubMed  PubMed Central  Google Scholar 

  215. Chansky, H. A., Hu, M., Hickstein, D. D. & Yang, L. Oncogenic TLS/ERG and EWS/Fli-1 fusion proteins inhibit RNA splicing mediated by YB-1 protein. Cancer Res. 61, 3586–3590 (2001).

    CAS  PubMed  Google Scholar 

  216. Tresini, M., Marteijn, J. A. & Vermeulen, W. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage. RNA Biol. 13, 272–278 (2016).

    PubMed  PubMed Central  Google Scholar 

  217. Munoz, M. J. et al. Major roles for pyrimidine dimers, nucleotide excision repair, and ATR in the alternative splicing response to UV irradiation. Cell Rep. 18, 2868–2879 (2017).

    CAS  PubMed  Google Scholar 

  218. Katzenberger, R. J., Marengo, M. S. & Wassarman, D. A. ATM and ATR pathways signal alternative splicing of Drosophila TAF1 pre-mRNA in response to DNA damage. Mol. Cell Biol. 26, 9256–9267 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Sordet, O. et al. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep. 10, 887–893 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Mei Kwei, J. S. et al. Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct. Biochem. Biophys. Res. Commun. 320, 1133–1138 (2004).

    PubMed  Google Scholar 

  221. Shi, Y. B., Gamper, H. & Hearst, J. E. Interaction of T7 RNA polymerase with DNA in an elongation complex arrested at a specific psoralen adduct site. J. Biol. Chem. 263, 527–534 (1988).

    CAS  PubMed  Google Scholar 

  222. Schinecker, T. M., Perlow, R. A., Broyde, S., Geacintov, N. E. & Scicchitano, D. A. Human RNA polymerase II is partially blocked by DNA adducts derived from tumorigenic benzo[c]phenanthrene diol epoxides: relating biological consequences to conformational preferences. Nucleic Acids Res. 31, 6004–6015 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Malik, S., Bagla, S., Chaurasia, P., Duan, Z. & Bhaumik, S. R. Elongating RNA polymerase II is disassembled through specific degradation of its largest but not other subunits in response to DNA damage in vivo. J. Biol. Chem. 283, 6897–6905 (2008).

    CAS  PubMed  Google Scholar 

  224. Fielden, J., Ruggiano, A., Popovic, M. & Ramadan, K. DNA protein crosslink proteolysis repair: from yeast to premature ageing and cancer in humans. DNA Repair 71, 198–204 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Solier, S. et al. Transcription poisoning by topoisomerase I is controlled by gene length, splice sites, and miR-142-3p. Cancer Res. 73, 4830–4839 (2013).

    CAS  PubMed  Google Scholar 

  226. Veloso, A. et al. Genome-wide transcriptional effects of the anti-cancer agent camptothecin. PLOS ONE 8, e78190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is part of the Oncode Institute, which is partly financed by the Dutch Cancer Society. The authors also acknowledge financial support from the Dutch Cancer Society (grants KWF 10506 and KWF 11446); Worldwide Cancer Research (grant 15-1274); the Dutch Organization for Scientific Research, ZonMW TOP (912.12.132), ENW TOP (714.017.003 and TOP.017.010) and Gravitation Cancer Genomics.nl (024.001.028) grants; the National Institutes of Health (NIH)/National Institute on Aging (NIA) (PO1 AG017242); Deutsche Forschungsgemeinschaft (Project 73111208-SFB 829); Dutch Organization for Scientific Research VIDI (864.13.004) and VICI (VI.C.182.025) grants to J.M.; European Research Council Advanced Grants to J.H.J.H. (233424 ‘DamAge’ and 742426 ‘Dam2Age’) and W.V. (340988 ‘ERC-ID’); and the Royal Academy of Arts and Sciences of the Netherlands (academia professorship to J.H.J.H.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Wim Vermeulen or Jurgen A. Marteijn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks George Garinis, Leona Samson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Translesion synthesis

(TLS). DNA polymerization by specialized polymerases past an obstructive DNA modification or damage, which comes at the cost of fidelity and mutagenesis.

R-loops

Three-stranded nucleic acid structures composed of an RNA–DNA hybrid and the complementary single-stranded DNA.

Transcription-blocking DNA lesions

(TBL). Any type of DNA modification, crosslink or damage that strongly impedes or blocks the elongation of RNA polymerases.

Abasic sites

Sites in DNA that lack a purine or pyrimidine base, arising either by spontaneous depurination or by cleavage of the N-glycosidic bond by base excision repair glycosylases.

Cyclobutane pyrimidine dimers

(CPDs). The most frequent type of ultraviolet-induced photolesion; formed by covalent linkage of the C5 and C6 carbon atoms of two adjacent pyrimidines.

Cyclopurines

A form of oxidative DNA damage that is repaired by nucleotide excision repair (NER) but not by base excision repair (BER); cyclopurines are formed by linkage of the C5 carbon atom of 2-deoxyribose and the C8 carbon atom of purine.

Transcription pause sites

Promoter-proximal sites where transcription is stalled, to maintain chromatin open and allow 5′ capping of the nascent RNA, as well as to regulate the timing of transcription.

Oxidative DNA damage

A type of DNA damage formed by oxidation of nucleotides, which is caused mainly by reactive oxygen species. 8-Oxo-2′-deoxyguanosine is the most common type of oxidative DNA lesion.

Base excision repair

(BER). A DNA repair pathway initiated by lesion-specific glycosylases that recognize and remove small base modifications such as oxidative and alkylating DNA lesions.

6–4 pyrimidine–pyrimidone photoproduct

(6–4PP). The second most frequent type of ultraviolet-induced photolesion; formed by covalent linkage of the C4 and C6 carbon atoms of two adjacent pyrimidines.

Progeroid

An adjective to indicate resemblance to accelerated ageing.

XR-seq

Method for sequencing excised oligomers generated during nucleotide excision repair, which allows genome-wide mapping of repair sites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lans, H., Hoeijmakers, J.H.J., Vermeulen, W. et al. The DNA damage response to transcription stress. Nat Rev Mol Cell Biol 20, 766–784 (2019). https://doi.org/10.1038/s41580-019-0169-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0169-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing