Review Article | Published:

New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer

Nature Reviews Molecular Cell Biologyvolume 20pages6984 (2019) | Download Citation


Epithelial–mesenchymal transition (EMT) is a cellular programme that is known to be crucial for embryogenesis, wound healing and malignant progression. During EMT, cell–cell and cell–extracellular matrix interactions are remodelled, which leads to the detachment of epithelial cells from each other and the underlying basement membrane, and a new transcriptional programme is activated to promote the mesenchymal fate. In the context of neoplasias, EMT confers on cancer cells increased tumour-initiating and metastatic potential and a greater resistance to elimination by several therapeutic regimens. In this Review, we discuss recent findings on the mechanisms and roles of EMT in normal and neoplastic tissues, and the cell-intrinsic signals that sustain expression of this programme. We also highlight how EMT gives rise to a variety of intermediate cell states between the epithelial and the mesenchymal state, which could function as cancer stem cells. In addition, we describe the contributions of the tumour microenvironment in inducing EMT and the effects of EMT on the immunobiology of carcinomas.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Nieto, M. A. Epithelial–mesenchymal transitions in development and disease: old views and new perspectives. Int. J. Dev. Biol. 53, 1541–1547 (2009).

  2. 2.

    Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

  3. 3.

    Kalluri, R. & Weinberg, R. A. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

  4. 4.

    Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial–mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

  5. 5.

    Ye, X. et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525, 256–260 (2015).

  6. 6.

    Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

  7. 7.

    Krebs, A. M. et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 19, 518–529 (2017).

  8. 8.

    Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

  9. 9.

    Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010).

  10. 10.

    Morel, A. P. et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLOS ONE 3, e2888 (2008). This study, together with reference 8, demonstrates that carcinoma cells that have undergone EMT exhibit properties of stem cells.

  11. 11.

    Tam, W. L. & Weinberg, R. A. The epigenetics of epithelial–mesenchymal plasticity in cancer. Nat. Med. 19, 1438–1449 (2013).

  12. 12.

    Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

  13. 13.

    Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

  14. 14.

    Kalluri, R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest. 119, 1417–1419 (2009).

  15. 15.

    Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

  16. 16.

    Kojima, Y. et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc. Natl Acad. Sci. USA 107, 20009–20014 (2010).

  17. 17.

    Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

  18. 18.

    Terry, S. et al. New insights into the role of EMT in tumor immune escape. Mol. Oncol. 11, 824–846 (2017).

  19. 19.

    Dongre, A. et al. Epithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomas. Cancer Res. 77, 3982–3989 (2017).

  20. 20.

    Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

  21. 21.

    Bierie, B. et al. Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc. Natl Acad. Sci. USA 114, E2337–E2346 (2017).

  22. 22.

    Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

  23. 23.

    Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2, 84–89 (2000).

  24. 24.

    Cano, A. et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2, 76–83 (2000).

  25. 25.

    Herranz, N. et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell. Biol. 28, 4772–4781 (2008).

  26. 26.

    Sanchez-Tillo, E. et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 29, 3490–3500 (2010).

  27. 27.

    Yang, M. H. et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat. Cell Biol. 12, 982–992 (2010).

  28. 28.

    Aigner, K. et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26, 6979–6988 (2007).

  29. 29.

    Spaderna, S. et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 68, 537–544 (2008).

  30. 30.

    Miyoshi, A. et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br. J. Cancer 90, 1265–1273 (2004).

  31. 31.

    Miyoshi, A. et al. Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br. J. Cancer 92, 252–258 (2005).

  32. 32.

    Greenburg, G. & Hay, E. D. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J. Cell Biol. 95, 333–339 (1982).

  33. 33.

    Nieto, M. A., Sargent, M. G., Wilkinson, D. G. & Cooke, J. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264, 835–839 (1994).

  34. 34.

    Lim, J. & Thiery, J. P. Epithelial–mesenchymal transitions: insights from development. Development 139, 3471–3486 (2012).

  35. 35.

    Oda, H., Tsukita, S. & Takeichi, M. Dynamic behavior of the cadherin-based cell-cell adhesion system during Drosophila gastrulation. Dev. Biol. 203, 435–450 (1998).

  36. 36.

    Schafer, G., Narasimha, M., Vogelsang, E. & Leptin, M. Cadherin switching during the formation and differentiation of the Drosophila mesoderm – implications for epithelial-to-mesenchymal transitions. J. Cell Sci. 127, 1511–1522 (2014).

  37. 37.

    Simoes-Costa, M. & Bronner, M. E. Establishing neural crest identity: a gene regulatory recipe. Development 142, 242–257 (2015).

  38. 38.

    Shoval, I., Ludwig, A. & Kalcheim, C. Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development 134, 491–501 (2007).

  39. 39.

    Clay, M. R. & Halloran, M. C. Cadherin 6 promotes neural crest cell detachment via F-actin regulation and influences active Rho distribution during epithelial-to-mesenchymal transition. Development 141, 2506–2515 (2014).

  40. 40.

    Barrallo-Gimeno, A. & Nieto, M. A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132, 3151–3161 (2005).

  41. 41.

    Aybar, M. J., Nieto, M. A. & Mayor, R. Snail precedes slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development 130, 483–494 (2003).

  42. 42.

    Martinez-Alvarez, C. et al. Snail family members and cell survival in physiological and pathological cleft palates. Dev. Biol. 265, 207–218 (2004).

  43. 43.

    Stone, R. C. et al. Epithelial–mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 365, 495–506 (2016).

  44. 44.

    Savagner, P. & Arnoux, V. Epithelio-mesenchymal transition and cutaneous wound healing [French]. Bull. Acad. Natl Med. 193, 1981–1991; discussion 1992 (2009).

  45. 45.

    Savagner, P. et al. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J. Cell. Physiol. 202, 858–866 (2005).

  46. 46.

    Baumgart, E. et al. Identification and prognostic significance of an epithelial–mesenchymal transition expression profile in human bladder tumors. Clin. Cancer Res. 13, 1685–1694 (2007).

  47. 47.

    Gravdal, K., Halvorsen, O. J., Haukaas, S. A. & Akslen, L. A. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin. Cancer Res. 13, 7003–7011 (2007).

  48. 48.

    Kahlert, C. et al. Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro. Clin. Cancer Res. 17, 7654–7663 (2011).

  49. 49.

    Lee, T. K. et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin. Cancer Res. 12, 5369–5376 (2006).

  50. 50.

    Mahmood, M. Q., Ward, C., Muller, H. K., Sohal, S. S. & Walters, E. H. Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): a mutual association with airway disease. Med. Oncol. 34, 45 (2017).

  51. 51.

    Migita, T. et al. Epithelial-mesenchymal transition promotes SOX2 and NANOG expression in bladder cancer. Lab. Invest. 97, 567–576 (2017).

  52. 52.

    Prudkin, L. et al. Epithelial-to-mesenchymal transition in the development and progression of adenocarcinoma and squamous cell carcinoma of the lung. Mod. Pathol. 22, 668–678 (2009).

  53. 53.

    Roth, B. et al. Employing an orthotopic model to study the role of epithelial-mesenchymal transition in bladder cancer metastasis. Oncotarget 8, 34205–34222 (2017).

  54. 54.

    Shioiri, M. et al. Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br. J. Cancer 94, 1816–1822 (2006).

  55. 55.

    Yan, X. et al. N-Cadherin, a novel prognostic biomarker, drives malignant progression of colorectal cancer. Mol. Med. Rep. 12, 2999–3006 (2015).

  56. 56.

    Zhou, Z. J. et al. HNRNPAB induces epithelial-mesenchymal transition and promotes metastasis of hepatocellular carcinoma by transcriptionally activating SNAIL. Cancer Res. 74, 2750–2762 (2014).

  57. 57.

    Zhu, M. et al. Decreased TIP30 promotes Snail-mediated epithelial–mesenchymal transition and tumor-initiating properties in hepatocellular carcinoma. Oncogene 34, 1420–1431 (2015).

  58. 58.

    Blanco, M. J. et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21, 3241–3246 (2002).

  59. 59.

    Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

  60. 60.

    Moody, S. E. et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8, 197–209 (2005).

  61. 61.

    Vogelstein, B. et al. Allelotype of colorectal carcinomas. Science 244, 207–211 (1989).

  62. 62.

    Guo, W. et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015–1028 (2012).

  63. 63.

    Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015).

  64. 64.

    Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).

  65. 65.

    Ye, X. et al. Upholding a role for EMT in breast cancer metastasis. Nature 547, E1–E3 (2017).

  66. 66.

    Aiello, N. M. et al. Upholding a role for EMT in pancreatic cancer metastasis. Nature 547, E7–E8 (2017).

  67. 67.

    Cheung, K. J. et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl Acad. Sci. USA 113, E854–E863 (2016).

  68. 68.

    Tsai, J. H., Donaher, J. L., Murphy, D. A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial–mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22, 725–736 (2012).

  69. 69.

    Ocana, O. H. et al. Metastatic colonization requires the repression of the epithelial–mesenchymal transition inducer Prrx1. Cancer Cell 22, 709–724 (2012).

  70. 70.

    Cheung, K. J. & Ewald, A. J. A collective route to metastasis: seeding by tumor cell clusters. Science 352, 167–169 (2016).

  71. 71.

    Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

  72. 72.

    Iwadate, Y. Epithelial–mesenchymal transition in glioblastoma progression. Oncol. Lett. 11, 1615–1620 (2016).

  73. 73.

    Fidler, I. J., Gersten, D. M. & Hart, I. R. The biology of cancer invasion and metastasis. Adv. Cancer Res. 28, 149–250 (1978).

  74. 74.

    Obenauf, A. C. & Massague, J. Surviving at a distance: organ specific metastasis. Trends Cancer 1, 76–91 (2015).

  75. 75.

    Dressler, G. R. The cellular basis of kidney development. Annu. Rev. Cell Dev. Biol. 22, 509–529 (2006).

  76. 76.

    Li, B., Zheng, Y. W., Sano, Y. & Taniguchi, H. Evidence for mesenchymal–epithelial transition associated with mouse hepatic stem cell differentiation. PLOS ONE 6, e17092 (2011).

  77. 77.

    Pattabiraman, D. R. & Weinberg, R. A. Targeting the epithelial-to-mesenchymal transition: the case for differentiation-based therapy. Cold Spring Harb. Symp. Quant. Biol. 81, 11–19 (2016).

  78. 78.

    Schmidt, J. M. et al. Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. Cell Rep. 10, 131–139 (2015). The studies reported in references 21, 68, 69 and 78 demonstrate that partially mesenchymal cells have stem-like abilities and can readily form metastases.

  79. 79.

    Beerling, E. et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 14, 2281–2288 (2016).

  80. 80.

    Pattabiraman, D. R. et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science 351, aad3680 (2016). This study delineates molecular players that can reverse the EMT, leading to the loss of stem-like features of carcinoma cells.

  81. 81.

    Bierie, B. & Moses, H. L. TGF-β and cancer. Cytokine Growth Factor Rev. 17, 29–40 (2006).

  82. 82.

    Xu, J., Lamouille, S. & Derynck, R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009).

  83. 83.

    Derynck, R., Muthusamy, B. P. & Saeteurn, K. Y. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr. Opin. Cell Biol. 31, 56–66 (2014).

  84. 84.

    Mercado-Pimentel, M. E. & Runyan, R. B. Multiple transforming growth factor-beta isoforms and receptors function during epithelial–mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185, 146–156 (2007).

  85. 85.

    Nawshad, A., LaGamba, D. & Hay, E. D. Transforming growth factor beta (TGFbeta) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch. Oral Biol. 49, 675–689 (2004).

  86. 86.

    Gressner, A. M., Weiskirchen, R., Breitkopf, K. & Dooley, S. Roles of TGF-beta in hepatic fibrosis. Front. Biosci. 7, d793–d807 (2002).

  87. 87.

    Willis, B. C. & Borok, Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L525–L534 (2007).

  88. 88.

    Ramachandran, A. et al. TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. eLife 7, e31756 (2018).

  89. 89.

    Dhasarathy, A., Phadke, D., Mav, D., Shah, R. R. & Wade, P. A. The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLOS ONE 6, e26514 (2011).

  90. 90.

    Gudey, S. K., Sundar, R., Heldin, C. H., Bergh, A. & Landstrom, M. Pro-invasive properties of Snail1 are regulated by sumoylation in response to TGFbeta stimulation in cancer. Oncotarget 8, 97703–97726 (2017).

  91. 91.

    Ye, X. & Weinberg, R. A. The SUMO guards for SNAIL. Oncotarget 8, 97701–97702 (2017).

  92. 92.

    Du, D. et al. Smad3-mediated recruitment of the methyltransferase SETDB1/ESET controls Snail1 expression and epithelial-mesenchymal transition. EMBO Rep. 19, 135–155 (2017).

  93. 93.

    Xu, L. et al. Histone deacetylase 6 inhibition counteracts the epithelial–mesenchymal transition of peritoneal mesothelial cells and prevents peritoneal fibrosis. Oncotarget 8, 88730–88750 (2017).

  94. 94.

    Grelet, S. et al. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat. Cell Biol. 19, 1105–1115 (2017).

  95. 95.

    Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

  96. 96.

    Korpal, M. & Kang, Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 5, 115–119 (2008).

  97. 97.

    Grelet, S., McShane, A., Geslain, R. & Howe, P. H. Pleiotropic roles of non-coding RNAs in TGF-β-mediated epithelial–mesenchymal transition and their functions in tumor progression. Cancers 9, 75 (2017).

  98. 98.

    Richards, E. J. et al. Long non-coding RNAs (LncRNA) regulated by transforming growth factor (TGF) beta: lncRNA-hit-mediated TGFbeta-induced epithelial to mesenchymal transition in mammary epithelia. J. Biol. Chem. 290, 6857–6867 (2015).

  99. 99.

    Schmitz, S. U., Grote, P. & Herrmann, B. G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci. 73, 2491–2509 (2016).

  100. 100.

    Klaus, A. & Birchmeier, W. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 8, 387–398 (2008).

  101. 101.

    Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017).

  102. 102.

    Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell 127, 469–480 (2006).

  103. 103.

    Savagner, P. Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition. Bioessays 23, 912–923 (2001).

  104. 104.

    Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nat. Genet. 22, 361–365 (1999).

  105. 105.

    Garcia-Castro, M. I., Marcelle, C. & Bronner-Fraser, M. Ectodermal Wnt function as a neural crest inducer. Science 297, 848–851 (2002).

  106. 106.

    Arwert, E. N., Hoste, E. & Watt, F. M. Epithelial stem cells, wound healing and cancer. Nat. Rev. Cancer 12, 170–180 (2012).

  107. 107.

    Gonzalez, D. M. & Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal. 7, re8 (2014).

  108. 108.

    Tammela, T. et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545, 355–359 (2017).

  109. 109.

    de Sousa e Melo, F. et al. A distinct role for Lgr5+  stem cells in primary and metastatic colon cancer. Nature 543, 676–680 (2017).

  110. 110.

    Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

  111. 111.

    Balsamo, J., Arregui, C., Leung, T. & Lilien, J. The nonreceptor protein tyrosine phosphatase PTP1B binds to the cytoplasmic domain of N-cadherin and regulates the cadherin-actin linkage. J. Cell Biol. 143, 523–532 (1998).

  112. 112.

    Wu, Y. et al. Expression of Wnt3 activates Wnt/beta-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol. Cancer Res. 10, 1597–1606 (2012).

  113. 113.

    Anastas, J. N. & Moon, R. T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11–26 (2013).

  114. 114.

    Stemmer, V., de Craene, B., Berx, G. & Behrens, J. Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene 27, 5075–5080 (2008). This study demonstrates crosstalk between the WNT and the TGFβ pathways, two different signalling cascades that can activate the EMT.

  115. 115.

    Gauger, K. J., Chenausky, K. L., Murray, M. E. & Schneider, S. S. SFRP1 reduction results in an increased sensitivity to TGF-beta signaling. BMC Cancer 11, 59 (2011).

  116. 116.

    Tang, Y., Liu, Z., Zhao, L., Clemens, T. L. & Cao, X. Smad7 stabilizes beta-catenin binding to E-cadherin complex and promotes cell-cell adhesion. J. Biol. Chem. 283, 23956–23963 (2008).

  117. 117.

    Hoover, L. L. & Kubalak, S. W. Holding their own: the noncanonical roles of Smad proteins. Sci. Signal. 1, pe48 (2008).

  118. 118.

    Scheel, C. et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145, 926–940 (2011).

  119. 119.

    Dissanayake, S. K. et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J. Biol. Chem. 282, 17259–17271 (2007).

  120. 120.

    Liu, J. et al. Downregulation of miR-200a induces EMT phenotypes and CSC-like signatures through targeting the beta-catenin pathway in hepatic oval cells. PLOS ONE 8, e79409 (2013).

  121. 121.

    Su, J. et al. MicroRNA-200a suppresses the Wnt/beta-catenin signaling pathway by interacting with beta-catenin. Int. J. Oncol. 40, 1162–1170 (2012).

  122. 122.

    Ma, F. et al. MiR-23a promotes TGF-beta1-induced EMT and tumor metastasis in breast cancer cells by directly targeting CDH1 and activating Wnt/beta-catenin signaling. Oncotarget 8, 69538–69550 (2017).

  123. 123.

    Zhang, J. Q. et al. MicroRNA-300 promotes apoptosis and inhibits proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/beta-catenin signaling pathway by targeting CUL4B in pancreatic cancer cells. J. Cell. Biochem. 119, 1027–1040 (2018).

  124. 124.

    Osborne, B. A. & Minter, L. M. Notch signalling during peripheral T cell activation and differentiation. Nat. Rev. Immunol. 7, 64–75 (2007).

  125. 125.

    Kopan, R. Notch: a membrane-bound transcription factor. J. Cell Sci. 115, 1095–1097 (2002).

  126. 126.

    Bray, S. J. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 17, 722–735 (2016).

  127. 127.

    Timmerman, L. A. et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99–115 (2004).

  128. 128.

    Bao, B. et al. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 307, 26–36 (2011).

  129. 129.

    Yuan, X. et al. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application. J. Hematol. Oncol. 7, 87 (2014).

  130. 130.

    Tang, Y. & Cheng, Y. S. miR-34a inhibits pancreatic cancer progression through Snail1-mediated epithelial-mesenchymal transition and the Notch signaling pathway. Sci. Rep. 7, 38232 (2017).

  131. 131.

    Natsuizaka, M. et al. Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nat. Commun. 8, 1758 (2017).

  132. 132.

    Zhang, J. et al. NUMB negatively regulates the epithelial-mesenchymal transition of triple-negative breast cancer by antagonizing Notch signaling. Oncotarget 7, 61036–61053 (2016).

  133. 133.

    Liu, L. et al. Notch3 is important for TGF-beta-induced epithelial–mesenchymal transition in non-small cell lung cancer bone metastasis by regulating ZEB-1. Cancer Gene Ther. 21, 364–372 (2014).

  134. 134.

    Xing, F. et al. Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene 30, 4075–4086 (2011).

  135. 135.

    Saad, S., Stanners, S. R., Yong, R., Tang, O. & Pollock, C. A. Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor. Int. J. Biochem. Cell Biol. 42, 1115–1122 (2010).

  136. 136.

    Fukusumi, T. et al. The NOTCH4-HEY1 pathway induces epithelial mesenchymal transition in head and neck squamous cell carcinoma. Clin. Cancer Res. 24, 619–633 (2017).

  137. 137.

    Blokzijl, A. et al. Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J. Cell Biol. 163, 723–728 (2003). This study delineates how the TGFβ pathway impinges on the NOTCH signalling pathway.

  138. 138.

    Zavadil, J., Cermak, L., Soto-Nieves, N. & Bottinger, E. P. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23, 1155–1165 (2004).

  139. 139.

    Morrissey, J. et al. Transforming growth factor-beta induces renal epithelial jagged-1 expression in fibrotic disease. J. Am. Soc. Nephrol. 13, 1499–1508 (2002).

  140. 140.

    Di Domenico, M. & Giordano, A. Signal transduction growth factors: the effective governance of transcription and cellular adhesion in cancer invasion. Oncotarget 8, 36869–36884 (2017).

  141. 141.

    Grotegut, S., von Schweinitz, D., Christofori, G. & Lehembre, F. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 25, 3534–3545 (2006).

  142. 142.

    Tashiro, E., Henmi, S., Odake, H., Ino, S. & Imoto, M. Involvement of the MEK/ERK pathway in EGF-induced E-cadherin down-regulation. Biochem. Biophys. Res. Commun. 477, 801–806 (2016).

  143. 143.

    Tian, Y. C. et al. Epidermal growth factor and transforming growth factor-beta1 enhance HK-2 cell migration through a synergistic increase of matrix metalloproteinase and sustained activation of ERK signaling pathway. Exp. Cell Res. 313, 2367–2377 (2007).

  144. 144.

    Uttamsingh, S. et al. Synergistic effect between EGF and TGF-beta1 in inducing oncogenic properties of intestinal epithelial cells. Oncogene 27, 2626–2634 (2008).

  145. 145.

    Lo, H. W. et al. Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial–mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res. 67, 9066–9076 (2007).

  146. 146.

    Colomiere, M. et al. Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial–mesenchymal transition in ovarian carcinomas. Br. J. Cancer 100, 134–144 (2009).

  147. 147.

    Kim, J., Kong, J., Chang, H., Kim, H. & Kim, A. EGF induces epithelial–mesenchymal transition through phospho-Smad2/3-Snail signaling pathway in breast cancer cells. Oncotarget 7, 85021–85032 (2016).

  148. 148.

    Fukuda, S. et al. Reversible interconversion and maintenance of mammary epithelial cell characteristics by the ligand-regulated EGFR system. Sci. Rep. 6, 20209 (2016).

  149. 149.

    Miyazono, K., Ehata, S. & Koinuma, D. Tumor-promoting functions of transforming growth factor-beta in progression of cancer. Ups. J. Med. Sci. 117, 143–152 (2012).

  150. 150.

    Shirakihara, T. et al. TGF-beta regulates isoform switching of FGF receptors and epithelial–mesenchymal transition. EMBO J. 30, 783–795 (2011).

  151. 151.

    Maehara, O. et al. Fibroblast growth factor-2-mediated FGFR/Erk signaling supports maintenance of cancer stem-like cells in esophageal squamous cell carcinoma. Carcinogenesis 38, 1073–1083 (2017).

  152. 152.

    McNiel, E. A. & Tsichlis, P. N. Analyses of publicly available genomics resources define FGF-2-expressing bladder carcinomas as EMT-prone, proliferative tumors with low mutation rates and high expression of CTLA-4, PD-1 and PD-L1. Signal Transduct. Target. Ther. 2, 16045 (2017).

  153. 153.

    Hu, Y., Feng, X., Mintz, A., Jeffrey Petty, W. & Hsu, W. Regulation of brachyury by fibroblast growth factor receptor 1 in lung cancer. Oncotarget 7, 87124–87135 (2016).

  154. 154.

    Qi, L. et al. FGF4 induces epithelial–mesenchymal transition by inducing store-operated calcium entry in lung adenocarcinoma. Oncotarget 7, 74015–74030 (2016).

  155. 155.

    Ogunwobi, O. O., Puszyk, W., Dong, H. J. & Liu, C. Epigenetic upregulation of HGF and c-Met drives metastasis in hepatocellular carcinoma. PLOS ONE 8, e63765 (2013).

  156. 156.

    Canadas, I. et al. High circulating hepatocyte growth factor levels associate with epithelial to mesenchymal transition and poor outcome in small cell lung cancer patients. Oncotarget 5, 5246–5256 (2014).

  157. 157.

    Sylvester, P. W. Targeting met mediated epithelial–mesenchymal transition in the treatment of breast cancer. Clin. Transl Med. 3, 30 (2014).

  158. 158.

    Chen, Q. Y. et al. MiR-206 inhibits HGF-induced epithelial–mesenchymal transition and angiogenesis in non-small cell lung cancer via c-Met /PI3k/Akt/mTOR pathway. Oncotarget 7, 18247–18261 (2016).

  159. 159.

    Li, Y. et al. MiR-182 inhibits the epithelial to mesenchymal transition and metastasis of lung cancer cells by targeting the Met gene. Mol. Carcinog. 57, 125–136 (2018).

  160. 160.

    Zhu, G. et al. PAK5-mediated E47 phosphorylation promotes epithelial–mesenchymal transition and metastasis of colon cancer. Oncogene 35, 1943–1954 (2016).

  161. 161.

    Tam, W. L. et al. Protein kinase C alpha is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell 24, 347–364 (2013).

  162. 162.

    Pistore, C. et al. DNA methylation variations are required for epithelial-to-mesenchymal transition induced by cancer-associated fibroblasts in prostate cancer cells. Oncogene 36, 5551–5566 (2017).

  163. 163.

    Shintani, Y. et al. IL-6 secreted from cancer-associated fibroblasts mediates chemoresistance in NSCLC by increasing epithelial–mesenchymal transition signaling. J. Thorac. Oncol. 11, 1482–1492 (2016).

  164. 164.

    Yu, Y. et al. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of breast cancer cells through paracrine TGF-beta signalling. Br. J. Cancer 110, 724–732 (2014).

  165. 165.

    Zhao, L. et al. An integrated analysis identifies STAT4 as a key regulator of ovarian cancer metastasis. Oncogene 36, 3384–3396 (2017).

  166. 166.

    Soon, P. S. et al. Breast cancer-associated fibroblasts induce epithelial-to-mesenchymal transition in breast cancer cells. Endocr. Relat. Cancer 20, 1–12 (2013).

  167. 167.

    Hsu, H. C. et al. Stromal fibroblasts from the interface zone of triple negative breast carcinomas induced epithelial–mesenchymal transition and its inhibition by emodin. PLOS ONE 12, e0164661 (2017).

  168. 168.

    Goebel, L. et al. CD4+ T cells potently induce epithelial–mesenchymal-transition in premalignant and malignant pancreatic ductal epithelial cells - novel implications of CD4+ T cells in pancreatic cancer development. Oncoimmunology 4, e1000083 (2015).

  169. 169.

    Kmieciak, M., Knutson, K. L., Dumur, C. I. & Manjili, M. H. HER-2/neu antigen loss and relapse of mammary carcinoma are actively induced by T cell-mediated anti-tumor immune responses. Eur. J. Immunol. 37, 675–685 (2007).

  170. 170.

    Santisteban, M. et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 69, 2887–2895 (2009).

  171. 171.

    Cohen, E. N. et al. Inflammation mediated metastasis: immune induced epithelial-to-mesenchymal transition in inflammatory breast cancer cells. PLOS ONE 10, e0132710 (2015).

  172. 172.

    Chen, Q. et al. Growth-induced stress enhances epithelial–mesenchymal transition induced by IL-6 in clear cell renal cell carcinoma via the Akt/GSK-3beta/beta-catenin signaling pathway. Oncogenesis 6, e375 (2017).

  173. 173.

    Bonde, A. K., Tischler, V., Kumar, S., Soltermann, A. & Schwendener, R. A. Intratumoral macrophages contribute to epithelial–mesenchymal transition in solid tumors. BMC Cancer 12, 35 (2012).

  174. 174.

    Fan, Q. M. et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial–mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 352, 160–168 (2014).

  175. 175.

    Bates, R. C. & Mercurio, A. M. Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol. Biol. Cell 14, 1790–1800 (2003).

  176. 176.

    Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

  177. 177.

    Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010). This study delineates the molecular mechanisms by which macrophages induce metastasis of carcinoma cells.

  178. 178.

    Su, S. et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25, 605–620 (2014).

  179. 179.

    Lu, H. et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol. 16, 1105–1117 (2014).

  180. 180.

    Che, D. et al. Macrophages induce EMT to promote invasion of lung cancer cells through the IL-6-mediated COX-2/PGE2/beta-catenin signalling pathway. Mol. Immunol. 90, 197–210 (2017).

  181. 181.

    Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

  182. 182.

    Sangaletti, S. et al. Mesenchymal transition of high-grade breast carcinomas depends on extracellular matrix control of myeloid suppressor cell activity. Cell Rep. 17, 233–248 (2016).

  183. 183.

    Toh, B. et al. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLOS Biol. 9, e1001162 (2011).

  184. 184.

    Ouzounova, M. et al. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nat. Commun. 8, 14979 (2017).

  185. 185.

    Ruffell, B. et al. Leukocyte composition of human breast cancer. Proc. Natl Acad. Sci. USA 109, 2796–2801 (2012).

  186. 186.

    Kerkar, S. P. & Restifo, N. P. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. 72, 3125–3130 (2012).

  187. 187.

    Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

  188. 188.

    Kudo-Saito, C., Shirako, H., Takeuchi, T. & Kawakami, Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15, 195–206 (2009). This study shows that activation of EMT can induce the formation of immunosuppressive cells in melanomas and alter their response to checkpoint blockade therapy.

  189. 189.

    Akalay, I. et al. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T cell-mediated lysis. Cancer Res. 73, 2418–2427 (2013).

  190. 190.

    Akalay, I. et al. EMT impairs breast carcinoma cell susceptibility to CTL-mediated lysis through autophagy induction. Autophagy 9, 1104–1106 (2013).

  191. 191.

    Wrzesinski, S. H., Wan, Y. Y. & Flavell, R. A. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin. Cancer Res. 13, 5262–5270 (2007).

  192. 192.

    Teicher, B. A. Transforming growth factor-beta and the immune response to malignant disease. Clin. Cancer Res. 13, 6247–6251 (2007).

  193. 193.

    Viel, S. et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal. 9, ra19 (2016).

  194. 194.

    Bellone, G., Aste-Amezaga, M., Trinchieri, G. & Rodeck, U. Regulation of NK cell functions by TGF-beta 1. J. Immunol. 155, 1066–1073 (1995).

  195. 195.

    Kudo-Saito, C., Shirako, H., Ohike, M., Tsukamoto, N. & Kawakami, Y. CCL2 is critical for immunosuppression to promote cancer metastasis. Clin. Exp. Metastasis 30, 393–405 (2013).

  196. 196.

    Hsu, D. S. et al. Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell 26, 534–548 (2014).

  197. 197.

    Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

  198. 198.

    Blum, J. S., Wearsch, P. A. & Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 31, 443–473 (2013).

  199. 199.

    Garcia-Lora, A., Algarra, I. & Garrido, F. MHC class I antigens, immune surveillance, and tumor immune escape. J. Cell. Physiol. 195, 346–355 (2003).

  200. 200.

    Fruci, D. et al. Major histocompatibility complex class i and tumour immuno-evasion: how to fool T cells and natural killer cells at one time. Curr. Oncol. 19, 39–41 (2012).

  201. 201.

    Tripathi, S. C. et al. Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proc. Natl Acad. Sci. USA 113, E1555–E1564 (2016).

  202. 202.

    Noman, M. Z. et al. The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology 6, e1263412 (2017).

  203. 203.

    Chen, L. et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 5, 5241 (2014).

  204. 204.

    Lou, Y. et al. Epithelial–mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clin. Cancer Res. 22, 3630–3642 (2016).

  205. 205.

    Celia-Terrassa, T. et al. Epithelial–mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J. Clin. Invest. 122, 1849–1868 (2012).

  206. 206.

    Chaffer, C. L. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl Acad. Sci. USA 108, 7950–7955 (2011).

  207. 207.

    Chaffer, C. L., San Juan, B. P., Lim, E. & Weinberg, R. A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 35, 645–654 (2016).

  208. 208.

    Lim, S. et al. SNAI1-mediated epithelial–mesenchymal transition confers chemoresistance and cellular plasticity by regulating genes involved in cell death and stem cell maintenance. PLOS ONE 8, e66558 (2013).

  209. 209.

    Kurrey, N. K. et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27, 2059–2068 (2009).

  210. 210.

    Bharti, R., Dey, G. & Mandal, M. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: a snapshot of IL-6 mediated involvement. Cancer Lett. 375, 51–61 (2016).

  211. 211.

    Pattabiraman, D. R. & Weinberg, R. A. Tackling the cancer stem cells — what challenges do they pose? Nat. Rev. Drug Discov. 13, 497–512 (2014).

  212. 212.

    Sullivan, N. J. et al. Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene 28, 2940–2947 (2009).

  213. 213.

    Jurmeister, S. et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol. Cell. Biol. 32, 633–651 (2012).

  214. 214.

    Cochrane, D. R., Howe, E. N., Spoelstra, N. S. & Richer, J. K. Loss of miR-200c: a marker of aggressiveness and chemoresistance in female reproductive cancers. J. Oncol. 2010, 821717 (2010).

  215. 215.

    Fidler, I. J. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res. 38, 2651–2660 (1978).

Download references


The authors thank T. Shibue and A. W. Lambert for critical reading of the manuscript. The authors thank R. Lee for helping with preparation of the figures. A.D. was supported by a postdoctoral fellowship from the Ludwig Fund for Cancer Research. R.A.W. is an American Cancer Society research professor and a Daniel K. Ludwig Foundation cancer research professor. The work of the authors has been supported by grants from the US National Institutes of Health (NIH) (P01 CA080111), Breast Cancer Research Foundation, Samuel Waxman Cancer Research Foundation, Breast Cancer Alliance and the Ludwig Center for Molecular Oncology.

Author information


  1. Whitehead Institute for Biomedical Research, Cambridge, MA, USA

    • Anushka Dongre
    •  & Robert A. Weinberg
  2. MIT Ludwig Center for Molecular Oncology, Cambridge, MA, USA

    • Robert A. Weinberg
  3. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Robert A. Weinberg


  1. Search for Anushka Dongre in:

  2. Search for Robert A. Weinberg in:


The authors contributed equally to all aspects of the article.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Robert A. Weinberg.


High-grade malignancy

A poorly differentiated cancer that is typically associated with poor prognosis and reduced overall survival.

Juxtacrine signalling

A type of signalling that requires close contact between the interacting cell types. This type of signalling is also called contact-dependent signalling.

Paracrine signalling

A type of signalling that occurs via the exchange of chemical messengers such as cytokines, chemokines or ligands between the interacting cell types over somewhat short distances.

Adaptive immune system

A branch of the immune response mounted by a subset of immune cells that can recognize specific antigens, subsequently leading to the formation of immunological memory.


A type of treatment regimen that uses the immune system to mount defensive responses to diseases such as cancer. Immunotherapies restore the effector function of cytotoxic CD8+ T cells, enabling them to eradicate foreign agents.


Epithelial cell-specific intermediate filaments that are involved in desmosome stabilization to ensure the resilience of epithelial cell layers to various physical stresses.

Actin stress fibres

Contractile bundles of actin found in non-muscle cells that play important roles in morphogenesis, cell adhesion and migration.

Neural crest

A transient embryonic structure that arises in the neural tube. Neural crest cells are migratory and can differentiate into several cell types.

Regulatory T cells

(Treg cells). A subset of T cells that regulate the immune response by maintaining tolerance to self-antigens. Treg cells suppress effector T cells and are crucial for preventing autoimmunity. They are prevalent in the tumour microenvironment of most cancers.

M2 macrophages

Alternatively activated macrophages documented to secrete immunosuppressive, angiogenic and chemotactic factors. They are anti-inflammatory and promote wound healing, tissue repair and carcinoma progression.

Immunological synapse

A cellular interface formed between an antigen-presenting cell and a target cell.

About this article

Publication history


Issue Date


Further reading