Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial proteins: from biogenesis to functional networks

An Author Correction to this article was published on 23 March 2021

This article has been updated

Abstract

Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of mitochondria and their functions.
Fig. 2: Protein import pathways into mitochondria.
Fig. 3: Interaction network of respiratory complexes, biogenesis and quality control machineries.
Fig. 4: Mitochondrial organizing network.

Similar content being viewed by others

Change history

References

  1. Neupert, W. A perspective on transport of proteins into mitochondria: a myriad of open questions. J. Mol. Biol.427, 1135–1158 (2015).

    CAS  PubMed  Google Scholar 

  2. Wiedemann, N. & Pfanner, N. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem.86, 685–714 (2017).

    CAS  PubMed  Google Scholar 

  3. van der Bliek, A. M., Sedensky, M. M. & Morgan, P. G. Cell biology of the mitochondrion. Genetics207, 843–871 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. Lill, R. Function and biogenesis of iron–sulphur proteins. Nature460, 831–838 (2009).

    CAS  PubMed  Google Scholar 

  5. Ott, M., Amunts, A. & Brown, A. Organization and regulation of mitochondrial protein synthesis. Annu. Rev. Biochem.85, 77–101 (2016).

    CAS  PubMed  Google Scholar 

  6. Hell, K., Neupert, W. & Stuart, R. A. Oxa1p acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J.20, 1281–1288 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Labbé, K., Murley, A. & Nunnari, J. Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol.30, 357–391 (2014).

    PubMed  Google Scholar 

  8. Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell. Biol.11, 872–884 (2010).

    CAS  PubMed  Google Scholar 

  9. von der Malsburg, K. et al. Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell21, 694–707 (2011).

    PubMed  Google Scholar 

  10. Harner, M. et al. The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J.30, 4356–4370 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoppins, S. et al. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol.195, 323–340 (2011). References 9–11 report the identification of the MICOS, a multisubunit complex that links outer and inner membranes and is crucial for the maintenance of crista junctions.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Aaltonen, M. J. et al. MICOS and phospholipid transfer by Ups2–Mdm35 organize membrane lipid synthesis in mitochondria. J. Cell Biol.213, 525–534 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ott, C. et al. Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes. Mol. Cell. Biol.32, 1173–1188 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shpilka, T. & Haynes, C. M. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell. Biol.19, 109–120 (2018).

    CAS  PubMed  Google Scholar 

  15. Pickles, S., Vigié, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol.28, R170–R185 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Harper, J. W., Ordureau, A. & Heo, J.-M. Building and decoding ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell. Biol.19, 93–108 (2018).

    CAS  PubMed  Google Scholar 

  17. Cosentino, K. & Garcia-Saez, A. J. Bax and Bak pores: are we closing the circle? Trends Cell Biol.27, 266–275 (2017).

    CAS  PubMed  Google Scholar 

  18. Rugarli, E. I. & Langer, T. Mitochondrial quality control: a matter of life and death for neurons. EMBO J.31, 1336–1349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell48, 158–167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res.44, D1251–D1257 (2016).

    CAS  PubMed  Google Scholar 

  21. Forner, F., Foster, L. J., Campanaro, S., Valle, G. & Mann, M. Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol. Cell. Proteom.5, 608–619 (2006).

    CAS  Google Scholar 

  22. Gaucher, S. P. et al. Expanded coverage of the human heart mitochondrial proteome using multidimensional liquid chromatography coupled with tandem mass spectrometry. J. Proteome Res.3, 495–505 (2004).

    CAS  PubMed  Google Scholar 

  23. Hung, V. et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol. Cell55, 332–341 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lefort, N. et al. Proteome profile of functional mitochondria from human skeletal muscle using one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. J. Proteom.72, 1046–1060 (2009).

    CAS  Google Scholar 

  25. McDonald, T. et al. Expanding the subproteome of the inner mitochondria using protein separation technologies: one- and two-dimensional liquid chromatography and two-dimensional gel electrophoresis. Mol. Cell. Proteom.5, 2392–2411 (2006).

    CAS  Google Scholar 

  26. Morgenstern, M. et al. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep.19, 2836–2852 (2017). This is a systematic quantitative analysis of the proteome of yeast mitochondria, revealing the absolute copy numbers of most mitochondrial protein machineries under fermentable and respiratory growth conditions.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohlmeier, S., Kastaniotis, A. J., Hiltunen, J. K. & Bergmann, U. The yeast mitochondrial proteome, a study of fermentative and respiratory growth. J. Biol. Chem.279, 3956–3979 (2004).

    CAS  PubMed  Google Scholar 

  28. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell134, 112–123 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Prokisch, H. et al. Integrative analysis of the mitochondrial proteome in yeast. PLOS Biol.2, e160 (2004).

    PubMed  PubMed Central  Google Scholar 

  30. Reinders, J., Zahedi, R. P., Pfanner, N., Meisinger, C. & Sickmann, A. Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J. Proteome Res.5, 1543–1554 (2006).

    CAS  PubMed  Google Scholar 

  31. Rhee, H.-W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science339, 1328–1331 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sickmann, A. et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl Acad. Sci. USA100, 13207–13212 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith, A. C. & Robinson, A. J. MitoMinerv3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res.44, D1258–D1261 (2016).

    CAS  PubMed  Google Scholar 

  34. Taylor, S. W. et al. Characterization of the human heart mitochondrial proteome. Nat. Biotechnol.21, 281–286 (2003).

    CAS  PubMed  Google Scholar 

  35. Vögtle, F. N. et al. Landscape of submitochondrial protein distribution. Nat. Commun.8, 290 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Vögtle, F. N. et al. Intermembrane space proteome of yeast mitochondria. Mol. Cell. Proteom.11, 1840–1852 (2012).

    Google Scholar 

  37. Zahedi, R. P. et al. Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Mol. Biol. Cell17, 1436–1450 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, J. et al. Systematic characterization of the murine mitochondrial proteome using functionally validated cardiac mitochondria. Proteomics8, 1564–1575 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. de Godoy, L. M. F. et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature455, 1251–1254 (2008).

    PubMed  Google Scholar 

  40. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature473, 337–342 (2011).

    PubMed  Google Scholar 

  41. Beck, M. et al. The quantitative proteome of a human cell line. Mol. Systems Biol.7, 549 (2011).

    Google Scholar 

  42. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods11, 319–324 (2014).

    CAS  PubMed  Google Scholar 

  43. Wiśniewski, J. R., Hein, M. Y., Cox, J. & Mann, M. A ‘proteomic ruler’ for protein copy number and concentration estimation without spike-in standards. Mol. Cell. Proteom.13, 3497–3506 (2014).

    Google Scholar 

  44. Paulo, J. A. et al. Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources. J. Proteom.148, 85–93 (2016).

    CAS  Google Scholar 

  45. Harbauer, A. B. et al. Mitochondria: cell cycle-dependent regulation of mitochondrial preprotein translocase. Science346, 1109–1113 (2014).

    CAS  PubMed  Google Scholar 

  46. Gerbeth, C. et al. Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. Cell Metab.18, 578–587 (2013).

    CAS  PubMed  Google Scholar 

  47. Rao, S. et al. Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of Tom40 and impairs its import. Mol. Biol. Cell23, 1618–1627 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmidt, O. et al. Regulation of mitochondrial protein import by cytosolic kinases. Cell144, 227–239 (2011). This study reports that biogenesis and activity of the TOM complex are regulated by cytosolic kinases, revealing the main protein import site of mitochondria as a major target for cytosolic signalling pathways.

    CAS  PubMed  Google Scholar 

  49. Vögtle, F. N. et al. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell139, 428–439 (2009).

    PubMed  Google Scholar 

  50. Abe, Y. et al. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell100, 551–560 (2000).

    CAS  PubMed  Google Scholar 

  51. van Wilpe, S. et al. Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature401, 485–489 (1999).

    PubMed  Google Scholar 

  52. Kuszak, A. J. et al. Evidence of distinct channel conformations and substrate binding affinities for the mitochondrial outer membrane protein translocase pore Tom40. J. Biol. Chem.290, 26204–26217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Melin, J. et al. Presequence recognition by the Tom40 channel contributes to precursor translocation into the mitochondrial matrix. Mol. Cell. Biol.34, 3473–3485 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Lohret, T. A., Jensen, R. E. & Kinnally, K. W. Tim23, a protein import component of the mitochondrial inner membrane, is required for normal activity of the multiple conductance channel, MCC. J. Cell Biol.137, 377–386 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bauer, M. F., Sirrenberg, C., Neupert, W. & Brunner, M. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell87, 33–41 (1996).

    CAS  PubMed  Google Scholar 

  56. Dekker, P. J. et al. Identification of MIM23, a putative component of the protein import machinery of the mitochondrial inner membrane. FEBS Lett.330, 66–70 (1993).

    CAS  PubMed  Google Scholar 

  57. Demishtein-Zohary, K., Marom, M., Neupert, W., Mokranjac, D. & Azem, A. GxxxG motifs hold the TIM23 complex together. FEBS J.282, 2178–2186 (2015).

    CAS  PubMed  Google Scholar 

  58. Truscott, K. N. et al. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat. Struct. Biol.8, 1074–1082 (2001).

    CAS  PubMed  Google Scholar 

  59. Malhotra, K. et al. Cardiolipin mediates membrane and channel interactions of the mitochondrial TIM23 protein import complex receptor Tim50. Sci. Adv.3, e1700532 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Denkert, N. et al. Cation selectivity of the presequence translocase channel Tim23 is crucial for efficient protein import. eLife6, e28324 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Ramesh, A. et al. A disulfide bond in the TIM23 complex is crucial for voltage gating and mitochondrial protein import. J. Cell Biol.214, 417–431 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kang, P. J. et al. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature348, 137–143 (1990).

    CAS  PubMed  Google Scholar 

  63. Demishtein-Zohary, K. et al. Role of Tim17 in coupling the import motor to the translocation channel of the mitochondrial presequence translocase. eLife6, e22696 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Ting, S.-Y., Yan, N. L., Schilke, B. A. & Craig, E. A. Dual interaction of scaffold protein Tim44 of mitochondrial import motor with channel-forming translocase subunit Tim23. eLife6, e23609 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Banerjee, R., Gladkova, C., Mapa, K., Witte, G. & Mokranjac, D. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein. eLife4, e11897 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Sikor, M., Mapa, K., von Voithenberg, L. V., Mokranjac, D. & Lamb, D. C. Real-time observation of the conformational dynamics of mitochondrial Hsp70 by spFRET. EMBO J.32, 1639–1649 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Schendzielorz, A. B. et al. Two distinct membrane potential-dependent steps drive mitochondrial matrix protein translocation. J. Cell Biol.216, 83–92 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schulz, C. & Rehling, P. Remodelling of the active presequence translocase drives motor-dependent mitochondrial protein translocation. Nat. Commun.5, 4349 (2014).

    CAS  PubMed  Google Scholar 

  69. Fukasawa, Y. et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteom.14, 1113–1126 (2015).

    CAS  Google Scholar 

  70. Varshavsky, A. The N-end rule pathway and regulation by proteolysis. Protein Sci.20, 1298–1345 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Veling, M. T. et al. Multi-omic mitoprotease profiling defines a role for Oct1p in coenzyme Q production. Mol. Cell68, 970–977 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Vögtle, F. N. et al. Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell22, 2135–2143 (2011).

    PubMed  PubMed Central  Google Scholar 

  73. Cheng, M. Y. et al. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature337, 620–625 (1989).

    CAS  PubMed  Google Scholar 

  74. Ostermann, J., Horwich, A. L., Neupert, W. & Hartl, F. U. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature341, 125–130 (1989).

  75. Ieva, R. et al. Mgr2 functions as lateral gatekeeper for preprotein sorting in the mitochondrial inner membrane. Mol. Cell56, 641–652 (2014). This paper identifies a lateral gatekeeper protein at the TIM23 complex that controls the proper release of preproteins with hydrophobic sorting signals into the inner membrane.

    CAS  PubMed  Google Scholar 

  76. Schendzielorz, A. B. et al. Motor recruitment to the TIM23 channel’s lateral gate restricts polypeptide release into the inner membrane. Nat. Commun.9, 4028 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Stiller, S. B. et al. Mitochondrial OXA translocase plays a major role in biogenesis of inner-membrane proteins. Cell Metab.23, 901–908 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Park, K., Botelho, S. C., Hong, J., Osterberg, M. & Kim, H. Dissecting stop transfer versus conservative sorting pathways for mitochondrial inner membrane proteins in vivo. J. Biol. Chem.288, 1521–1532 (2013).

    CAS  PubMed  Google Scholar 

  79. Bohnert, M. et al. Cooperation of stop-transfer and conservative sorting mechanisms in mitochondrial protein transport. Curr. Biol.20, 1227–1232 (2010).

    CAS  PubMed  Google Scholar 

  80. Herrmann, J. M., Neupert, W. & Stuart, R. A. Insertion into the mitochondrial inner membrane of a polytopic protein, the nuclear-encoded Oxa1p. EMBO J.16, 2217–2226 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bausewein, T. et al. Cryo-EM structure of the TOM core complex from Neurospora crassa. Cell170, 693–700 (2017). This paper provides a cryoelectron microscopy structure of the TOM core complex of the mitochondrial outer membrane. Two translocation pores formed by Tom40 β-barrels are connected by two copies of the central receptor Tom22.

    CAS  PubMed  Google Scholar 

  82. Shiota, T. et al. Molecular architecture of the active mitochondrial protein gate. Science349, 1544–1548 (2015). This study maps the TOM complex architecture by site-specific crosslinking in the native membrane, revealing different translocation pathways for hydrophilic and hydrophobic precursor proteins through the Tom40 channel.

    CAS  PubMed  Google Scholar 

  83. Backes, S. et al. Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol.217, 1369–1382 (2018). This study reports a role of Tom70 in the import of presequence-containing preproteins that contain additional internal targeting signals. While Tom20 and Tom22 bind the amino-terminal presequences, Tom70 binds the internal signals to prevent aggregation of the preproteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Melin, J. et al. A presequence-binding groove in Tom70 supports import of Mdl1 into mitochondria. Biochim. Biophys. Acta1853, 1850–1859 (2015).

    CAS  PubMed  Google Scholar 

  85. Yamamoto, H. et al. Roles of Tom70 in Import of presequence-containing mitochondrial proteins. J. Biol. Chem.284, 31635–31646 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Young, J. C., Hoogenraad, N. J. & Hartl, F. U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell112, 41–50 (2003).

    CAS  PubMed  Google Scholar 

  87. Wiedemann, N., Pfanner, N. & Ryan, M. T. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J.20, 951–960 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Curran, S. P., Leuenberger, D., Schmidt, E. & Koehler, C. M. The role of the Tim8p-Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins. J. Cell Biol.158, 1017–1027 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Vial, S. et al. Assembly of Tim9 and Tim10 into a functional chaperone. J. Biol. Chem.277, 36100–36108 (2002).

    CAS  PubMed  Google Scholar 

  90. Koehler, C. M. et al. Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins. EMBO J.17, 6477–6486 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sirrenberg, C. et al. Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5. Nature391, 912–915 (1998).

    CAS  PubMed  Google Scholar 

  92. Weinhäupl, K. et al. Structural basis of membrane protein chaperoning through the mitochondrial intermembrane space. Cell175, 1365–1379 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Okamoto, H., Miyagawa, A., Shiota, T., Tamura, Y. & Endo, T. Intramolecular disulfide bond of Tim22 protein maintains integrity of the TIM22 complex in the mitochondrial inner membrane. J. Biol. Chem.289, 4827–4838 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wrobel, L., Trojanowska, A., Sztolsztener, M. E. & Chacinska, A. Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria. Mol. Biol. Cell24, 543–554 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rehling, P. et al. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science299, 1747–1751 (2003).

    CAS  PubMed  Google Scholar 

  96. Kerscher, O., Holder, J., Srinivasan, M., Leung, R. S. & Jensen, R. E. The Tim54p-Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J. Cell Biol.139, 1663–1675 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sirrenberg, C., Bauer, M. F., Guiard, B., Neupert, W. & Brunner, M. Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22. Nature384, 582–585 (1996).

    CAS  PubMed  Google Scholar 

  98. Koch, J. R. & Schmid, F. X. Mia40 combines thiol oxidase and disulfide isomerase activity to efficiently catalyze oxidative folding in mitochondria. J. Mol. Biol.426, 4087–4098 (2014).

    CAS  PubMed  Google Scholar 

  99. Chacinska, A. et al. Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J.23, 3735–3746 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mesecke, N. et al. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell121, 1059–1069 (2005).

    CAS  PubMed  Google Scholar 

  101. Milenkovic, D. et al. Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria. Mol. Biol. Cell20, 2530–2539 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sideris, D. P. et al. A novel intermembrane space-targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding. J. Cell Biol.187, 1007–1022 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Peleh, V., Cordat, E. & Herrmann, J. M. Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding. eLife5, e16177 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Neal, S. E. et al. Mia40 protein serves as an electron sink in the Mia40-Erv1 import pathway. J. Biol. Chem.290, 20804–20814 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kojer, K., Peleh, V., Calabrese, G., Herrmann, J. M. & Riemer, J. Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol. Biol. Cell26, 195–204 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. Jores, T. et al. Characterization of the targeting signal in mitochondrial β-barrel proteins. Nat. Commun.7, 12036 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Klein, A. et al. Characterization of the insertase for β-barrel proteins of the outer mitochondrial membrane. J. Cell Biol.199, 599–611 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wiedemann, N. et al. Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature424, 565–571 (2003).

    CAS  PubMed  Google Scholar 

  109. Paschen, S. A. et al. Evolutionary conservation of biogenesis of beta-barrel membrane proteins. Nature426, 862–866 (2003).

    CAS  PubMed  Google Scholar 

  110. Höhr, A. I. C. et al. Membrane protein insertion through a mitochondrial β-barrel gate. Science359, eaah6834 (2018). This study maps the membrane insertion pathway of β-barrel precursors through the SAM channel, signal-induced opening of the lateral gate of Sam50 and release of the folded β-barrel protein into the outer membrane.

    PubMed  PubMed Central  Google Scholar 

  111. Kutik, S. et al. Dissecting membrane insertion of mitochondrial β-barrel proteins. Cell132, 1011–1024 (2008).

    CAS  PubMed  Google Scholar 

  112. Krüger, V. et al. Identification of new channels by systematic analysis of the mitochondrial outer membrane. J. Cell Biol.216, 3485–3495 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Dimmer, K. S. et al. A crucial role for Mim2 in the biogenesis of mitochondrial outer membrane proteins. J. Cell Sci.125, 3464–3473 (2012).

    CAS  PubMed  Google Scholar 

  114. Papic, D., Krumpe, K., Dukanovic, J., Dimmer, K. S. & Rapaport, D. Multispan mitochondrial outer membrane protein Ugo1 follows a unique Mim1-dependent import pathway. J. Cell Biol.194, 397–405 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hulett, J. M. et al. The transmembrane segment of Tom20 is recognized by Mim1 for docking to the mitochondrial TOM complex. J. Mol. Biol.376, 694–704 (2008).

    CAS  PubMed  Google Scholar 

  116. Popov-Čeleketić, J., Waizenegger, T. & Rapaport, D. Mim1 functions in an oligomeric form to facilitate the integration of Tom20 into the mitochondrial outer membrane. J. Mol. Biol.376, 671–680 (2008).

    PubMed  Google Scholar 

  117. Becker, T. et al. The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. J. Cell Biol.194, 387–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Dukanovic, J. & Rapaport, D. Multiple pathways in the integration of proteins into the mitochondrial outer membrane. Biochim. Biophys. Acta1808, 971–980 (2011).

    CAS  PubMed  Google Scholar 

  119. Keskin, A., Akdoğan, E. & Dunn, C. D. Evidence for amino acid snorkeling from a high-resolution, in vivo analysis of Fis1 tail-anchor insertion at the mitochondrial outer membrane. Genetics205, 691–705 (2017).

    CAS  PubMed  Google Scholar 

  120. Vögtle, F. N. et al. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1. J. Cell Biol.210, 951–960 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Sauerwald, J. et al. Genome-wide screens in Saccharomyces cerevisiae highlight a role for cardiolipin in biogenesis of mitochondrial outer membrane multispan proteins. Mol. Cell. Biol.35, 3200–3211 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Albrecht, R. et al. The Tim21 binding domain connects the preprotein translocases of both mitochondrial membranes. EMBO Rep.7, 1233–1238 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Chacinska, A. et al. Distinct forms of mitochondrial TOM-TIM supercomplexes define signal-dependent states of preprotein sorting. Mol. Cell. Biol.30, 307–318 (2010).

    CAS  PubMed  Google Scholar 

  124. Gold, V. A. M. et al. Visualizing active membrane protein complexes by electron cryotomography. Nat. Commun.5, 4129 (2014).

    CAS  PubMed  Google Scholar 

  125. Qiu, J. et al. Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell154, 596–608 (2013). This study identifies a TOM–SAM supercomplex that facilitates the efficient transfer of β-barrel precursors from the TOM import channel to the SAM membrane insertion sites of the mitochondrial outer membrane.

    CAS  PubMed  Google Scholar 

  126. Waegemann, K., Popov-Čeleketić, D., Neupert, W., Azem, A. & Mokranjac, D. Cooperation of TOM and TIM23 complexes during translocation of proteins into mitochondria. J. Mol. Biol.427, 1075–1084 (2015).

    CAS  PubMed  Google Scholar 

  127. Wenz, L.-S. et al. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis. J. Cell Biol.210, 1047–1054 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Callegari, S. et al. TIM29 is a subunit of the human carrier translocase required for protein transport. FEBS Lett.590, 4147–4158 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kang, Y. et al. Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability. eLife5, e17463 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. Gornicka, A. et al. A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria. Mol. Biol. Cell25, 3999–4009 (2014).

    PubMed  PubMed Central  Google Scholar 

  131. Wiedemann, N. et al. Biogenesis of yeast mitochondrial cytochrome c: a unique relationship to the TOM machinery. J. Mol. Biol.327, 465–474 (2003).

    CAS  PubMed  Google Scholar 

  132. Sinha, D., Srivastava, S., Krishna, L. & D’Silva, P. Unraveling the intricate organization of mammalian mitochondrial presequence translocases: existence of multiple translocases for maintenance of mitochondrial function. Mol. Cell. Biol.34, 1757–1775 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Rainbolt, T. K., Atanassova, N., Genereux, J. C. & Wiseman, R. L. Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab.18, 908–919 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Opalińska, M., Parys, K., Murcha, M. W. & Jańska, H. The plant i-AAA protease controls the turnover of an essential mitochondrial protein import component. J. Cell Sci.131, jcs200733 (2018).

    PubMed  Google Scholar 

  135. Wenz, L.-S. et al. The presequence pathway is involved in protein sorting to the mitochondrial outer membrane. EMBO Rep.15, 678–685 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Song, J., Tamura, Y., Yoshihisa, T. & Endo, T. A novel import route for an N-anchor mitochondrial outer membrane protein aided by the TIM23 complex. EMBO Rep.15, 670–677 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee, C. M., Sedman, J., Neupert, W. & Stuart, R. A. The DNA helicase, Hmi1p, is transported into mitochondria by a C-terminal cleavable targeting signal. J. Biol. Chem.274, 20937–20942 (1999).

    CAS  PubMed  Google Scholar 

  138. Ieva, R. et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun.4, 2853 (2013).

    PubMed  Google Scholar 

  139. Sinzel, M. et al. Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMP-dependent biogenesis pathway. EMBO Rep.17, 965–981 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Acin-Perez, R., Fernández-Silva, P., Peleato, M. L., Pérez-Martos, A. & Enríquez, J. A. Respiratory active mitochondrial supercomplexes. Mol. Cell32, 529–539 (2008).

    CAS  PubMed  Google Scholar 

  141. Melber, A. & Winge, D. R. Inner secrets of the respirasome. Cell167, 1450–1452 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wu, M., Gu, J., Guo, R., Huang, Y. & Yang, M. Structure of mammalian respiratory supercomplex I1III2IV1. Cell167, 1598–1609 (2016). This study provides a cryoelectron microscopy structure of the 1.7 MDa respiratory supercomplex at near-atomic resolution, revealing the arrangement of complexes I, III and IV and the position of cofactors and phospholipids.

    CAS  PubMed  Google Scholar 

  143. Milenkovic, D., Blaza, J. N., Larsson, N.-G. & Hirst, J. The enigma of the respiratory chain supercomplex. Cell Metab.25, 765–776 (2017).

    CAS  PubMed  Google Scholar 

  144. Schweppe, D. K. et al. Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry. Proc. Natl Acad. Sci. USA114, 1732–1737 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen, Y.-C. et al. Identification of a protein mediating respiratory supercomplex stability. Cell Metab.15, 348–360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Strogolova, V., Furness, A., Robb-McGrath, M., Garlich, J. & Stuart, R. A. Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex. Mol. Cell. Biol.32, 1363–1373 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Vukotic, M. et al. Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex. Cell Metab.15, 336–347 (2012).

    CAS  PubMed  Google Scholar 

  148. Singhal, R. K. et al. Coi1 is a novel assembly factor of the yeast complex III-complex IV supercomplex. Mol. Biol. Cell28, 2609–2622 (2017).

    CAS  PubMed Central  Google Scholar 

  149. Dannenmaier, S. et al. Complete native stable isotope labeling by amino acids of Saccharomyces cerevisiae for global proteomic analysis. Anal. Chem.90, 10501–10509 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. van der Laan, M. et al. A role for Tim21 in membrane-potential-dependent preprotein sorting in mitochondria. Curr. Biol.16, 2271–2276 (2006).

    PubMed  Google Scholar 

  151. Wiedemann, N., van der Laan, M., Hutu, D. P., Rehling, P. & Pfanner, N. Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain. J. Cell Biol.179, 1115–1122 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mehnert, C. S. et al. The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. J. Biol. Chem.289, 27352–27362 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Dennerlein, S. et al. MITRAC7 acts as a COX1-specific chaperone and reveals a checkpoint during cytochrome c oxidase assembly. Cell Rep.12, 1644–1655 (2015).

    CAS  PubMed  Google Scholar 

  154. Mick, D. U. et al. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell151, 1528–1541 (2012).

    CAS  PubMed  Google Scholar 

  155. Richter-Dennerlein, R. et al. Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell167, 471–483 (2016). This paper identifies a mechanism by which (MITRAC) assembly factors adjust the efficiency of mitochondrial synthesis of membrane-integrated respiratory chain subunits to the import of nuclear-encoded partner proteins, which is termed mitochondrial translational plasticity.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Stoldt, S. et al. Spatial orchestration of mitochondrial translation and OXPHOS complex assembly. Nat. Cell Biol.20, 528–534 (2018).

    CAS  PubMed  Google Scholar 

  157. Topf, U. et al. Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species. Nat. Commun.9, 324 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Floyd, B. J. et al. Mitochondrial protein interaction mapping identifies regulators of respiratory chain function. Mol. Cell63, 621–632 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Stefely, J. A. et al. Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling. Nat. Biotechnol.34, 1191–1197 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Böttinger, L. et al. Respiratory chain supercomplexes associate with the cysteine desulfurase complex of the iron-sulfur cluster assembly machinery. Mol. Biol. Cell29, 776–785 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Gerdes, F., Tatsuta, T. & Langer, T. Mitochondrial AAA proteases—towards a molecular understanding of membrane-bound proteolytic machines. Biochim. Biophys. Acta1823, 49–55 (2012).

    Google Scholar 

  162. Puchades, C. et al. Structure of the mitochondrial inner membrane AAA+protease YME1 gives insight into substrate processing. Science358, eaao0464 (2017).

    PubMed  PubMed Central  Google Scholar 

  163. Wu, X., Li, L. & Jiang, H. Mitochondrial inner-membrane protease Yme1 degrades outer-membrane proteins Tom22 and Om45. J. Cell Biol.217, 139–149 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. van der Laan, M., Bohnert, M., Wiedemann, N. & Pfanner, N. Role of MINOS in mitochondrial membrane architecture and biogenesis. Trends Cell Biol.22, 185–192 (2012).

    PubMed  Google Scholar 

  165. Bohnert, M. et al. Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane. Mol. Biol. Cell23, 3948–3956 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Zerbes, R. M. et al. Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains. J. Mol. Biol.422, 183–191 (2012).

    CAS  PubMed  Google Scholar 

  167. Körner, C. et al. The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria. Mol. Biol. Cell23, 2143–2155 (2012).

    PubMed  PubMed Central  Google Scholar 

  168. Xie, J., Marusich, M. F., Souda, P., Whitelegge, J. & Capaldi, R. A. The mitochondrial inner membrane protein Mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJC11. FEBS Lett.581, 3545–3549 (2007).

    CAS  PubMed  Google Scholar 

  169. Rabl, R. et al. Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J. Cell Biol.185, 1047–1063 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Jans, D. C. et al. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria. Proc. Natl Acad. Sci. USA110, 8936–8941 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Barbot, M. et al. Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions. Cell Metab.21, 756–763 (2015).

    CAS  PubMed  Google Scholar 

  172. Bohnert, M. et al. Central role of Mic10 in the mitochondrial contact site and cristae organizing system. Cell Metab.21, 747–755 (2015).

    CAS  PubMed  Google Scholar 

  173. Rampelt, H. et al. Mic10, a core subunit of the mitochondrial contact site and cristae organizing system, interacts with the dimeric F1F0-ATP synthase. J. Mol. Biol.429, 1162–1170 (2017).

    CAS  PubMed  Google Scholar 

  174. Eydt, K., Davies, K. M., Behrendt, C., Wittig, I. & Reichert, A. S. Cristae architecture is determined by an interplay of the MICOS complex and the F1F0 ATP synthase via Mic27 and Mic10. Microb. Cell4, 259–272 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Friedman, J. R., Mourier, A., Yamada, J., McCaffery, J. M. & Nunnari, J. MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. Elife4, e07739 (2015).

    PubMed Central  Google Scholar 

  176. Rampelt, H. et al. Assembly of the mitochondrial cristae organizer Mic10 is regulated by Mic26-Mic27 antagonism and cardiolipin. J. Mol. Biol.430, 1883–1890 (2018).

    CAS  PubMed  Google Scholar 

  177. Barrera, M., Koob, S., Dikov, D., Vogel, F. & Reichert, A. S. OPA1 functionally interacts with MIC60 but is dispensable for crista junction formation. FEBS Lett.590, 3309–3322 (2016).

    CAS  PubMed  Google Scholar 

  178. Glytsou, C. et al. Optic atrophy 1 is epistatic to the core MICOS component MIC60 in mitochondrial cristae shape control. Cell Rep.17, 3024–3034 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Itoh, K., Tamura, Y., Iijima, M. & Sesaki, H. Effects of Fcj1-Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology. Mol. Biol. Cell24, 1842–1851 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Li, H. et al. Mic60/Mitofilin determines MICOS assembly essential for mitochondrial dynamics and mtDNA nucleoid organization. Cell Death Differ.23, 380–392 (2016).

    CAS  PubMed  Google Scholar 

  181. Kornmann, B. et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science325, 477–481 (2009). This paper identifies the ERMES. ERMES-mediated contact sites between ER and mitochondria are involved in lipid transfer and maintenance of mitochondrial morphology.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Meisinger, C. et al. The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell7, 61–71 (2004).

    CAS  PubMed  Google Scholar 

  183. Yamano, K., Tanaka-Yamano, S. & Endo, T. Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. EMBO Rep.11, 187–193 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Flinner, N. et al. Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochim. Biophys. Acta1833, 3314–3325 (2013).

    CAS  PubMed  Google Scholar 

  185. Ellenrieder, L. et al. Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nat. Commun.7, 13021 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Meisinger, C. et al. Mitochondrial protein sorting: differentiation of beta-barrel assembly by Tom7-mediated segregation of Mdm10. J. Biol. Chem.281, 22819–22826 (2006).

    CAS  PubMed  Google Scholar 

  187. Stroud, D. A. et al. Composition and topology of the endoplasmic reticulum-mitochondria encounter structure. J. Mol. Biol.413, 743–750 (2011).

    CAS  PubMed  Google Scholar 

  188. Yamano, K., Tanaka-Yamano, S. & Endo, T. Tom7 regulates Mdm10-mediated assembly of the mitochondrial import channel protein Tom40. J. Biol. Chem.285, 41222–41231 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Müller, C. S. et al. Cryo-slicing blue native-mass spectrometry (csBN-MS), a novel technology for high resolution complexome profiling. Mol. Cell. Proteom.15, 669–681 (2016).

    Google Scholar 

  190. Elbaz-Alon, Y. et al. Lam6 regulates the extent of contacts between organelles. Cell Rep.12, 7–14 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Murley, A. et al. Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J. Cell Biol.209, 539–548 (2015). References 190 and 191 report that the lipid transfer protein Lam6 is located at and regulates contact sites between ER, mitochondria and further organelles. Lam6 interacts with the receptor Tom70 in ER–mitochondria contact sites.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Filadi, R. et al. TOM70 sustains cell bioenergetics by promoting IP3R3-mediated ER to mitochondria Ca2+ transfer. Curr. Biol.28, 369–382 (2018). This paper shows that the receptor TOM70 of the mitochondrial outer membrane interacts with inositol trisphosphate receptors of the ER, supporting the formation of contact sites for Ca2+transfer to mitochondria.

    CAS  PubMed  Google Scholar 

  193. González Montoro, A. et al. Vps39 interacts with Tom40 to establish one of two functionally distinct vacuole-mitochondria contact sites. Dev. Cell45, 621–636 (2018).

    PubMed  Google Scholar 

  194. McLelland, G.-L., Lee, S. A., McBride, H. M. & Fon, E. A. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J. Cell Biol.214, 275–291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Soubannier, V., Rippstein, P., Kaufman, B. A., Shoubridge, E. A. & McBride, H. M. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLOS ONE7, e52830 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol.22, 135–141 (2012). References 195 and 196 report that stress conditions can induce the formation of mitochondria-derived vesicles that transport selected cargo such as oxidized proteins to lysosomes as part of a mitochondrial quality control system.

    CAS  PubMed  Google Scholar 

  197. Hughes, A. L., Hughes, C. E., Henderson, K. A., Yazvenko, N. & Gottschling, D. E. Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. Elife5, e13943 (2016).

    PubMed  PubMed Central  Google Scholar 

  198. Chen, Y.-C. et al. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J.33, 1548–1564 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Okreglak, V. & Walter, P. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc. Natl Acad. Sci. USA111, 8019–8024 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Weidberg, H. & Amon, A. MitoCPR — a surveillance pathway that protects mitochondria in response to protein import stress. Science360, eaan4146 (2018). References 198, 199 and 200 report that the AAA-type ATPase Msp1 extracts mistargeted or non-imported proteins from the mitochondrial outer membrane for degradation by the proteasome in the cytosol.

    PubMed  PubMed Central  Google Scholar 

  201. Sekine, S. & Youle, R. J. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol.16, 2 (2018).

    PubMed  PubMed Central  Google Scholar 

  202. Okamoto, K. Quality control: organellophagy: eliminating cellular building blocks via selective autophagy. J. Cell Biol.205, 435–445 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Suomalainen, A. & Battersby, B. J. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat. Rev. Mol. Cell. Biol.19, 77–92 (2018).

    CAS  PubMed  Google Scholar 

  204. Frazier, A. E., Thorburn, D. R. & Compton, A. G. Mitochondrial energy generation disorders: genes, mechanisms and clues to pathology. J. Biol. Chem.https://doi.org/10.1074/jbc.R117.809194 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Melber, A. & Haynes, C. M. UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res.28, 281–295 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Nargund, A. M., Pellegrino, M. W., Fiorese, C. J., Baker, B. M. & Haynes, C. M. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science337, 587–590 (2012). Impaired mitochondrial protein import activates an unfolded protein response. The transcription factor ATFS-1 is normally imported into mitochondria and degraded. Disturbance of mitochondrial import leads to cytosolic accumulation of ATFS-1 and translocation into the nucleus, where it induces expression of chaperones and further rescue factors.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Fiorese, C. J. et al. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr. Biol.26, 2037–2043 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Wrobel, L. et al. Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature524, 485–488 (2015).

    CAS  PubMed  Google Scholar 

  209. Wang, X. & Chen, X. J. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature524, 481–484 (2015). References 208 and 209 identify a stress response that is induced by accumulation of mitochondrial precursor proteins in the cytosol. The response leads to a decrease in cytosolic protein synthesis and increased proteasomal activity to reduce the accumulation of toxic mistargeted proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Bragoszewski, P. et al. Retro-translocation of mitochondrial intermembrane space proteins. Proc. Natl Acad. Sci. USA112, 7713–7718 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Bragoszewski, P., Gornicka, A., Sztolsztener, M. E. & Chacinska, A. The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins. Mol. Cell. Biol.33, 2136–2148 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Kowalski, L. et al. Determinants of the cytosolic turnover of mitochondrial intermembrane space proteins. BMC Biol.16, 66 (2018).

    PubMed  PubMed Central  Google Scholar 

  213. Akabane, S. et al. PKA regulates PINK1 stability and Parkin recruitment to damaged mitochondria through phosphorylation of MIC60. Mol. Cell62, 371–384 (2016).

    CAS  PubMed  Google Scholar 

  214. Tsai, P.-I. et al. PINK1 phosphorylates MIC60/mitofilin to control structural plasticity of mitochondrial crista junctions. Mol. Cell69, 744–756 (2018).

    CAS  PubMed  Google Scholar 

  215. Ruan, L. et al. Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature543, 443–446 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Anand, R. et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol.204, 919–929 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Ehses, S. et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol.187, 1023–1036 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Song, Z., Chen, H., Fiket, M., Alexander, C. & Chan, D. C. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol.178, 749–755 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Mossmann, D. et al. Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metab.20, 662–669 (2014).

    CAS  PubMed  Google Scholar 

  220. Schapira, A. H. Mitochondrial diseases. Lancet379, 1825–1834 (2012).

    CAS  PubMed  Google Scholar 

  221. Okatsu, K., Kimura, M., Oka, T., Tanaka, K. & Matsuda, N. Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment. J. Cell Sci.128, 964–978 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Bertolin, G. et al. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Autophagy9, 1801–1817 (2013).

    CAS  PubMed  Google Scholar 

  223. Lazarou, M., Jin, S. M., Kane, L. A. & Youle, R. J. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell22, 320–333 (2012). This study shows that upon dissipation of the mitochondrial membrane potential, the kinase PINK1 accumulates at the mitochondrial outer membrane in a complex with the TOM.

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Liu, F., Rijkers, D. T. S., Post, H. & Heck, A. J. R. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat. Methods12, 1179–1184 (2015).

    CAS  PubMed  Google Scholar 

  225. Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature545, 505–509 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Wai, T. et al. The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep.17, 1844–1856 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Segev, N. & Gerst, J. E. Specialized ribosomes and specific ribosomal protein paralogs control translation of mitochondrial proteins. J. Cell Biol.217, 117–126 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Hoseini, H. et al. The cytosolic cochaperone Sti1 is relevant for mitochondrial biogenesis and morphology. FEBS J.283, 3338–3352 (2016).

    CAS  PubMed  Google Scholar 

  229. Jores, T. et al. Cytosolic Hsp70 and Hsp40 chaperones enable the biogenesis of mitochondrial β-barrel proteins. J. Cell Biol.217, 3091–3108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Opalinski, L. et al. Recruitment of cytosolic J-proteins by TOM receptors promotes mitochondrial protein biogenesis. Cell Rep.25, 2036–2043 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Hansen, K. G. et al. An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast. Science361, 1118–1122 (2018).

    CAS  PubMed  Google Scholar 

  232. Ben-Menachem, R. & Pines, O. Detection of dual targeting and dual function of mitochondrial proteins in yeast. Methods Mol. Biol.1567, 179–195 (2017).

    CAS  PubMed  Google Scholar 

  233. Harsman, A. & Schneider, A. Mitochondrial protein import in trypanosomes: expect the unexpected. Traffic18, 96–109 (2017).

    CAS  PubMed  Google Scholar 

  234. Dienhart, M. K. & Stuart, R. A. The yeast Aac2 protein exists in physical association with the cytochrome bc1-COX supercomplex and the TIM23 machinery. Mol. Biol. Cell19, 3934–3943 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Takakubo, F. et al. An amino acid substitution in the pyruvate dehydrogenase E1 alpha gene, affecting mitochondrial import of the precursor protein. Am. J. Hum. Genet.57, 772–780 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Messmer, M. et al. A human pathology-related mutation prevents import of an aminoacyl-tRNA synthetase into mitochondria. Biochem. J.433, 441–446 (2011).

    CAS  PubMed  Google Scholar 

  237. Purdue, P. E., Allsop, J., Isaya, G., Rosenberg, L. E. & Danpure, C. J. Mistargeting of peroxisomal L-alanine:glyoxylate aminotransferase to mitochondria in primary hyperoxaluria patients depends upon activation of a cryptic mitochondrial targeting sequence by a point mutation. Proc. Natl Acad. Sci. USA88, 10900–10904 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Danpure, C. J., Cooper, P. J., Wise, P. J. & Jennings, P. R. An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria. J. Cell Biol.108, 1345–1352 (1989).

    CAS  PubMed  Google Scholar 

  239. Klootwijk, E. D. et al. Mistargeting of peroxisomal EHHADH and inherited renal Fanconi’s syndrome. N. Engl. J. Med.370, 129–138 (2014).

    CAS  PubMed  Google Scholar 

  240. Di Fonzo, A. et al. The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. Am. J. Hum. Gen.84, 594–604 (2009).

    Google Scholar 

  241. Ceh-Pavia, E., Ang, S. K., Spiller, M. P. & Lu, H. The disease-associated mutation of the mitochondrial thiol oxidase Erv1 impairs cofactor binding during its catalytic reaction. Biochem. J.464, 449–459 (2014).

    CAS  PubMed  Google Scholar 

  242. Shahrour, M. A. et al. Mitochondrial epileptic encephalopathy, 3-methylglutaconic aciduria and variable complex V deficiency associated with TIMM50 mutations. Clin. Genet.91, 690–696 (2017).

    CAS  PubMed  Google Scholar 

  243. Reyes, A. et al. Mutations in TIMM50 compromise cell survival in OxPhos-dependent metabolic conditions. EMBO Mol. Med.10, e8698 (2018).

    PubMed  PubMed Central  Google Scholar 

  244. Ojala, T. et al. New mutation of mitochondrial DNAJC19 causing dilated and noncompaction cardiomyopathy, anemia, ataxia, and male genital anomalies. Pediatr. Res.72, 432–437 (2012).

    CAS  PubMed  Google Scholar 

  245. Davey, K. M. et al. Mutation of DNAJC19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. J. Med. Gen.43, 385–393 (2006).

    CAS  Google Scholar 

  246. Richter-Dennerlein, R. et al. DNAJC19, a mitochondrial cochaperone associated with cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. Cell Metab.20, 158–171 (2014).

    CAS  PubMed  Google Scholar 

  247. Schusdziarra, C., Blamowska, M., Azem, A. & Hell, K. Methylation-controlled J-protein MCJ acts in the import of proteins into human mitochondria. Hum. Mol. Genet.22, 1348–1357 (2013).

    CAS  PubMed  Google Scholar 

  248. Mehawej, C. et al. The impairment of MAGMAS function in human is responsible for a severe skeletal dysplasia. PLOS Genet.10, e1004311 (2014).

    PubMed  PubMed Central  Google Scholar 

  249. Jobling, R. K. et al. PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain138, 1505–1517 (2015).

    PubMed  PubMed Central  Google Scholar 

  250. Vögtle, F. N. et al. Mutations in PMPCB encoding the catalytic subunit of the mitochondrial presequence protease cause neurodegeneration in early childhood. Am. J. Hum. Gen.102, 557–573 (2018).

    Google Scholar 

  251. Eldomery, M. K. et al. MIPEP recessive variants cause a syndrome of left ventricular non-compaction, hypotonia, and infantile death. Genome Med.8, 106 (2016).

    PubMed  PubMed Central  Google Scholar 

  252. Otto, E. A. et al. Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy. J. Med. Gen.48, 105–116 (2011).

    CAS  Google Scholar 

  253. O’Toole, J. F. et al. Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. J. Clin. Invest.120, 791–802 (2010).

    PubMed  PubMed Central  Google Scholar 

  254. Magen, D. et al. Mitochondrial Hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am. J. Hum. Gen.83, 30–42 (2008).

    CAS  Google Scholar 

  255. Hansen, J. J. et al. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet.70, 1328–1332 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Bie, A. S. et al. Effects of a mutation in the HSPE1 gene encoding the mitochondrial co-chaperonin HSP10 and its potential association with a neurological and developmental disorder. Front. Mol. Biosci.3, e874 (2016).

    Google Scholar 

  257. Koehler, C. M. et al. Human deafness dystonia syndrome is a mitochondrial disease. Proc. Natl Acad. Sci. USA96, 2141–2146 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Roesch, K., Curran, S. P., Tranebjaerg, L. & Koehler, C. M. Human deafness dystonia syndrome is caused by a defect in assembly of the DDP1/TIMM8a-TIMM13 complex. Hum. Mol. Genet.11, 477–486 (2002).

    CAS  PubMed  Google Scholar 

  259. Mayr, J. A. et al. Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. Am. J. Hum. Gen.90, 314–320 (2012).

    CAS  Google Scholar 

  260. Kang, Y. et al. Sengers syndrome-associated mitochondrial acylglycerol kinase is a subunit of the human TIM22 protein import complex. Mol. Cell67, 457–470 (2017).

    CAS  PubMed  Google Scholar 

  261. Vukotic, M. et al. Acylglycerol kinase mutated in sengers syndrome is a subunit of the TIM22 protein translocase in mitochondria. Mol. Cell67, 471–483 (2017).

    CAS  PubMed  Google Scholar 

  262. Kukat, C. et al. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc. Natl Acad. Sci. USA112, 11288–11293 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by European Research Council (ERC) Consolidator Grant No. 648235, the Excellence Initiative and Strategy of the German federal and state governments (EXC 294 BIOSS; GSC-4 Spemann Graduate School; EXC 2189 CIBSS), the Deutsche Forschungsgemeinschaft (PF 202/8-1 and 202/9-1; WA 1598/5-1) and the Sonderforschungsbereiche 746 and 1140.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Nikolaus Pfanner or Nils Wiedemann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Oxidative phosphorylation

Oxidation of metabolites liberates energy that is used to synthesize ATP; in mitochondria, this is performed by the respiratory chain, which generates a proton gradient across the inner membrane to drive ATP production by the F1F0-ATP synthase.

Insertase

Membrane-bound machinery that facilitates the insertion of precursor proteins into the lipid phase of a membrane, such as the oxidase assembly (OXA) insertase of the mitochondrial inner membrane.

Mitochondrial contact site and cristae organizing system

(MICOS). A large protein complex of the inner membrane with a dual role: maintenance of the cristae architecture of the inner membrane and the formation of contact sites between the inner and the outer membranes.

TOM complex

The translocase of the outer membrane (TOM) is a protein complex that forms the major mitochondrial entry site for precursor proteins synthesized in the cytosol.

Heat shock protein 70

(Hsp70). A large family of ATP-dependent molecular chaperones of ~70 kDa that bind loosely folded proteins and prevent their misfolding or aggregation. The major mitochondrial heat shock protein 70 (mtHsp70) has a dual role in driving ATP-dependent protein import into the matrix and assisting in folding of proteins.

N-end rule pathway

A pathway in which the amino-terminal amino acid residue links proteins to regulated proteolysis. A destabilizing residue promotes rapid degradation, whereas a stabilizing residue leads to a longer half-life of a protein.

SAM complex

The sorting and assembly machinery (SAM) inserts β-barrel proteins into the mitochondrial outer membrane; it is also known as topogenesis of outer membrane β-barrel proteins (TOB).

Mitochondrial unfolded protein response

(UPRmt). A stress response induced by mitochondrial dysfunction that upregulates the transcription of nuclear genes encoding mitochondrial chaperones, proteases and further components that support mitochondrial recovery and survival.

Respirasomes

Large supercomplexes in the mitochondrial inner membrane consisting of complexes I, III and IV of the respiratory chain.

Inner boundary membrane

The mitochondrial inner membrane consists of two domains: the folded cristae, which form invaginations, and the inner boundary membrane, which is located adjacent to the mitochondrial outer membrane.

Crista junctions

Narrow apertures at the beginning of cristae of the mitochondrial inner membrane that link cristae to the inner boundary membrane.

Synthetic growth defects

Mutations or deletions in different genes that result in a stronger growth defect if combined in the same cell.

Nucleoid

A mitochondrial DNA–protein assembly located in the matrix containing the packaging factor mitochondrial transcription factor A (TFAM).

ER–mitochondria encounter structure

(ERMES). A multisubunit protein complex that connects the endoplasmic reticulum (ER) and the mitochondrial outer membrane. ERMES is likely involved in lipid transfer between the organelles and is required for maintaining the morphology of mitochondria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfanner, N., Warscheid, B. & Wiedemann, N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 20, 267–284 (2019). https://doi.org/10.1038/s41580-018-0092-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0092-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research