Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Establishing and regulating the composition of cilia for signal transduction

Abstract

The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals — such as odorants, light and Hedgehog morphogens — by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Organization of primary cilia and photoreceptors.
Fig. 2: Transport processes that shape the ciliary environment.
Fig. 3: Models of transition zone crossing and of the intermediate compartment.
Fig. 4: Modalities and mechanisms of ciliary ectocytosis.

References

  1. 1.

    Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell. Biol. 18, 533–547 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    de Robertis, E. Electron microscope observations on the submicroscopic organization of the retinal rods. J. Biophys. Biochem. Cytol. 2, 319–330 (1956).

    PubMed Central  Google Scholar 

  3. 3.

    Bloom, G. Studies on the olfactory epithelium of the frog and the toad with the aid of light and electron microscopy. Z. Zellforsch. Mikrosk. Anat. 41, 89–100 (1954).

    CAS  PubMed  Google Scholar 

  4. 4.

    Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    CAS  PubMed  Google Scholar 

  5. 5.

    Gerdes, J. M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat. Genet. 39, 1350–1360 (2007).

    CAS  PubMed  Google Scholar 

  6. 6.

    Ezratty, E. J. et al. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 145, 1129–1141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ross, A. J. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat. Genet. 37, 1135–1140 (2005).

    CAS  PubMed  Google Scholar 

  8. 8.

    Schneider, L. et al. PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15, 1861–1866 (2005).

    CAS  PubMed  Google Scholar 

  9. 9.

    Yeh, C. et al. IGF-1 activates a cilium-localized noncanonical Gβγ signaling pathway that regulates cell-cycle progression. Dev. Cell 26, 358–368 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Schou, K. B., Pedersen, L. B. & Christensen, S. T. Ins and outs of GPCR signaling in primary cilia. EMBO Rep. 16, 1099–1113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Clement, C. A. et al. TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep. 3, 1806–1814 (2013).

    CAS  PubMed  Google Scholar 

  12. 12.

    Siljee, J. E. et al. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat. Genet. 50, 180–185 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bloodgood, R. A. Sensory reception is an attribute of both primary cilia and motile cilia. J. Cell Sci. 123, 505–509 (2010).

    CAS  PubMed  Google Scholar 

  14. 14.

    Wachten, D., Jikeli, J. F. & Kaupp, U. B. Sperm sensory signaling. Cold Spring Harb. Perspect. Biol. 9, a028225 (2017).

    PubMed  Google Scholar 

  15. 15.

    Calvert, P. D., Schiesser, W. E. & Pugh, E. N. Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium. J. Gen. Physiol. 135, 173–196 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Bhandawat, V., Reisert, J. & Yau, K.-W. Signaling by olfactory receptor neurons near threshold. Proc. Natl Acad. Sci. USA 107, 18682–18687 (2010).

    CAS  PubMed  Google Scholar 

  17. 17.

    Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    CAS  PubMed  Google Scholar 

  18. 18.

    Haycraft, C. J. et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLOS Genet. 1, e53 (2005).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    May, S. R. et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev. Biol. 287, 378–389 (2005).

    CAS  PubMed  Google Scholar 

  20. 20.

    Belzile, O., Hernandez-Lara, C. I., Wang, Q. & Snell, W. J. Regulated membrane protein entry into flagella is facilitated by cytoplasmic microtubules and does not require IFT. Curr. Biol. 23, 1460–1465 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    CAS  PubMed  Google Scholar 

  22. 22.

    Bangs, F. & Anderson, K. V. Primary cilia and mammalian Hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9, a028175 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Pablo, J. L., DeCaen, P. G. & Clapham, D. E. Progress in ciliary ion channel physiology. J. Gen. Physiol. 149, 37–47 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Johnson, J.-L. F. & Leroux, M. R. cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia. Trends Cell Biol. 20, 435–444 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Garcia, G., Raleigh, D. R. & Reiter, J. F. How the ciliary membrane is organized inside-out to communicate outside-in. Curr. Biol. 28, R421–R434 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Luchetti, G. et al. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling. eLife 5, e20304 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Huang, P. et al. Cellular cholesterol directly activates Smoothened in Hedgehog signaling. Cell 166, 1176–1187 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Raleigh, D. R. et al. Cilia-associated oxysterols activate Smoothened. Mol. Cell 72, 316–327 (2018). This paper identifies the oxysterols 24,25-epoxycholesterol and 7β,27-dihydroxycholesterol as ciliary lipids that bind and activate Smoothened.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Nager, A. R. et al. An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling. Cell 168, 252–263 (2017). This paper uncovers signal-dependent ectocytosis as a means for ciliary exit of activated GPCRs in mammalian cells; see also Cao et al. (2015). It also discovers a role for actin in ectosome scission; see also Phua et al. (2017).

    CAS  PubMed  Google Scholar 

  30. 30.

    Phua, S. C. et al. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168, 264–279 (2017). This paper presents the discovery of a role for actin in ectosome release; see also Nager et al. (2017). It also suggests that cilia shorten by shedding ectosomes; see also Long et al. (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Long, H. et al. Comparative analysis of ciliary membranes and ectosomes. Curr. Biol. 26, 3327–3335 (2016). This study demonstrates that cilia shorten, at least in part, by shedding ectosomes; see also Phua et al. (2017). It also suggests a role for ESCRT proteins ALG2 and VPS4 in ciliary ectocytosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Fisch, C. & Dupuis-Williams, P. Ultrastructure of cilia and flagella — back to the future! Biol. Cell 103, 249–270 (2011).

    PubMed  Google Scholar 

  33. 33.

    Garcia-Gonzalo, F. R. & Reiter, J. F. Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb. Perspect. Biol. 9, a028134 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Gonçalves, J. & Pelletier, L. The ciliary transition zone: finding the pieces and assembling the gate. Mol. Cells 40, 243–253 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Breslow, D., Koslover, E. F., Seydel, F., Spakowitz, A. J. & Nachury, M. V. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J. Cell Biol. 203, 129–147 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Cevik, S. et al. Active transport and diffusion barriers restrict Joubert Syndrome-associated ARL13B/ARL-13 to an Inv-like ciliary membrane subdomain. PLOS Genet. 9, e1003977 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Chih, B. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol. 14, 61–72 (2011).

    PubMed  Google Scholar 

  38. 38.

    Hu, Q. et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329, 436–439 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kee, H. L. et al. A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat. Cell Biol. 14, 431–437 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Lin, Y.-C. et al. Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat. Chem. Biol. 9, 437–443 (2013).

    CAS  PubMed  Google Scholar 

  41. 41.

    Yang, T. T. et al. Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat. Commun. 9, 2023 (2018). This study establishes the existence of the DAM and suggests that the DAM functions as a barrier for ciliary membrane proteins.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ye, F., Nager, A. R. & Nachury, M. V. BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone. J. Cell Biol. 217, 1847–1868 (2018). Using single-molecule tracking, this study directly demonstrates that the transition zone is breached by exiting GPCRs in a BBSome-dependent manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Najafi, M., Maza, N. A. & Calvert, P. D. Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. Proc. Natl Acad. Sci. USA 109, 203–208 (2012).

    CAS  PubMed  Google Scholar 

  44. 44.

    Lambacher, N. J. et al. TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat. Cell Biol. 18, 122–131 (2016).

    CAS  PubMed  Google Scholar 

  45. 45.

    Takao, D., Wang, L., Boss, A. & Verhey, K. J. Protein interaction analysis provides a map of the spatial and temporal organization of the ciliary gating zone. Curr. Biol. 27, 2296–2306 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Craige, B. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927–940 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Awata, J. et al. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J. Cell Sci. 127, 4714–4727 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Scheidel, N. & Blacque, O. E. Intraflagellar transport complex A genes differentially regulate cilium formation and transition zone gating. Curr. Biol. 28, 3279–3287 (2018).

    CAS  PubMed  Google Scholar 

  49. 49.

    Vuolo, L., Stevenson, N. L., Heesom, K. J. & Stephens, D. J. Dynein-2 intermediate chains play crucial but distinct roles in primary cilia formation and function. eLife 7, e39655 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Jensen, V. L. et al. Role for intraflagellar transport in building a functional transition zone. EMBO Rep. 19, e45862 (2018).

    PubMed  Google Scholar 

  51. 51.

    Dharmat, R. et al. SPATA7 maintains a novel photoreceptor-specific zone in the distal connecting cilium. J. Cell Biol. 217, 2851–2865 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Wiegering, A. et al. Cell type-specific regulation of ciliary transition zone assembly in vertebrates. EMBO J. 37, e97791 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Jana, S. C. et al. Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity. Nat. Cell Biol. 20, 928–941 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    Lewis, W. R. et al. Mks6 mutations reveal tissue- and cell type-specific roles for the cilia transition zone. FASEB J. 33, 1440–1455 (2018).

    PubMed  Google Scholar 

  55. 55.

    Jensen, V. L. et al. Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J. 34, 2537–2556 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Williams, C. L. et al. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192, 1023–1041 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Yee, L. E. et al. Conserved genetic interactions between ciliopathy complexes cooperatively support ciliogenesis and ciliary signaling. PLOS Genet. 11, e1005627 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Roberson, E. C. et al. TMEM231, mutated in orofaciodigital and Meckel syndromes, organizes the ciliary transition zone. J. Cell Biol. 209, 129–142 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Milenkovic, L. et al. Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1. Proc. Natl Acad. Sci. USA 112, 8320–8325 (2015).

    CAS  PubMed  Google Scholar 

  60. 60.

    Shi, X. et al. Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat. Cell Biol. 19, 1178–1188 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Tanos, B. E. et al. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev. 27, 163–168 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Li, W. et al. Centriole translocation and degeneration during ciliogenesis in Caenorhabditis elegans neurons. EMBO J. 36, 2553–2566 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Nechipurenko, I. V., Berciu, C., Sengupta, P. & Nicastro, D. Centriolar remodeling underlies basal body maturation during ciliogenesis in Caenorhabditis elegans. eLife 6, e25686 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Serwas, D., Su, T. Y., Roessler, M., Wang, S. & Dammermann, A. Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in C. elegans. J. Cell Biol. 216, 1659–1671 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Sugimoto, M. et al. The keratin-binding protein Albatross regulates polarization of epithelial cells. J. Cell Biol. 183, 19–28 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Sang, L. et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145, 513–528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Delous, M. et al. Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum. Mol. Genet. 18, 4711–4723 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Wei, Q. et al. The hydrolethalus syndrome protein HYLS-1 regulates formation of the ciliary gate. Nat. Commun. 7, 12437 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    DeCaen, P. G., Delling, M., Vien, T. N. & Clapham, D. E. Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504, 315–318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Delling, M., DeCaen, P. G., Doerner, J. F., Febvay, S. & Clapham, D. E. Primary cilia are specialized calcium signalling organelles. Nature 504, 311–314 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Borisy, F. F. et al. Calcium/calmodulin-activated phosphodiesterase expressed in olfactory receptor neurons. J. Neurosci. 12, 915–923 (1992).

    CAS  PubMed  Google Scholar 

  72. 72.

    Mukherjee, S. et al. A novel biosensor to study cAMP dynamics in cilia and flagella. eLife 5, e14052 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Moore, B. S. et al. Cilia have high cAMP levels that are inhibited by Sonic Hedgehog-regulated calcium dynamics. Proc. Natl Acad. Sci. USA 113, 13069–13074 (2016).

    CAS  PubMed  Google Scholar 

  74. 74.

    Grarup, N. et al. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat. Genet. 50, 172–174 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Saeed, S. et al. Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nat. Genet. 50, 175–179 (2018).

    CAS  PubMed  Google Scholar 

  76. 76.

    Rees, S. et al. Adenylyl cyclase 6 deficiency ameliorates polycystic kidney disease. J. Am. Soc. Nephrol. 25, 232–237 (2014).

    CAS  PubMed  Google Scholar 

  77. 77.

    Wang, Q. et al. Adenylyl cyclase 5 deficiency reduces renal cyclic AMP and cyst growth in an orthologous mouse model of polycystic kidney disease. Kidney Int. 93, 403–415 (2018).

    CAS  PubMed  Google Scholar 

  78. 78.

    Breslow, D. K. et al. A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nat. Genet. 50, 460–471 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Pusapati, G. V. et al. CRISPR screens uncover genes that regulate target cell sensitivity to the morphogen Sonic Hedgehog. Dev. Cell 44, 113–129 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Vuolo, L., Herrera, A., Torroba, B., Menendez, A. & Pons, S. Ciliary adenylyl cyclases control the Hedgehog pathway. J. Cell Sci. 128, 2928–2937 (2015).

    CAS  PubMed  Google Scholar 

  81. 81.

    Kwon, R. Y., Temiyasathit, S., Tummala, P., Quah, C. C. & Jacobs, C. R. Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J. 24, 2859–2868 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Sadana, R. & Dessauer, C. W. Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 17, 5–22 (2009).

    CAS  PubMed  Google Scholar 

  83. 83.

    Hilgendorf, K. I., Johnson, C. T. & Jackson, P. K. The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr. Opin. Cell Biol. 39, 84–92 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Pedersen, L. B., Geimer, S., Sloboda, R. D. & Rosenbaum, J. L. The microtubule plus end-tracking protein EB1 is localized to the flagellar tip and basal bodies in Chlamydomonas reinhardtii. Curr. Biol. 13, 1969–1974 (2003).

    CAS  PubMed  Google Scholar 

  85. 85.

    Harris, J. A., Liu, Y., Yang, P., Kner, P. & Lechtreck, K. F. Single-particle imaging reveals intraflagellar transport-independent transport and accumulation of EB1 in Chlamydomonas flagella. Mol. Biol. Cell 27, 295–307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Chávez, M. et al. Modulation of ciliary phosphoinositide content regulates trafficking and Sonic Hedgehog signaling output. Dev. Cell 34, 338–350 (2015).

    PubMed  Google Scholar 

  87. 87.

    Garcia-Gonzalo, F. R. et al. Phosphoinositides regulate ciliary protein trafficking to modulate Hedgehog signaling. Dev. Cell 34, 400–409 (2015). Chavez et al. (2015) and Garcia-Gonzalo et al. (2015) demonstrate that the lipid PtdIns(4)P is enriched in the ciliary membrane thanks to the phosphatase INPP5E, which converts PtdIns(4,5)P 2 into PtdIns(4)P.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Poo, M. & Cone, R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 247, 438–441 (1974).

    CAS  PubMed  Google Scholar 

  89. 89.

    Aveldaño, M. I. & Bazán, N. G. Molecular species of phosphatidylcholine, -ethanolamine, -serine, and -inositol in microsomal and photoreceptor membranes of bovine retina. J. Lipid Res. 24, 620–627 (1983).

    PubMed  Google Scholar 

  90. 90.

    Boesze-Battaglia, K. & Schimmel, R. Cell membrane lipid composition and distribution: implications for cell function and lessons learned from photoreceptors and platelets. J. Exp. Biol. 200, 2927–2936 (1997).

    CAS  PubMed  Google Scholar 

  91. 91.

    Andrews, D. & Nelson, D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia. II. Phospholipids of ciliary and other membranes. Biochim. Biophys. Acta 550, 174–187 (1979).

    CAS  PubMed  Google Scholar 

  92. 92.

    Chailley, B. & Boisvieux-Ulrich, E. Detection of plasma membrane cholesterol by filipin during microvillogenesis and ciliogenesis in quail oviduct. J. Histochem. Cytochem. 33, 1–10 (1985).

    CAS  PubMed  Google Scholar 

  93. 93.

    Lobasso, S. et al. Lipidomic analysis of porcine olfactory epithelial membranes and cilia. Lipids 45, 593–602 (2010).

    CAS  PubMed  Google Scholar 

  94. 94.

    Montesano, R. Inhomogeneous distribution of filipin-sterol complexes in the ciliary membrane of rat tracheal epithelium. Am. J. Anat. 156, 139–145 (1979).

    CAS  PubMed  Google Scholar 

  95. 95.

    Morris, R. J. & Bone, Q. Metazoan lipids: an unusual association of saturated sterols with relatively saturated fatty acids in the cilia of Ciona intestinalis. Lipids 18, 900–901 (1983).

    CAS  Google Scholar 

  96. 96.

    Morris, R. J. & Bone, Q. Highly saturated lipid composition of ctenophore cilia: possible indication of low membrane permeability. Lipids 20, 933–935 (1985).

    CAS  Google Scholar 

  97. 97.

    Souto-Padrón, T. & de Souza, W. Freeze-fracture localization of filipin-cholesterol complexes in the plasma membrane of Trypanosoma cruzi. J. Parasitol. 69, 129–137 (1983).

    PubMed  Google Scholar 

  98. 98.

    Tyler, K. M. et al. Flagellar membrane localization via association with lipid rafts. J. Cell Sci. 122, 859–866 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Emmer, B. T., Maric, D. & Engman, D. M. Molecular mechanisms of protein and lipid targeting to ciliary membranes. J. Cell Sci. 123, 529–536 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Nachury, M. V., Seeley, E. S. & Jin, H. Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu. Rev. Cell Dev. Biol. 26, 59–87 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Serricchio, M. et al. Flagellar membranes are rich in raft-forming phospholipids. Biol. Open 4, 1143–1153 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Nguyen, P. A. T., Liou, W., Hall, D. H. & Leroux, M. R. Ciliopathy proteins establish a bipartite signaling compartment in a C. elegans thermosensory neuron. J. Cell Sci. 127, 5317–5330 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Schou, K. B. et al. KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling. Nat. Commun. 8, 14177 (2017). This study demonstrates cholesterol-dependent localization of the cholesterol-binding protein caveolin to the transition zone, which suggests a specialized lipid organization at the transition zone.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Kamiya, R. & Witman, G. B. Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J. Cell Biol. 98, 97–107 (1984).

    CAS  PubMed  Google Scholar 

  105. 105.

    Lechtreck, K. F. IFT–cargo interactions and protein transport in cilia. Trends Biochem. Sci. 40, 765–778 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Nachury, M. V. The molecular machines that traffic signaling receptors into and out of cilia. Curr. Opin. Cell Biol. 51, 124–131 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Nakayama, K. & Katoh, Y. Ciliary protein trafficking mediated by IFT and BBSome complexes with the aid of kinesin-2 and dynein-2 motors. J. Biochem. 163, 155–164 (2018).

    CAS  PubMed  Google Scholar 

  108. 108.

    Bhogaraju, S. et al. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341, 1009–1012 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Craft, J. M., Harris, J. A., Hyman, S., Kner, P. & Lechtreck, K. F. Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J. Cell Biol. 208, 223–237 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Kubo, T. et al. Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. J. Cell Sci. 129, 2106–2119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Taschner, M., Mourão, A., Awasthi, M., Basquin, J. & Lorentzen, E. Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46. J. Biol. Chem. 292, 7462–7473 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Hou, Y., Witman, G. B. & Marshall, W. The N-terminus of IFT46 mediates intraflagellar transport of outer arm dynein and its cargo-adaptor ODA16. Mol. Biol. Cell 28, 2420–2433 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Hunter, E. L. et al. The IDA3 adapter, required for intraflagellar transport of I1 dynein, is regulated by ciliary length. Mol. Biol. Cell 29, 886–896 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Ye, F. et al. Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors. eLife 2, e00654 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Monis, W. J., Faundez, V. & Pazour, G. J. BLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia. J. Cell Biol. 216, 2131–2150 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Morthorst, S. K., Christensen, S. T. & Pedersen, L. B. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J. 285, 4535–4564 (2018).

    CAS  PubMed  Google Scholar 

  117. 117.

    Blacque, O. E., Scheidel, N. & Kuhns, S. Rab GTPases in cilium formation and function. Small GTPases 9, 76–94 (2018).

    CAS  PubMed  Google Scholar 

  118. 118.

    Brown, J. M., Cochran, D. A., Craige, B., Kubo, T. & Witman, G. B. Assembly of IFT trains at the ciliary base depends on IFT74. Curr. Biol. 25, 1583–1593 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11, 1586–1590 (2001).

    CAS  PubMed  Google Scholar 

  120. 120.

    Wingfield, J. L. et al. IFT trains in different stages of assembly queue at the ciliary base for consecutive release into the cilium. eLife 6, e26609 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Huang, K., Diener, D. R., Mitchell, A. & Rosenbaum, J. L. Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J. Cell Biol. 179, 501–514 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Brear, A. G., Yoon, J., Wojtyniak, M. & Sengupta, P. Diverse cell type-specific mechanisms localize G protein-coupled receptors to Caenorhabditis elegans sensory cilia. Genetics 197, 667–684 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Bae, Y. K. et al. General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia. Development 133, 3859–3870 (2006).

    CAS  PubMed  Google Scholar 

  124. 124.

    Dwyer, N. D., Adler, C. E., Crump, J. G., L’Etoile, N. D. & Bargmann, C. I. Polarized dendritic transport and the AP-1 mu1 clathrin adaptor UNC-101 localize odorant receptors to olfactory cilia. Neuron 31, 277–287 (2001).

    CAS  PubMed  Google Scholar 

  125. 125.

    Eguether, T., Cordelieres, F. P. & Pazour, G. J. Intraflagellar transport is deeply integrated in hedgehog signaling. Mol. Biol. Cell 29, 1178–1189 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Liu, P. & Lechtreck, K. F. The Bardet–Biedl syndrome protein complex is an adapter expanding the cargo range of intraflagellar transport trains for ciliary export. Proc. Natl Acad. Sci. USA 115, E934–E943 (2018).

    CAS  PubMed  Google Scholar 

  127. 127.

    Badgandi, H. B., Hwang, S., Shimada, I. S., Loriot, E. & Mukhopadhyay, S. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins. J. Cell Biol. 216, 743–760 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Fu, W., Wang, L., Kim, S., Li, J. & Dynlacht, B. D. Role for the IFT-A complex in selective transport to the primary cilium. Cell Rep. 17, 1505–1517 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Hirano, T., Katoh, Y. & Nakayama, K. Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors. Mol. Biol. Cell 28, 429–439 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Mukhopadhyay, S. et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev. 24, 2180–2193 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Picariello, T. et al. A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. J. Cell Sci. 132, jcs.220749 (2019).

    Article  PubMed  Google Scholar 

  132. 132.

    Sun, X. et al. Tubby is required for trafficking G protein-coupled receptors to neuronal cilia. Cilia 1, 21 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Oswald, F., Prevo, B., Acar, S. & Peterman, E. J. G. Interplay between ciliary ultrastructure and IFT-train dynamics revealed by single-molecule super-resolution imaging. Cell Rep. 25, 224–235 (2018).

    CAS  PubMed  Google Scholar 

  134. 134.

    Yang, T., Tran, M. N. T., Chong, W. M., Huang, C.-E. & Liao, J.-C. Single-particle tracking localization microscopy reveals nonaxonemal dynamics of intraflagellar transport proteins at the base of mammalian primary cilia. Mol. Biol. Cell 30, 828–837 (2019).

    CAS  PubMed  Google Scholar 

  135. 135.

    Kanie, T. et al. The CEP19-RABL2 GTPase complex binds IFT-B to initiate intraflagellar transport at the ciliary base. Dev. Cell 42, 22–36 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Nishijima, Y. et al. RABL2 interacts with the intraflagellar transport-B complex and CEP19 and participates in ciliary assembly. Mol. Biol. Cell 28, 1652–1666 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Park, J. et al. dTULP, the Drosophila melanogaster homolog of Tubby, regulates transient receptor potential channel localization in cilia. PLOS Genet. 9, e1003814 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Park, J. et al. Ciliary phosphoinositide regulates ciliary protein trafficking in Drosophila. Cell Rep. 13, 2808–2816 (2015).

    CAS  PubMed  Google Scholar 

  139. 139.

    Ismail, S. A. et al. Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat. Chem. Biol. 7, 942–949 (2011).

    CAS  PubMed  Google Scholar 

  140. 140.

    Ismail, S. A. et al. Structural basis for Arl3-specific release of myristoylated ciliary cargo from UNC119. EMBO J. 31, 4085–4094 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Wright, K. J. et al. An ARL3-UNC119-RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium. Genes Dev. 25, 2347–2360 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Zhang, H. et al. UNC119 is required for G protein trafficking in sensory neurons. Nat. Neurosci. 14, 874–880 (2011). Ismail et al. (2011), Ismail et al. (2012), Wright et al. (2011) and Zhang, H. et al. ( 2011) describe the myristoyl shuttle UNC119 and the farnesyl shuttle PDE6δ and the release of their cargoes by ARL3–GTP inside cilia as a cogent mechanism of ciliary import of lipidated proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Jensen, V. L. & Leroux, M. R. Gates for soluble and membrane proteins, and two trafficking systems (IFT and LIFT), establish a dynamic ciliary signaling compartment. Curr. Opin. Cell Biol. 47, 83–91 (2017).

    CAS  PubMed  Google Scholar 

  144. 144.

    Stephen, L. A. & Ismail, S. Shuttling and sorting lipid-modified cargo into the cilia. Biochem. Soc. Trans. 44, 1273–1280 (2016).

    CAS  PubMed  Google Scholar 

  145. 145.

    Evans, R. J. et al. The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium. Hum. Mol. Genet. 19, 1358–1367 (2010).

    CAS  PubMed  Google Scholar 

  146. 146.

    Blacque, O. E. et al. Functional genomics of the cilium, a sensory organelle. Curr. Biol. 15, 935–941 (2005).

    CAS  PubMed  Google Scholar 

  147. 147.

    Stephan, A., Vaughan, S., Shaw, M. K., Gull, K. & McKean, P. G. An essential quality control mechanism at the eukaryotic Basal body prior to intraflagellar transport. Traffic 8, 1323–1330 (2007).

    CAS  PubMed  Google Scholar 

  148. 148.

    Gotthardt, K. et al. A G-protein activation cascade from Arl13B to Arl3 and implications for ciliary targeting of lipidated proteins. eLife 4, e11859 (2015).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Ivanova, A. A. et al. Biochemical characterization of purified mammalian ARL13B protein indicates that it is an atypical GTPase and ARL3 guanine nucleotide exchange factor (GEF). J. Biol. Chem. 292, 11091–11108 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Zhang, Q. et al. GTP-binding of ARL-3 is activated by ARL-13 as a GEF and stabilized by UNC-119. Sci. Rep. 6, 24534 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Fansa, E. K., Kösling, S. K., Zent, E., Wittinghofer, A. & Ismail, S. PDE6δ-mediated sorting of INPP5E into the cilium is determined by cargo-carrier affinity. Nat. Commun. 7, 11366 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Hurd, T. et al. The retinitis pigmentosa protein RP2 interacts with polycystin 2 and regulates cilia-mediated vertebrate development. Hum. Mol. Genet. 19, 4330–4344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Humbert, M. C. et al. ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc. Natl Acad. Sci. USA 109, 19691–19696 (2012).

    CAS  PubMed  Google Scholar 

  154. 154.

    Revenkova, E., Liu, Q., Gusella, G. L. & Iomini, C. The Joubert syndrome protein ARL13B binds tubulin to maintain uniform distribution of proteins along the ciliary membrane. J. Cell Sci. 131, jcs212324 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Nozaki, S. et al. Regulation of ciliary retrograde protein trafficking by the Joubert syndrome proteins ARL13B and INPP5E. J. Cell Sci. 130, 563–576 (2017).

    CAS  PubMed  Google Scholar 

  156. 156.

    Liem, K. F. et al. The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J. Cell Biol. 197, 789–800 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Roy, K. et al. Palmitoylation of the ciliary GTPase ARL13b is necessary for its stability and its role in cilia formation. J. Biol. Chem. 292, 17703–17717 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Cevik, S. et al. Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J. Cell Biol. 188, 953–969 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Li, Y., Wei, Q., Zhang, Y., Ling, K. & Hu, J. The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis. J. Cell Biol. 189, 1039–1051 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Mick, D. U. et al. Proteomics of primary cilia by proximity labeling. Dev. Cell 35, 497–512 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Viau, A. et al. Cilia-localized LKB1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. EMBO J. 37, e98615 (2018).

    PubMed  PubMed Central  Google Scholar 

  162. 162.

    Emmer, B. T. et al. Identification of a palmitoyl acyltransferase required for protein sorting to the flagellar membrane. J. Cell Sci. 122, 867–874 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Follit, J. A., Li, L., Vucica, Y. & Pazour, G. J. The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence. J. Cell Biol. 188, 21–28 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Goodwin, J. S. et al. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol. 170, 261–272 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752 (2005).

    CAS  PubMed  Google Scholar 

  166. 166.

    Huang, K., Diener, D. R. & Rosenbaum, J. L. The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. J. Cell Biol. 186, 601–613 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Green, J. A. et al. Recruitment of β-arrestin into neuronal cilia modulates somatostatin receptor subtype 3 ciliary localization. Mol. Cell. Biol. 36, 223–235 (2015).

    PubMed  PubMed Central  Google Scholar 

  168. 168.

    Pal, K. et al. Smoothened determines β-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J. Cell Biol. 212, 861–875 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Datta, P. et al. Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet-Biedl syndrome. Proc. Natl Acad. Sci. USA 112, E4400–E4409 (2015).

    CAS  PubMed  Google Scholar 

  170. 170.

    Lechtreck, K. F. et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J. Cell Biol. 187, 1117–1132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Lechtreck, K. F. et al. Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase. J. Cell Biol. 201, 249–261 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Eguether, T. et al. IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev. Cell 31, 279–290 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Liew, G. M. et al. The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3. Dev. Cell 31, 265–278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Jin, H. et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208–1219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Klink, B. U. et al. A recombinant BBSome core complex and how it interacts with ciliary cargo. eLife 6, e27434 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. 176.

    Baker, S. A. et al. The outer segment serves as a default destination for the trafficking of membrane proteins in photoreceptors. J. Cell Biol. 183, 485–498 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Ocbina, P. J. R. & Anderson, K. V. Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev. Dyn. 237, 2030–2038 (2008).

    PubMed  PubMed Central  Google Scholar 

  178. 178.

    Zhang, Q. et al. Bardet-Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes. Proc. Natl Acad. Sci. USA 108, 20678–20683 (2011).

    CAS  PubMed  Google Scholar 

  179. 179.

    Trimble, W. S. & Grinstein, S. Barriers to the free diffusion of proteins and lipids in the plasma membrane. J. Cell Biol. 208, 259–271 (2015).

    PubMed  PubMed Central  Google Scholar 

  180. 180.

    Schmidt, H. B. & Görlich, D. Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends Biochem. Sci. 41, 46–61 (2016).

    CAS  PubMed  Google Scholar 

  181. 181.

    Papermaster, D. S., Schneider, B. G. & Besharse, J. C. Vesicular transport of newly synthesized opsin from the Golgi apparatus toward the rod outer segment. Ultrastructural immunocytochemical and autoradiographic evidence in Xenopus retinas. Invest. Ophthalmol. Vis. Sci. 26, 1386–1404 (1985).

    CAS  PubMed  Google Scholar 

  182. 182.

    Pedersen, L. B., Mogensen, J. B. & Christensen, S. T. Endocytic control of cellular signaling at the primary cilium. Trends Biochem. Sci. 41, 784–797 (2016).

    CAS  PubMed  Google Scholar 

  183. 183.

    Benmerah, A. The ciliary pocket. Curr. Opin. Cell Biol. 25, 78–84 (2013).

    CAS  PubMed  Google Scholar 

  184. 184.

    Langousis, G. et al. Loss of the BBSome perturbs endocytic trafficking and disrupts virulence of Trypanosoma brucei. Proc. Natl Acad. Sci. USA 113, 632–637 (2016).

    CAS  PubMed  Google Scholar 

  185. 185.

    Lobingier, B. T. & von Zastrow, M. When trafficking and signaling mix: how subcellular location shapes G protein-coupled receptor activation of heterotrimeric G proteins. Traffic 20, 130–136 (2019).

    CAS  PubMed  Google Scholar 

  186. 186.

    Pan, B. T., Teng, K., Wu, C., Adam, M. & Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942–948 (1985).

    CAS  PubMed  Google Scholar 

  187. 187.

    Von Bartheld, C. S. & Altick, A. L. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog. Neurobiol. 93, 313–340 (2011).

    Google Scholar 

  188. 188.

    Besharse, J. C., Hollyfield, J. G. & Rayborn, M. E. Turnover of rod photoreceptor outer segments. II. Membrane addition and loss in relationship to light. J. Cell Biol. 75, 507–527 (1977).

    CAS  PubMed  Google Scholar 

  189. 189.

    Young, R. W. & Bok, D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J. Cell Biol. 42, 392–403 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Salinas, R. Y. et al. Photoreceptor discs form through peripherin-dependent suppression of ciliary ectosome release. J. Cell Biol. 216, 1489–1499 (2017). This paper provides an in vivo demonstration of a role for ciliary ectocytosis in disposing of excess membranes. Ectocytosis must hence be suppressed for the formation of fresh discs in photoreceptor outer segments.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Cao, M. et al. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. eLife 4, e05242 (2015). This paper uncovers signal-dependent ectocytosis as a means for ciliary exit of activated adhesion molecules in C. reinhardtii ; see also Nager et al. (2017).

    PubMed Central  Google Scholar 

  192. 192.

    Loktev, A. V. & Jackson, P. K. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep. 5, 1316–1329 (2013).

    CAS  PubMed  Google Scholar 

  193. 193.

    Marion, S., Oakley, R. H., Kim, K.-M., Caron, M. G. & Barak, L. S. A beta-arrestin binding determinant common to the second intracellular loops of rhodopsin family G protein-coupled receptors. J. Biol. Chem. 281, 2932–2938 (2006).

    CAS  PubMed  Google Scholar 

  194. 194.

    van Dam, T. J. P. et al. Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proc. Natl Acad. Sci. USA 110, 6943–6948 (2013).

    PubMed  Google Scholar 

  195. 195.

    Shida, T., Cueva, J. G., Xu, Z., Goodman, M. B. & Nachury, M. V. The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc. Natl Acad. Sci. USA 107, 21517–21522 (2010).

    CAS  PubMed  Google Scholar 

  196. 196.

    Dentler, W. A. Role for the membrane in regulating Chlamydomonas flagellar length. PLOS ONE 8, e53366 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197.

    Rajagopalan, V., Subramanian, A., Wilkes, D. E., Pennock, D. G. & Asai, D. J. Dynein-2 affects the regulation of ciliary length but is not required for ciliogenesis in Tetrahymena thermophila. Mol. Biol. Cell 20, 708–720 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198.

    Hao, L., Efimenko, E., Swoboda, P. & Scholey, J. M. The retrograde IFT machinery of C. elegans cilia: two IFT dynein complexes? PLOS ONE 6, e20995 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. 199.

    Ocbina, P. J. R., Eggenschwiler, J. T., Moskowitz, I. & Anderson, K. V. Complex interactions between genes controlling trafficking in primary cilia. Nat. Genet. 43, 547–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Das, R. M. & Storey, K. G. Apical abscission alters cell polarity and dismantles the primary cilium during neurogenesis. Science 343, 200–204 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. 201.

    Mirvis, M., Siemers, K. A., Nelson, W. J. & Stearns, T. Heterogeneous dynamics and mechanisms of primary cilium disassembly in mammalian cells. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/433144v2 (2018).

  202. 202.

    Niel, Gvan, D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    PubMed  Google Scholar 

  203. 203.

    Wood, C. R. & Rosenbaum, J. L. Ciliary ectosomes: transmissions from the cell’s antenna. Trends Cell Biol. 25, 276–285 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204.

    Wood, C. R., Huang, K., Diener, D. R. & Rosenbaum, J. L. The cilium secretes bioactive ectosomes. Curr. Biol. 23, 906–911 (2013).

    CAS  PubMed  Google Scholar 

  205. 205.

    Szempruch, A. J. et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 164, 246–257 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Wang, J. et al. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr. Biol. 24, 519–525 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207.

    Hurley, J. H. ESCRTs are everywhere. EMBO J. 34, 2398–2407 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. 208.

    Diener, D. R., Lupetti, P. & Rosenbaum, J. L. Proteomic analysis of isolated ciliary transition zones reveals the presence of ESCRT proteins. Curr. Biol. 25, 379–384 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. 209.

    Mierzwa, B. & Gerlich, D. W. Cytokinetic abscission: molecular mechanisms and temporal control. Dev. Cell 31, 525–538 (2014).

    CAS  PubMed  Google Scholar 

  210. 210.

    Chiaruttini, N. et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163, 866–879 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. 211.

    Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. Membrane scission by the ESCRT-III complex. Nature 458, 172–177 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. 212.

    Liu, A. P. & Fletcher, D. A. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J. 91, 4064–4070 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. 213.

    Römer, W. et al. Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 140, 540–553 (2010).

    PubMed  Google Scholar 

  214. 214.

    Allain, J.-M., Storm, C., Roux, A., Amar, M. B. & Joanny, J.-F. Fission of a multiphase membrane tube. Phys. Rev. Lett. 93, 158104 (2004).

    PubMed  Google Scholar 

  215. 215.

    Ma, M., Gallagher, A.-R. & Somlo, S. Ciliary mechanisms of cyst formation in polycystic kidney disease. Cold Spring Harb. Perspect. Biol. 9, a028209 (2017).

    PubMed  Google Scholar 

  216. 216.

    Pazour, G. J. et al. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 12, R378–R380 (2002).

    CAS  PubMed  Google Scholar 

  217. 217.

    Yoder, B. K., Hou, X. & Guay-Woodford, L. M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    CAS  PubMed  Google Scholar 

  218. 218.

    Kleene, S. J. & Kleene, N. K. The native TRPP2-dependent channel of murine renal primary cilia. Am. J. Physiol. Renal Physiol. 312, F96–F108 (2017).

    CAS  PubMed  Google Scholar 

  219. 219.

    Liu, X. et al. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. eLife 7, e33183 (2018).

    PubMed  PubMed Central  Google Scholar 

  220. 220.

    Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    CAS  PubMed  Google Scholar 

  221. 221.

    Delling, M. et al. Primary cilia are not calcium-responsive mechanosensors. Nature 531, 656–660 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. 222.

    Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223.

    Braun, D. A. & Hildebrandt, F. Ciliopathies. Cold Spring Harb. Perspect. Biol. 9, a028191 (2017).

    PubMed  PubMed Central  Google Scholar 

  224. 224.

    Ma, M., Tian, X., Igarashi, P., Pazour, G. J. & Somlo, S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004–1012 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. 225.

    Riobo, N. A. in The Smoothened Receptor in Cancer and Regenerative Medicine (ed. Ruat, M.) 13–42 (Springer, 2015).

  226. 226.

    Liu, Y. C. et al. The PPFIA1-PP2A protein complex promotes trafficking of Kif7 to the ciliary tip and Hedgehog signaling. Sci. Signal. 7, ra117 (2014).

    PubMed  Google Scholar 

  227. 227.

    Cheung, H. O.-L. et al. The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci. Signal. 2, ra29 (2009).

    PubMed  Google Scholar 

  228. 228.

    Endoh-Yamagami, S. et al. The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr. Biol. 19, 1320–1326 (2009).

    CAS  PubMed  Google Scholar 

  229. 229.

    He, M. et al. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16, 663–672 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. 230.

    Bidet, M. et al. The hedgehog receptor Patched is involved in cholesterol transport. PLOS ONE 6, e23834 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. 231.

    Fiorini, L. et al. Natural paniceins from mediterranean sponge inhibit the multidrug resistance activity of Patched and increase chemotherapy efficiency on melanoma cells. Oncotarget 6, 22282–22297 (2015).

    PubMed  PubMed Central  Google Scholar 

  232. 232.

    Zhang, Y. et al. Structural basis for cholesterol transport-like activity of the Hedgehog receptor Patched. Cell 175, 1352–1364 (2018).

    CAS  PubMed  Google Scholar 

  233. 233.

    Gong, X. et al. Structural basis for the recognition of Sonic Hedgehog by human Patched1. Science 361, eaas8935 (2018).

    PubMed  Google Scholar 

  234. 234.

    Qi, X., Schmiege, P., Coutavas, E., Wang, J. & Li, X. Structures of human Patched and its complex with native palmitoylated sonic hedgehog. Nature 560, 128–132 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. 235.

    Qi, X., Schmiege, P., Coutavas, E. & Li, X. Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex. Science 362, eaas8843 (2018). Zhang et al. (2018), Gong et al. (2018), Qi et al. ( Nature , 2018) and Qi et al. (Science , 2018) present structures of Hedgehog receptor Patched 1 that uncover a channel in Patched 1 through which cholesterol may be transported from the inner leaflet to the extracellular domain. Zhang et al. (2018) also provide direct evidence that P atched 1 transports cholesterol from the inner to the outer leaflet of the membrane.

    PubMed  PubMed Central  Google Scholar 

  236. 236.

    Huang, P. et al. Structural basis of Smoothened activation in Hedgehog signaling. Cell 174, 312–324 (2018). The structure of activated Smoothened, as presented in this paper, reveals a channel through which cholesterol may travel from the inner leaflet to the cysteine-rich extracellular domain, thereby promoting receptor activation.

    CAS  PubMed  Google Scholar 

  237. 237.

    Cole, D. G. et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141, 993–1008 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. 238.

    Nachury, M. V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    CAS  PubMed  Google Scholar 

  239. 239.

    Wingfield, J. L., Lechtreck, K.-F. & Lorentzen, E. Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays Biochem. 62, 753–763 (2018).

    PubMed  Google Scholar 

  240. 240.

    Funabashi, T., Katoh, Y., Okazaki, M., Sugawa, M. & Nakayama, K. Interaction of heterotrimeric kinesin-II with IFT-B-connecting tetramer is crucial for ciliogenesis. J. Cell Biol. 217, 2867–2876 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. 241.

    Jordan, M. A., Diener, D. R., Stepanek, L. & Pigino, G. The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat. Cell Biol. 20, 1250–1255 (2018).

    CAS  PubMed  Google Scholar 

  242. 242.

    Chien, A. et al. Dynamics of the IFT machinery at the ciliary tip. eLife 6, e28606 (2017).

    PubMed  PubMed Central  Google Scholar 

  243. 243.

    Mijalkovic, J., van Krugten, J., Oswald, F., Acar, S. & Peterman, E. J. G. Single-molecule turnarounds of intraflagellar transport at the C. elegans ciliary tip. Cell Rep. 25, 1701–1707 (2018).

    CAS  PubMed  Google Scholar 

  244. 244.

    Stepanek, L. & Pigino, G. Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352, 721–724 (2016).

    CAS  PubMed  Google Scholar 

  245. 245.

    Chaya, T., Omori, Y., Kuwahara, R. & Furukawa, T. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J. 33, 1227–1242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. 246.

    Berman, S. A., Wilson, N. F., Haas, N. A., Lefebvre, P. A. A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr. Biol. 13, 1145–1149 (2003).

    CAS  PubMed  Google Scholar 

  247. 247.

    Burghoorn, J. et al. Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 104, 7157 (2007).

    CAS  PubMed  Google Scholar 

  248. 248.

    Bengs, F., Scholz, A., Kuhn, D. & Wiese, M. LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana: MAP kinase and flagellar length. Mol. Microbiol. 55, 1606–1615 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank B. Snell, G. Witman, J. Reiter, M. Delling, D. Breslow, I. Ojeda Naharros and S. Shinde for comments on the manuscript and A. Nager for help with drafting the manuscript. They apologize to their colleagues whose publications they could not cite owing to length restrictions. Research in the Nachury laboratory is supported by NIGMS grant GM089933, a Stein Innovation Award from Research to Prevent Blindness and, in part, by NEI core grant EY002162 and by an RPB Unrestricted Grant. Research in the Mick laboratory is supported by the Deutsche Forschungsgemeinschaft (DFG) SFB894/TPA-22.

Reviewer information

Nature Reviews Molecular Cell Biology thanks L. B. Pedersen and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Maxence V. Nachury.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

G protein-coupled receptors

(GPCRs). Membrane proteins with seven transmembrane domains that sense various external signals (such as drugs and odorants) and relay them into the cell through heterotrimeric G proteins.

Anorexigenic

Refers to an effect related to the loss of appetite (anorexia), thus resulting in lower food consumption and weight loss.

Photoreceptors

Sensory neurons that detect light using rhodopsin localized inside a specialized cilium.

Rhodopsin

A photosensory G protein-coupled receptor (GPCR) that transduces light using a tightly bound molecule of retinal.

Bardet–Biedl syndrome

(BBS). A ciliopathy (with mutations in 21 different genes identified to date) characterized by retinal degeneration, obesity, kidney abnormalities and polydactyly.

Phosphoinositides

Hallmark lipids that mark the cytoplasmic leaflets of cellular membranes.

Basal body

A specialized mother centriole that is a template for the ciliary axoneme.

Axoneme

The microtubule core of cilia composed of nine microtubule doublets.

Transition fibres

Identical to the distal appendages of mother centrioles in unciliated cells, transition fibres physically connect the basal body to the membrane in ciliated cells.

Y-links

Y-shaped electron-dense structures that connect the ciliary axoneme (bottom of the Y) to the membrane (top of the Y) at the transition zone.

Tight junctions

The junctions between adjacent epithelial cells that seal the epithelium and function as a barrier for lipid and integral membrane protein diffusion between the apical and basolateral membranes of cells.

Heterotrimeric G protein α subunit

The GTPase subunit of heterotrimeric G proteins. It becomes loaded with GTP after encountering an active G protein-coupled receptor (GPCR) and modulates downstream activities, such as adenylyl cyclases. Gαs–GTP stimulates adenylyl cyclases, while Gαi–GTP inhibits them.

GLI transcription factors

The GLI1 transcription activator was first identified in glioblastoma (a Hedgehog-driven tumour). The paralogues GLI2 and GLI3 are processed into transcription activators or repressors depending upon regulatory inputs from the Hedgehog pathway.

Sphingolipids

Lipids formed by a backbone that consists of a sphingosine N-acylated by a fatty acid. Named after the Sphinx because of their once-enigmatic functions.

Oxysterols

Products of cholesterol oxidation with hydroxyl, carbonyl or epoxide groups. Their best-established roles are in regulation of cholesterol metabolism.

Condensed membrane microdomains

Tightly packed and viscous regions of the membrane that can form through clustering of lipid rafts.

Liquid-ordered lipid phase

Biological membranes are two-dimensional liquids that can phase separate into liquid-ordered (for example, rafts) and liquid-disordered (for example, fluid mosaic) phases.

Raft

A relatively ordered membrane domain formed by interactions between proteins and lipids. Rafts typically present as cholesterol and sphingolipidenriched membrane nanodomains <200 nm in size that are thought to facilitate interactions between signalling molecules.

BBSome

A complex of eight Bardet–Biedl syndrome proteins that removes proteins from cilia.

IFT trains

High-order oligomers of intraflagellar transport (IFT) complexes that transport cargo along the axoneme.

Polycystic kidney and hepatic disease 1

(PKHD1). A large single-pass membrane protein of unknown function mutated in autosomal recessive polycystic kidney disease.

Ciliary targeting signal

(CTS). In the strictest sense, a short stretch of amino acids that is necessary and sufficient for targeting a protein to cilia. Some CTSs (for example, in somatostatin receptor 3) are sufficient but not necessary for ciliary targeting.

Somatostatin receptor 3

(SSTR3). A ciliary G protein-coupled receptor (GPCR) expressed in hippocampal neurons and required for novelty recognition. It couples to Gαi.

Melanocortin concentrating hormone receptor 1

(MCHR1). A ciliary G protein-coupled receptor (GPCR) that has a modest role in body weight homeostasis.

ARL3

A small GTPase of the ARF-like family, most members of which regulate vesicular trafficking.

β-Arrestin 2

Recognizes activated G protein-coupled receptors (GPCRs), blocks GPCR-to-Gα communication and promotes GPCR endocytosis, thereby typically driving termination of GPCR signalling.

Axon initial segment

In neurons, the first few micrometres of the axon. It is an area rich in actin that functionally separates the axonal plasma membrane from the soma plasma membrane.

Karyopherins

Nuclear transport receptors that ferry proteins across the nuclear pore complex.

Ectosomes

Extracellular vesicles that directly bud from the limiting membrane of the cell. Also termed microvesicles.

Neuropeptide Y receptor type 2

(NPY2R). A Gαs-coupled G protein-coupled receptor (GPCR) that regulates appetite under stress conditions.

Exosomes

Extracellular vesicles that originate as vesicles inside the lumen of the multivesicular body and become extracellular upon fusion of the multivesicular body with the plasma membrane.

Endosomal sorting complex required for transport

(ESCRT). A cascade of protein complexes (0, I, II and III in order of action) discovered initially in yeast as factors involved in budding transmembrane proteins from the endosomal membrane into intraluminal vesicles. ESCRTs have since been demonstrated to be necessary for many cellular processes involving a bud-like topology.

Line tension

The 2D version of surface tension, which reflects the energy minimization of a system in which an energetically costly discontinuity exists between two neighbouring phases.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nachury, M.V., Mick, D.U. Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol 20, 389–405 (2019). https://doi.org/10.1038/s41580-019-0116-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing