Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of transcription in shaping the spatial organization of the genome

Abstract

The spatial organization of the genome into compartments and topologically associated domains can have an important role in the regulation of gene expression. But could gene expression conversely regulate genome organization? Here, we review recent studies that assessed the requirement of transcription and/or the transcription machinery for the establishment or maintenance of genome topology. The results reveal different requirements at different genomic scales. Transcription is generally not required for higher-level genome compartmentalization, has only moderate effects on domain organization and is not sufficient to create new domain boundaries. However, on a finer scale, transcripts or transcription does seem to have a role in the formation of subcompartments and subdomains and in stabilizing enhancer–promoter interactions. Recent evidence suggests a dynamic, reciprocal interplay between fine-scale genome organization and transcription, in which each is able to modulate or reinforce the activity of the other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two main principles of chromosome organization.
Fig. 2: Gene relocalization from peripheral heterochromatin to internal euchromatin.
Fig. 3: Alternative mechanisms of TAD boundary formation.
Fig. 4: Properties of TAD borders in different cell types and species.
Fig. 5: Compartmentalization of active and inactive chromatin.

Similar content being viewed by others

References

  1. Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat. Struct. Mol. Biol. 20, 290–299 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Shachar, S. & Misteli, T. Causes and consequences of nuclear gene positioning. J. Cell Sci. 130, 1501–1508 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    CAS  PubMed  Google Scholar 

  5. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sirri, V., Urcuqui-Inchima, S., Roussel, P. & Hernandez-Verdun, D. Nucleolus: the fascinating nuclear body. Histochem. Cell Biol. 129, 13–31 (2008).

    CAS  PubMed  Google Scholar 

  10. Nemeth, A. & Grummt, I. Dynamic regulation of nucleolar architecture. Curr. Opin. Cell Biol. 52, 105–111 (2018).

    CAS  PubMed  Google Scholar 

  11. Falahati, H., Pelham-Webb, B., Blythe, S. & Wieschaus, E. Nucleation by rRNA dictates the precision of nucleolus assembly. Curr. Biol. 26, 277–285 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Heyn, P., Salmonowicz, H., Rodenfels, J. & Neugebauer, K. M. Activation of transcription enforces the formation of distinct nuclear bodies in zebrafish embryos. RNA Biol. 14, 752–760 (2017).

    PubMed  Google Scholar 

  13. Verheggen, C., Almouzni, G. & Hernandez-Verdun, D. The ribosomal RNA processing machinery is recruited to the nucleolar domain before RNA polymerase I during Xenopus laevis development. J. Cell Biol. 149, 293–306 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mais, C., Wright, J. E., Prieto, J. L., Raggett, S. L. & McStay, B. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev. 19, 50–64 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamdane, N. et al. Disruption of the UBF gene induces aberrant somatic nucleolar bodies and disrupts embryo nucleolar precursor bodies. Gene 612, 5–11 (2017).

    CAS  PubMed  Google Scholar 

  16. Caudron-Herger, M. et al. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J. 34, 2758–2774 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Heitz, E. Das heterochromatin der moose [German]. Jahrb. Wiss. Bot. 69, 762–818 (1928).

    Google Scholar 

  18. Filion, G. J. et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143, 212–224 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Google Scholar 

  20. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    CAS  PubMed  Google Scholar 

  21. van Bemmel, J. G. et al. The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome. PLOS ONE 5, e15013 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nemeth, A. et al. Initial genomics of the human nucleolus. PLOS Genet. 6, e1000889 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. van Koningsbruggen, S. et al. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell 21, 3735–3748 (2010).

    PubMed  PubMed Central  Google Scholar 

  25. Dillinger, S., Straub, T. & Nemeth, A. Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation. PLOS ONE 12, e0178821 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178–192 (2013).

    CAS  PubMed  Google Scholar 

  27. Ragoczy, T., Telling, A., Scalzo, D., Kooperberg, C. & Groudine, M. Functional redundancy in the nuclear compartmentalization of the late-replicating genome. Nucleus 5, 626–635 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Kalverda, B., Pickersgill, H., Shloma, V. V. & Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140, 360–371 (2010).

    CAS  PubMed  Google Scholar 

  29. Solovei, I. et al. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356–368 (2009).

    CAS  PubMed  Google Scholar 

  30. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    CAS  PubMed  Google Scholar 

  31. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vieux-Rochas, M., Fabre, P. J., Leleu, M., Duboule, D. & Noordermeer, D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc. Natl Acad. Sci. USA 112, 4672–4677 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. van Steensel, B. & Belmont, A. S. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780–791 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Pinheiro, I. & Heard, E. X chromosome inactivation: new players in the initiation of gene silencing. F1000Res 6, 344 (2017).

    Google Scholar 

  35. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Probst, A. V. et al. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev. Cell 19, 625–638 (2010).

    CAS  PubMed  Google Scholar 

  37. Velazquez Camacho, O. et al. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA: DNA hybrid formation. eLife 6, e25293 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Martienssen, R. & Moazed, D. RNAi and heterochromatin assembly. Cold Spring Harb. Perspect. Biol. 7, a019323 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Yuan, K. & O’Farrell, P. H. TALE-light imaging reveals maternally guided, H3K9me2/3-independent emergence of functional heterochromatin in Drosophila embryos. Genes Dev. 30, 579–593 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brackley, C. A., Johnson, J., Kelly, S., Cook, P. R. & Marenduzzo, D. Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains. Nucleic Acids Res. 44, 3503–3512 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Naumova, N. et al. Organization of the mitotic chromosome. Science 342, 948–953 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerizas, J. M. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169, 216–228 (2017).

    CAS  PubMed  Google Scholar 

  43. Battulin, N. et al. Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach. Genome Biol. 16, 77 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235 (2017).

    CAS  PubMed  Google Scholar 

  45. Jung, Y. H. et al. Chromatin states in mouse sperm correlate with embryonic and adult regulatory landscapes. Cell Rep. 18, 1366–1382 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Carone, B. R. et al. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev. Cell 30, 11–22 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Palstra, R. J. et al. Maintenance of long-range DNA interactions after inhibition of ongoing RNA polymerase II transcription. PLOS ONE 3, e1661 (2008).

    PubMed  PubMed Central  Google Scholar 

  48. Lund, E. et al. Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Res. 23, 1580–1589 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kohwi, M., Lupton, J. R., Lai, S. L., Miller, M. R. & Doe, C. Q. Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell 152, 97–108 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tumbar, T. & Belmont, A. S. Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat. Cell Biol. 3, 134–139 (2001).

    CAS  PubMed  Google Scholar 

  51. Chuang, C. H. et al. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16, 825–831 (2006).

    CAS  PubMed  Google Scholar 

  52. Bensaude, O. Inhibiting eukaryotic transcription: which compound to choose? How to evaluate its activity? Transcription 2, 103–108 (2011).

    PubMed  PubMed Central  Google Scholar 

  53. Therizols, P. et al. Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 346, 1238–1242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Isoda, T. et al. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate. Cell 171, 103–119 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Heinz, S. et al. Transcription elongation can affect genome 3D structure. Cell 174, 1522–1536 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu, Y., Plutz, M. & Belmont, A. S. Hsp70 gene association with nuclear speckles is Hsp70 promoter specific. J. Cell Biol. 191, 711–719 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Khanna, N., Hu, Y. & Belmont, A. S. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24, 1138–1144 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, Y. et al. TSA-Seq mapping of nuclear genome organization. J. Cell Biol. (in the press).

  59. Brickner, J. Genetic and epigenetic control of the spatial organization of the genome. Mol. Biol. Cell 28, 364–369 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Osborne, C. S. et al. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLOS Biol. 5, e192 (2007).

    PubMed  PubMed Central  Google Scholar 

  61. Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42, 53–61 (2010).

    CAS  PubMed  Google Scholar 

  62. Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Denholtz, M. et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13, 602–616 (2013).

    CAS  PubMed  Google Scholar 

  65. de Wit, E. et al. The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 501, 227–231 (2013).

    PubMed  Google Scholar 

  66. Ghavi-Helm, Y. et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512, 96–100 (2014).

    CAS  PubMed  Google Scholar 

  67. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Szabo, Q. et al. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci. Adv. 4, eaar8082 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    CAS  PubMed  Google Scholar 

  71. Symmons, O. et al. The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev. Cell 39, 529–543 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Narendra, V. et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347, 1017–1021 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sexton, T. & Cavalli, G. The role of chromosome domains in shaping the functional genome. Cell 160, 1049–1059 (2015).

    CAS  PubMed  Google Scholar 

  74. Dekker, J., Guttman, M. & Lomvardas, S. A guide to packing your DNA. Cell 165, 259–261 (2016).

    PubMed  Google Scholar 

  75. Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin domains: the unit of chromosome organization. Mol. Cell 62, 668–680 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    CAS  PubMed  Google Scholar 

  77. van Ruiten, M. S. & Rowland, B. D. SMC complexes: universal DNA looping machines with distinct regulators. Trends Genet. 34, 477–487 (2018).

    PubMed  Google Scholar 

  78. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sofueva, S. et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 32, 3119–3129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Van Bortle, K. & Corces, V. G. tDNA insulators and the emerging role of TFIIIC in genome organization. Transcription 3, 277–284 (2012).

    PubMed  PubMed Central  Google Scholar 

  85. Van Bortle, K. et al. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol. 15, R82 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

    PubMed  Google Scholar 

  89. Hanssen, L. L. P. et al. Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nat. Cell Biol. 19, 952–961 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gambetta, M. C. & Furlong, E. E. M. The insulator protein CTCF is required for correct hox gene expression, but not for embryonic development in Drosophila. Genetics 210, 129–136 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hsieh, T. H. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Donze, D. & Kamakaka, R. T. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J. 20, 520–531 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yuen, K. C., Slaughter, B. D. & Gerton, J. L. Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters. Sci. Adv. 3, e1700191 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Le, T. B., Imakaev, M. V., Mirny, L. A. & Laub, M. T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342, 731–734 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Marbouty, M. et al. Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol. Cell 59, 588–602 (2015).

    CAS  PubMed  Google Scholar 

  97. Le, T. B. & Laub, M. T. Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries. EMBO J. 35, 1582–1595 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, C. et al. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res. 26, 1057–1068 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ramirez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. Ulianov, S. V. et al. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res. 26, 70–84 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, L. et al. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Mol. Cell 58, 216–231 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Giorgetti, L. et al. Structural organization of the inactive X chromosome in the mouse. Nature 535, 575–579 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Darrow, E. M. et al. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc. Natl Acad. Sci. USA 113, E4504–E4512 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Minajigi, A. et al. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349, aab2276 (2015).

    Google Scholar 

  107. Ke, Y. et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170, 367–381 (2017).

    CAS  PubMed  Google Scholar 

  108. Kaaij, L. J. T., van der Weide, R. H., Ketting, R. F. & de Wit, E. Systemic loss and gain of chromatin architecture throughout zebrafish development. Cell Rep. 24, 1–10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell 67, 837–852 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. El-Sharnouby, S. et al. Regions of very low H3K27me3 partition the Drosophila genome into topological domains. PLOS ONE 12, e0172725 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Long, H. K., Prescott, S. L. & Wysocka, J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167, 1170–1187 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Spurrell, C. H., Dickel, D. E. & Visel, A. The ties that bind: mapping the dynamic enhancer-promoter interactome. Cell 167, 1163–1166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Andrey, G. & Mundlos, S. The three-dimensional genome: regulating gene expression during pluripotency and development. Development 144, 3646–3658 (2017).

    CAS  PubMed  Google Scholar 

  114. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Deng, W. et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158, 849–860 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017–1027 (2004).

    CAS  PubMed  Google Scholar 

  118. Andrey, G. et al. A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340, 1234167 (2013).

    PubMed  Google Scholar 

  119. Rubin, A. J. et al. Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nat. Genet. 49, 1522–1528 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Alexander, J. M., Guan, J., Huang, B., Lomvardas, S. & Weiner, O. D. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. Preprint at bioRxiv. https://doi.org/10.1101/409672 (2018).

    Article  Google Scholar 

  121. Benabdallah, N. S. et al. PARP mediated chromatin unfolding is coupled to long- range enhancer activation. Preprint at bioRxiv. https://doi.org/10.1101/155325 (2017).

    Article  Google Scholar 

  122. Chen, H. et al. Dynamic interplay between enhancer-promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lefevre, P., Witham, J., Lacroix, C. E., Cockerill, P. N. & Bonifer, C. The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Mol. Cell 32, 129–139 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lengronne, A. et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430, 573–578 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Chernukhin, I. et al. CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide. Mol. Cell. Biol. 27, 1631–1648 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ruiz-Velasco, M. et al. CTCF-mediated chromatin loops between promoter and gene body regulate alternative splicing across individuals. Cell Syst. 5, 628–637 (2017).

    CAS  PubMed  Google Scholar 

  128. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A. Phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).

    CAS  PubMed  Google Scholar 

  130. Jackson, D. A., Hassan, A. B., Errington, R. J. & Cook, P. R. Visualization of focal sites of transcription within human nuclei. EMBO J. 12, 1059–1065 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. van Steensel, B. et al. Localization of the glucocorticoid receptor in discrete clusters in the cell nucleus. J. Cell Sci. 108, 3003–3011 (1995).

    PubMed  Google Scholar 

  132. Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855 (2018).

    CAS  PubMed  Google Scholar 

  134. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed  PubMed Central  Google Scholar 

  135. Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. & Mirny, L. A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl Acad. Sci. USA 115, E6697–E6706 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kueng, S., Oppikofer, M. & Gasser, S. M. SIR proteins and the assembly of silent chromatin in budding yeast. Annu. Rev. Genet. 47, 275–306 (2013).

    CAS  PubMed  Google Scholar 

  137. Tolhuis, B. et al. Interactions among polycomb domains are guided by chromosome architecture. PLOS Genet. 7, e1001343 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bantignies, F. et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144, 214–226 (2011).

    CAS  PubMed  Google Scholar 

  139. Ogiyama, Y., Schuettengruber, B., Papadopoulos, G. L., Chang, J. M. & Cavalli, G. Polycomb-dependent chromatin looping contributes to gene silencing during Drosophila development. Mol. Cell 71, 73–88 (2018).

    CAS  PubMed  Google Scholar 

  140. Zhu, Y. et al. Comprehensive characterization of neutrophil genome topology. Genes Dev. 31, 141–153 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Csink, A. K. & Henikoff, S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 381, 529–531 (1996).

    CAS  PubMed  Google Scholar 

  142. Seum, C., Delattre, M., Spierer, A. & Spierer, P. Ectopic HP1 promotes chromosome loops and variegated silencing in Drosophila. EMBO J. 20, 812–818 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Cabianca, D. S. & Gasser, S. M. Spatial segregation of heterochromatin: Uncovering functionality in a multicellular organism. Nucleus 7, 301–307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Boumendil, C., Hari, P., Olsen, K. C. F., Acosta, J. C. & Bickmore, W. A. Nuclear pore density controls heterochromatin reorganization during senescence. Genes Dev. 33, 144–149 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of their laboratories, E. de Wit and anonymous reviewers for helpful comments. B.v.S. and E.E.M.F. are supported by European Research Council (ERC) Advanced Grants, GoCADiSC (694466) and DeCRyPT (787611), respectively. The Oncode Institute is supported by KWF Dutch Cancer Society.

Reviewer information

Nature Reviews Molecular Cell Biology thanks B. Bruneau, G. Almouzni and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Bas van Steensel or Eileen E. M. Furlong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Alu elements

A type of short and highly abundant transposable element found throughout primate genomes.

Histone modifications

A generic term for a wide range of post-translational modifications of histone residues. Histone modifications have a variety of functions, including in the packaging of chromatin and regulation of transcription.

Nuclear lamina

A layer of proteins coating the inner nuclear membrane and thought to form a large contact surface for lamina-associated domains.

CCCTC-binding factor

(CTCF). A DNA-binding protein that often marks borders of lamina-associated domains, topologically associated domains and chromatin loops and can act as a transcriptional insulator.

Hi-C

A chromosome conformation capture method that systematically identifies genomic sequences that are in close proximity to one another inside cell nuclei.

Super enhancers

A somewhat arbitrary definition of genomic regions that contain a high density of active enhancers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Steensel, B., Furlong, E.E.M. The role of transcription in shaping the spatial organization of the genome. Nat Rev Mol Cell Biol 20, 327–337 (2019). https://doi.org/10.1038/s41580-019-0114-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0114-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing