Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A new era for understanding amyloid structures and disease

Abstract

The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Progression of amyloid structure research over close to 400 years that has culminated in the first atomic structures of amyloid fibrils.
Fig. 2: Schematic of amyloid formation.
Fig. 3: Amyloid aggregates can cause cell disruption by a variety of mechanisms.
Fig. 4: Structural motifs that stabilize amyloid fibrils.
Fig. 5: Subunit packing in amyloid fibrils.
Fig. 6: How changes in primary sequence affect amyloid disease.

Similar content being viewed by others

References

  1. Sipe, J. D. & Cohen, A. S. Review: History of the amyloid fibril. J. Struct. Biol. 130, 88–98 (2000).

    CAS  PubMed  Google Scholar 

  2. Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E. & Klug, A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc. Natl Acad. Sci. USA 85, 4051–4055 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Murphy, M. P. & LeVine, I. I. I. H. Alzheimer’s disease and the β-amyloid peptide. J. Alzheimers Dis. 19, 311–323 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009399 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. Protein Data Bank. Yearly growth of total structures. rcbs.org http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total (2018).

  6. Sipe, J. D. et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification international society of amyloidosis 2016 nomenclature guidelines. Amyloid 23, 209–213 (2016).

    CAS  PubMed  Google Scholar 

  7. Sloane, P. D. et al. The public health impact of Alzheimer’s disease, 2000–2050: potential implication of treatment advances. Annu. Rev. Publ. Health 23, 213–231 (2002).

    Google Scholar 

  8. Geula, C. et al. Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat. Med. 7, 827–831 (1998).

    Google Scholar 

  9. Woerner, A. C. et al. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science 350, 173–176 (2016).

    Google Scholar 

  10. Guo, Q. et al. In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell 172, 696–705 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Drummond, E. et al. Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer’s disease. Acta Neuropathol. 133, 933–954 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stewart, K. L. et al. Atomic details of the interactions of glycosaminoglycans with amyloid-β fibrils. J. Am. Chem. Soc. 138, 8328–8331 (2016).

    CAS  PubMed  Google Scholar 

  13. Kollmer, M. et al. Electron tomography reveals the fibril structure and lipid interactions in amyloid deposits. Proc. Natl Acad. Sci. USA 113, 5604–5609 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Knowles, T. P. J. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

    CAS  PubMed  Google Scholar 

  15. Smith, J. F., Knowles, T. P. J., Dobson, C. M., MacPhee, C. E. & Welland, M. E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci. USA 103, 15806–15811 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Greenwald, J., Friedmann, M. P. & Riek, R. Amyloid aggregates arise from amino acid condensations under prebiotic conditions. Angew. Chem. Int. Ed. Engl. 55, 11609–11613 (2016).

    CAS  PubMed  Google Scholar 

  17. Romero, D., Aguilar, C., Losick, R. & Kolter, R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl Acad. Sci. USA 107, 2230–2234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Taglialegna, A. et al. Staphylococcal Bap proteins build amyloid scaffold biofilm matrices in response to environmental signals. PLOS Pathog. 12, e1005711 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Lipke, P. N., Klotz, S. A., Dufrene, Y. F., Jackson, D. N. & Garcia-Sherman, M. C. Amyloid-like β-aggregates as force-sensitive switches in fungal biofilms and infections. Microbiol. Mol. Biol. Rev. 82, e00035–17 (2018).

    PubMed  Google Scholar 

  20. Garvey, M., Ecroyd, H., Ray, N. J., Gerrard, J. A. & Carver, J. A. Functional amyloid protection in the eye lens: retention of alpha-crystallin molecular chaperone activity after modification into amyloid fibrils. Biomolecules 7, E67 (2017).

    PubMed  Google Scholar 

  21. Biesecker, S. G., Nicastro, L. K., Wilson, R. P. & Tukel, C. The functional amyloid curli protects Escherichia coli against complement-mediated bactericidal activity. Biomolecules 8, E5 (2018).

    PubMed  Google Scholar 

  22. Bajakian, T. H. et al. Metal binding properties of the N-terminus of the functional amyloid Orb2. Biomolecules 7, E57 (2017).

    PubMed  Google Scholar 

  23. Audas, T. E. et al. Adaptation to stressors by systemic protein amyloidogenesis. Dev. Cell 39, 155–168 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Guyonnet, B., Egge, N. & Cornwall, G. A. Functional amyloids in the mouse sperm acrosome. Mol. Cell. Biol. 34, 2624–2634 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Fowler, D. M. et al. Functional amyloid formation within mammalian tissue. PLOS Biol. 4, e6 (2006).

    PubMed  Google Scholar 

  26. Roan, N. R. et al. Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe 10, 541–550 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gremer, L. et al. Fibril structure of amyloid-β(1–42) by cryo-electron microscopy. Science 358, 116–119 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02760602 (2018).

  30. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00606476 (2018).

  31. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01739348 (2018).

  32. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00531804 (2018).

  33. Virchow, R. Zur cellulose. Archiv. Pathol. Anat. 6, 416–426 (1854).

    Google Scholar 

  34. Friedreich, N. & Kekulé, A. Zur amyloidfrage. Virchows Arch. 16, 50–65 (1859).

    Google Scholar 

  35. Puchtler, H., Sweat, F. & Levine, M. On the binding of Congo red by amyloid. J. Histochem. Cytochem. 10, 355–364 (1962).

    CAS  Google Scholar 

  36. Benditt, E. P., Eriksen, N., Hermodson, M. A. & Ericsson, L. H. The major proteins of human and monkey amyloid substance: common properties including unusual N-terminal amino acid sequences. FEBS Lett. 19, 169–173 (1971).

    CAS  PubMed  Google Scholar 

  37. Glenner, G. G., Eanes, E. D., Bladen, H. A., Terry, W. & Page, D. L. Creation of “amyloid” fibrils from Bence Jones proteins in vitro. Science 174, 712–714 (1971).

    CAS  PubMed  Google Scholar 

  38. Costa, P. P., Figueria, A. S. & Bravo, F. R. Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc. Natl Acad. Sci. USA 75, 4499–4503 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Astbury, W. T. & Street, A. X-ray studies of the structure of hair, wool and related fibres. I. General. Phil. Trans. R. Soc. 230, 75–101 (1932).

    Google Scholar 

  40. Hall, K. T. The Man in the Monkeynut Coat (Oxford Univ. Press, Oxford, 2014).

    Google Scholar 

  41. Geddes, A. J., Parker, K. D., Atkins, E. D. T. & Beighton, E. “Cross-β” conformation in proteins. J. Mol. Biol. 32, 343–358 (1968).

    CAS  PubMed  Google Scholar 

  42. Jackson, M. & Hewitt, E. Why are functional amyloids non-toxic in humans? Biomolecules 7, E71–E73 (2017).

    PubMed  Google Scholar 

  43. Hewetson, A. et al. Functional amyloids in reproduction. Biomolecules 7, E46 (2017).

    PubMed  Google Scholar 

  44. Ramsook, C. B. et al. Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot. Cell 9, 393–404 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Romero, D. & Kolter, R. Functional amyloids in bacteria. Int. Microbiol. 17, 65–73 (2014).

    CAS  PubMed  Google Scholar 

  46. Pham, C. L., Kwan, A. H. & Sunde, M. Functional amyloid: widespread in Nature, diverse in purpose. Essays Biochem. 56, 207–219 (2014).

    PubMed  Google Scholar 

  47. Fowler, D. M., Koulov, A. V., Balch, W. E. & Kelly, J. W. Functional amyloid — from bacteria to humans. Trends Biochem. Sci. 32, 217–224 (2007).

    CAS  PubMed  Google Scholar 

  48. Morris, K. L. & Serpell, L. C. X-Ray Fibre Diffraction Studies of Amyloid Fibrils (Humana Press, 2012).

  49. Eanes, E. D. & Glenner, G. G. X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 10, 673–677 (1968).

    Google Scholar 

  50. Kirschner, D. A., Abraham, C. & Selkoe, D. J. X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc. Natl Acad. Sci. USA 83, 503–507 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    CAS  PubMed  Google Scholar 

  52. Shi, D., Nannenga, B. L., Iadanza, M. G. & Gonen, T. Three-dimensional electron crystallography of protein microcrystals. eLife 2, e01345 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. de la Cruz, M. J. et al. Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nat. Med. 14, 399–402 (2017).

    Google Scholar 

  54. Krotee, P. et al. Atomic structures of fibrillar segments of hIAPP suggest tightly mated beta-sheets are important for cytotoxicity. eLife 6, e19273 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Rodriguez, J. A. et al. Structure of the toxic core of alpha-synuclein from invisible crystals. Nature 525, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sawaya, M. R. et al. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED. Proc. Natl Acad. Sci. USA 113, 11232–11236 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Colvin, M. T. et al. High resolution structural characterization of Aβ42 amyloid fibrils by magic angle spinning NMR. J. Am. Chem. Soc. 137, 7509–7518 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Antzutkin, O. N., Leapman, R. D., Balbach, J. J. & Tycko, R. Supramolecular structural constraints on Alzheimer’s β-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance. Biochemistry 41, 15436–15450 (2002).

    CAS  PubMed  Google Scholar 

  59. Chan, J. C. C., Oyler, N. A., Yau, W. & Tycko, R. Parallel β -sheets and polar zippers in amyloid fibrils formed by residues 10–39 of the yeast prion protein Ure2p. Biochemistry 44, 10669–10680 (2005).

    CAS  PubMed  Google Scholar 

  60. Qiang, W., Yau, W. M., Lu, J. X., Collinge, J. & Tycko, R. Structural variation in amyloid-beta fibrils from Alzheimer’s disease clinical subtypes. Nature 541, 217–221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Qiang, W., Yau, W. M., Luo, Y., Mattson, M. P. & Tycko, R. Antiparallel beta-sheet architecture in Iowa-mutant beta-amyloid fibrils. Proc. Natl Acad. Sci. USA 109, 4443–4448 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lührs, T. et al. 3D structure of Alzheimer’s amyloid-B(1–42) fibrils. Proc. Natl Acad. Sci. USA 102, 17342–17347 (2005).

    PubMed  PubMed Central  Google Scholar 

  63. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vilar, M. et al. The fold of α-synuclein fibrils. Proc. Natl Acad. Sci. USA 105, 8637–8642 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Walti, M. A. et al. Atomic-resolution structure of a disease-relevant Abeta(1–42) amyloid fibril. Proc. Natl Acad. Sci. USA 113, E4976–E4984 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion from a β solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).

    CAS  PubMed  Google Scholar 

  67. Fitzpatrick, A. W. P. et al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc. Natl Acad. Sci. USA 110, 5468–5473 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jiménez, J. et al. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18, 815–821 (1999).

    PubMed  PubMed Central  Google Scholar 

  69. Saibil, H. R. et al. Heritable yeast prions have a highly organized three-dimensional architecture with interfiber structures. Proc. Natl Acad. Sci. USA 109, 14906–14911 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fändrich, M., Meinhardt, J. & Grigorieff, N. Structural polymorphism of Alzheimer Aβ and other amyloid fibrils. Prion 3, 89–93 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. Sachse, C., Fändrich, M. & Grigorieff, N. Paired β-sheet structure of an Aβ(1–40) amyloid fibril revealed by electron microscopy. Proc. Natl Acad. Sci. USA 105, 7462–7466 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sachse, C. et al. Quaternary structure of a mature amyloid fibril from Alzheimer’s Abeta(1–40) peptide. J. Mol. Biol. 362, 347–354 (2006).

    CAS  PubMed  Google Scholar 

  73. Kirschner, D. A. et al. In vitro amyloid fibril formation by synthetic peptides corresponding to the amino terminus of apoSAA isoforms from amyloid-susceptible and amyloid-resistant mice. J. Struct. Biol. 124, 88–98 (1998).

    CAS  PubMed  Google Scholar 

  74. Castaño, E. M. et al. In vitro formation of amyloid fibrils from two synthetic peptides of different lengths homologous to Alzheimer’s disease β-protein. Biochem. Biophys. Res. Commun. 141, 782–789 (1986).

    PubMed  Google Scholar 

  75. Aggeli, A. et al. Responsive gels formed by the spontanious self-assembly of peptides into polymeric β-sheet tapes. Nature 386, 259–262 (1997).

    CAS  PubMed  Google Scholar 

  76. Colletier, J. P. et al. Molecular basis for amyloid-beta polymorphism. Proc. Natl Acad. Sci. USA 108, 16938–16943 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gosal, W. S. et al. Competing pathways determine fibril morphology in the self-assembly of beta2-microglobulin into amyloid. J. Mol. Biol. 351, 850–864 (2005).

    CAS  PubMed  Google Scholar 

  78. Booth, D. et al. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385, 797–793 (1997).

    Google Scholar 

  79. Hecht, M. H., Das, A., Go, A., Bradley, L. H. & Wei, Y. De novo proteins from designed combinatorial libraries. Protein. Sci. 13, 1711–1723 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

    PubMed  Google Scholar 

  81. Pinotsi, D. et al. Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy. Nano. Lett. 14, 339–345 (2014).

    CAS  PubMed  Google Scholar 

  82. Kaminski Schierle, G. S. et al. In situ measurements of the formation and morphology of intracellular beta-amyloid fibrils by super-resolution fluorescence imaging. J. Am. Chem. Soc. 133, 12902–12905 (2011).

    CAS  PubMed  Google Scholar 

  83. Han, S. et al. Amyloid plaque structure and cell surface interactions of beta-amyloid fibrils revealed by electron tomography. Sci. Rep. 7, 43577 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Bauerlein, F. J. B. et al. In situ architecture and cellular interactions of polyQ inclusions. Cell 171, 179–187 (2017).

    PubMed  Google Scholar 

  85. Tang, M., Comellas, G. & Rienstra, C. M. Advanced solid-state NMR approaches for structure determination of membrane proteins and amyloid fibrils. Acc. Chem. Res. 46, 2080–2088 (2013).

    CAS  PubMed  Google Scholar 

  86. Alzheimer, A. Über einen eigenartigen schweren Erkrankungsprozeβ der Hirnrincle. Neurol. Central 25, 1134 (1906).

    Google Scholar 

  87. Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr. Psych.-Gerichtl. Med. 641, 46–48 (1907).

    Google Scholar 

  88. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86, 27–68 (2006).

    Google Scholar 

  89. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Westermark, P. et al. Amyloid: toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 12, 1–4 (2005).

    CAS  PubMed  Google Scholar 

  91. Vassar, R., Bennett, B. D., Babu-Khan, S. & Kahn, S. β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    CAS  PubMed  Google Scholar 

  92. Prusiner, S. B., Bowman, K. A., Bendheim, P. E. & Glenner, G. G. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358 (1983).

    CAS  PubMed  Google Scholar 

  93. Warby, S. C. et al. CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am. J. Hum. Genet. 84, 351–366 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chartier-Harlin, M.-C. et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364, 1167–1169 (2004).

    CAS  PubMed  Google Scholar 

  95. Valentine, J. S., Doucette, P. A. & Zittin Potter, S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu. Rev. Biochem. 74, 563–593 (2005).

    CAS  PubMed  Google Scholar 

  96. Westermark, P., Andersson, A. & Westermark, G. T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 91, 795–826 (2011).

    CAS  PubMed  Google Scholar 

  97. Sanchorawala, V. Light-chain (AL) amyloidosis: diagnosis and treatment. Clin. J. Am. Soc. Nephrol. 1, 1331–1335 (2006).

    PubMed  Google Scholar 

  98. Koch, K. M. Dialysis-related amyloidosis. Kidney Int. 41, 1416–1429 (1992).

    CAS  PubMed  Google Scholar 

  99. Li, X., Song, D. & Leng, S. X. Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin. Interv. Aging 10, 549–560 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Uéda, K. et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 11282–11286 (1993).

    PubMed  PubMed Central  Google Scholar 

  101. Maresova, P., Klimova, B., Novotny, M. & Kuca, K. Alzheimer’s and Parkinson’s diseases: Expected economic Impact on Europe-A call for a uniform European strategy. J. Alzheimers Dis. 54, 1123–1133 (2016).

    PubMed  Google Scholar 

  102. Li, J., Uversky, V. N. & Fink, A. L. Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 40, 11604–11613 (2001).

    CAS  PubMed  Google Scholar 

  103. Krone, M. G. et al. Effects of familial Alzheimer’s disease mutations on the folding nucleation of the amyloid beta-protein. J. Mol. Biol. 381, 221–228 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Mangione, P. P. et al. Structure, folding dynamics, and amyloidogenesis of D76N beta2-microglobulin: roles of shear flow, hydrophobic surfaces, and alpha-crystallin. J. Biol. Chem. 288, 30917–30930 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Fan, H.-C. et al. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant. 23, 441–458 (2014).

    PubMed  Google Scholar 

  106. Scheuermann, T. et al. Trinucleotide expansions leading to an extended poly-L-alanine segment in the poly (A) binding protein PABPN1 cause fibril formation. Protein Sci. 12, 2685–2692 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Brais, B. et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat. Genet. 18, 164–167 (1998).

    CAS  PubMed  Google Scholar 

  108. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Budworth, H. & McMurray, C. T. A brief history of triplet repeat diseases. Methods. Mol. Biol. 1010, 3–17 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wiltfang, J. et al. Amyloid beta peptide ratio 42/40 but not Aβ 42 correlates with phospho-Tau in patients with low- and high-CSF Aβ 40 load. J. Neurochem. 101, 1053–1059 (2007).

    CAS  PubMed  Google Scholar 

  112. Ramella, N. A. et al. Human apolipoprotein A-I-derived amyloid: its association with atherosclerosis. PLOS One 6, e22532 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chiti, F. et al. A partially structured species of beta 2-microglobulin is significantly populated under physiological conditions and involved in fibrillogenesis. J. Biol. Chem. 276, 46714–46721 (2001).

    CAS  PubMed  Google Scholar 

  114. Eichner, T. & Radford, S. E. A generic mechanism of β2-microglobulin amyloid assembly at neutral pH involving a specific proline switch. J. Mol. Biol. 386, 1312–1326 (2009).

    CAS  PubMed  Google Scholar 

  115. Byers, B. et al. SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate α-synuclein and are susceptible to oxidative stress. PLOS One 6, e26159 (2011).

    PubMed  PubMed Central  Google Scholar 

  116. Lott, I. T. & Head, E. Alzheimer disease and Down syndrome: factors in pathogenesis. Neurobiol. Aging 26, 383–389 (2005).

    CAS  PubMed  Google Scholar 

  117. Scarpioni, R. et al. Dialysis-related amyloidosis: challenges and solutions. Int. J. Nephrol. Renovasc. Dis. 9, 319–328 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wegmann, S. et al. Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J. 37, e98049 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Xiang, S. et al. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163, 829–839 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78 (2011).

    CAS  PubMed  Google Scholar 

  122. Kovacs, G. G. & Budka, H. Prion diseases: from protein to cell pathology. Am. J. Pathol. 172, 555–565 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Aguzzi, A. & Calella, A. M. Prions: protein aggregation and infectious diseases. Physiol. Rev. 89, 1105–1150 (2009).

    CAS  PubMed  Google Scholar 

  124. Aguzzi, A., Baumann, F. & Bremer, J. The prion’s elusive reason for being. Annu. Rev. Neurosci. 31, 439–477 (2008).

    CAS  PubMed  Google Scholar 

  125. Botsios, S. & Manuelidis, L. CJD and scrapie require agent-associated nucleic acids for infection. J. Cell. Biochem. 117, 1947–1958 (2016).

    CAS  PubMed  Google Scholar 

  126. Wadsworth, J. D. F. et al. Kuru prions and sporadic Creutzfeldt–Jakob disease prions have equivalent transmission properties in transgenic and wild-type mice. Proc. Natl Acad. Sci. USA 105, 3885–3890 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Cobb, N. J. & Surewicz, W. K. Prion diseases and their biochemical mechanisms. Biochemistry 48, 2574–2585 (2009).

    CAS  PubMed  Google Scholar 

  128. Wadsworth, J. D. F. et al. Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. Lancet 358, 171–180 (2001).

    CAS  PubMed  Google Scholar 

  129. Masuda-Suzukake, M. et al. Prion-like spreading of pathological alpha-synuclein in brain. Brain 136, 1128–1138 (2013).

    PubMed  PubMed Central  Google Scholar 

  130. Walker, L. C., Schelle, J. & Jucker, M. The prion-like properties of amyloid-β assemblies: implications for Alzheimer’s disease. Cold Spring Harb. Perspect. Med. 6, a024398 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. An, L., Fitzpatrick, D. & Harrison, P. M. Emergence and evolution of yeast prion and prion-like proteins. BMC Evol. Biol. 16, 24 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Alberti, S., Halfmann, R., King, O., Kapila, A. & Lindquist, S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146–158 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sponarova, J., Nystrom, S. N. & Westermark, G. T. AA-amyloidosis can be transferred by peripheral blood monocytes. PLOS One 3, e3308 (2008).

    PubMed  PubMed Central  Google Scholar 

  134. Solomon, A. et al. Amyloidogenic potential of foie gras. Proc. Nat. Acad. Sci. USA 104, 10998–11001 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Knowles, T. P., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell. Biol. 15, 384–396 (2014).

    CAS  PubMed  Google Scholar 

  136. Ferrone, F. Analysis of protein aggregation kinetics. Methods Enzymol. 309, 256–274 (1999).

    CAS  PubMed  Google Scholar 

  137. Sicorello, A. et al. Agitation and high ionic strength induce amyloidogenesis of a folded PDZ domain in native conditions. Biophys. J. 96, 2289–2298 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Glabe, C. G. & Kayed, R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66, S74–S78 (2006).

    CAS  PubMed  Google Scholar 

  139. Glabe, C. G. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol. Aging 27, 570–575 (2006).

    CAS  PubMed  Google Scholar 

  140. Meisl, G. et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat. Protoc. 11, 252–272 (2016).

    CAS  PubMed  Google Scholar 

  141. Linse, S. Monomer-dependent secondary nucleation in amyloid formation. Biophys. Rev. 9, 329–338 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Oosawa, F. & Asakura, S. Thermodynamics of the Polymerization of Protein (Academic Press, 1975).

  143. Eaton, W. A. & Hofrichter, J. Hemoglobin S gelation and sickle cell disease. Blood 70, 1245–1266 (1987).

    CAS  PubMed  Google Scholar 

  144. Xue, W. F., Homans, S. W. & Radford, S. E. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc. Natl Acad. Sci. USA 105, 8926–8931 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Cohen, S. I. A. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. LeVine, H.r. Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein. Sci. 2, 404–410 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Galvagnion, C. et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11, 229–234 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Buell, A. K. et al. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc. Natl Acad. Sci. USA 27, 7671–7676 (2014).

    Google Scholar 

  149. Arosio, P. et al. Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat. Commun. 7, 10948 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Habchi, J. et al. Systematic development of small molecules to inhibit specific microscopic steps of Abeta42 aggregation in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 114, E200–E208 (2017).

    CAS  PubMed  Google Scholar 

  151. Jackson, M. P. & Hewitt, E. W. Cellular proteostasis: degradation of misfolded proteins by lysosomes. Essays Biochem. 60, 173–180 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo aspects of protein folding and quality control. Science 353, aac4354 (2016).

    PubMed  Google Scholar 

  153. Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M. & Hartl, F. U. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82, 323–355 (2013).

    CAS  PubMed  Google Scholar 

  154. Salminen, A. et al. Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin 1 interactome. Prog. Neurobiol. 106–107, 33–54 (2013).

    PubMed  Google Scholar 

  155. Winklhofer, K. F. & Haass, C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta 1802, 29–44 (2010).

    CAS  PubMed  Google Scholar 

  156. Uttara, B., Singh, A. V., Zamboni, P. & Mahajan, R. T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7, 65–74 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. McLaurin, J. & Chakrabartty, A. Membrane disruption by Alzheimer β-amyloid peptides mediated through specific binding to either phospholipids or gangliosides. Implications for neurotoxicity. J. Biol. Chem. 25, 26482–26489 (1996).

    Google Scholar 

  158. Goodchild, S. C. et al. β2-Microglobulin amyloid fibril-induced membrane disruption is enhanced by endosomal lipids and acidic pH. PLOS One 9, e104492 (2014).

    PubMed  PubMed Central  Google Scholar 

  159. Nelson, P. T. et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71, 362–381 (2012).

    PubMed  Google Scholar 

  160. Reixach, N., Deechongkit, S., Jiang, X., Kelly, J. W. & Buxbaum, J. N. Tissue damage in the amyloidoses: transthyretin monomers and non-native oligomers are the major cytotoxic species in tissue culture. Proc. Natl Acad. Sci. USA 101, 2817–2822 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Baglioni, S. et al. Prefibrillar amyloid aggregates could be generic toxins in higher organisms. J. Neurosci. 26, 8160–8167 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    CAS  PubMed  Google Scholar 

  163. Simoneau, S. et al. In vitro and in vivo neurotoxicity of prion protein oligomers. PLOS Pathog. 3, e125 (2007).

    PubMed  PubMed Central  Google Scholar 

  164. Winner, B. et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl Acad. Sci. USA 108, 4194–4199 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Serra-Batiste, M. et al. Aβ42 assembles into specific beta-barrel pore-forming oligomers in membrane-mimicking environments. Proc. Natl Acad. Sci. USA 113, 10866–10871 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Evangelisti, E. et al. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases. Sci. Rep. 6, 32721 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Pfefferkorn, C. M., Jiang, Z. & Lee, J. C. Biophysics of α-synuclein membrane interactions. Biochim. Biophys. Acta 1818, 162–171 (2012).

    CAS  PubMed  Google Scholar 

  168. Lashuel, H. A. et al. α-Synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322, 1089–1102 (2002).

    CAS  PubMed  Google Scholar 

  169. Lesné, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    PubMed  Google Scholar 

  170. Shankar, G. M. et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Fusco, G. et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 358, 1440–1443 (2017).

    CAS  PubMed  Google Scholar 

  172. Tosatto, L. et al. Single-molecule FRET studies on α-synuclein oligomerization of Parkinson’s disease genetically related mutants. Sci. Rep. 5, 16696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Chiti, F. & Dobson, C. M. Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol. 5, 15–22 (2009).

    CAS  PubMed  Google Scholar 

  174. Tsigelny, I. F. et al. Role of α-synuclein penetration into the membrane in the mechanisms of oligomer pore formation. FEBS J. 279, 1000–1013 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Young, L. M., Cao, P., Raleigh, D. P., Ashcroft, A. E. & Radford, S. E. Ion mobility spectrometry-mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. J. Am. Chem. Soc. 136, 660–670 (2014).

    CAS  PubMed  Google Scholar 

  176. Young, L. M., Tu, L. H., Raleigh, D. P., Ashcroft, A. E. & Radford, S. E. Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers. Chem. Sci. 8, 5030–5040 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Tipping, K. W., van Oosten-Hawle, P., Hewitt, E. W. & Radford, S. E. Amyloid fibres: inert end-stage aggregates or key players in disease? Trends Biochem. Sci. 40, 719–727 (2015).

    CAS  PubMed  Google Scholar 

  178. Milanesi, L. et al. Direct three-dimensional visualization of membrane disruption by amyloid fibrils. Proc. Natl Acad. Sci. USA 109, 20455–20460 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Phelan, M. M., Caamaño-Gutiérrez, E., Gant, M. S., Grosman, R. X. & Madine, J. Using an NMR metabolomics approach to investigate the pathogenicity of amyloid-beta and alpha-synuclein. Metabolomics 13, 151 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Gharibyan, A. L. et al. Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. J. Mol. Biol. 365, 1337–1349 (2007).

    CAS  PubMed  Google Scholar 

  181. Grudzielanek, S. et al. Cytotoxicity of insulin within its self-assembly and amyloidogenic pathways. J. Mol. Biol. 370, 372–384 (2007).

    CAS  PubMed  Google Scholar 

  182. Novitskaya, V., Bocharova, O. V., Bronstein, I. & Baskakov, I. V. Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J. Biol. Chem. 281, 13828–13836 (2006).

    CAS  PubMed  Google Scholar 

  183. Berthelot, K., Ta, H. P., Géan, J., Lecomte, S. & Cullin, C. In vivo and in vitro analyses of toxic mutants of HET-S: FTIR antiparallel signature correlates with amyloid toxicity. J. Mol. Biol. 412, 137–152 (2011).

    CAS  PubMed  Google Scholar 

  184. Lee, Y. J., Savtchenko, R., Ostapchenko, V. G., Makarava, N. & Baskakov, I. V. Molecular structure of amyloid fibrils controls the relationship between fibrillar size and toxicity. PLOS One 6, e20244 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Mossuto, M. F. et al. Disulfide bonds reduce the toxicity of the amyloid fibrils formed by an extracellular protein. Angew. Chem. Int. Ed. Engl. 50, 7048–7051 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Makarava, N. et al. Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol. 119, 177–187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Qiang, W., Kelley, K. & Tycko, R. Polymorph-specific kinetics and thermodynamics of beta-amyloid fibril growth. J. Am. Chem. Soc. 135, 6860–6871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Stewart, K. L., Hughes, E., Yates, E. A., Middleton, D. A. & Radford, S. E. Molecular origins of the compatibility between glycosaminoglycans and Aβ40 amyloid fibrils. J. Mol. Biol. 429, 2449–2462 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Cohen, M. L. et al. Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-beta. Brain 138, 1009–1022 (2015).

    PubMed  PubMed Central  Google Scholar 

  190. Tipping, K. W. et al. pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proc. Natl Acad. Sci. USA 112, 5691–5696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Serra-Vidal, B. et al. Hydrogen/deuterium exchange-protected oligomers populated during Abeta fibril formation correlate with neuronal cell death. ACS Chem. Biol. 9, 2678–2685 (2014).

    CAS  PubMed  Google Scholar 

  192. Pilla, E., Schneider, K. & Bertolotti, A. Coping with protein quality control failure. Annu. Rev. Cell. Dev. Biol. 33, 439–465 (2017).

    CAS  PubMed  Google Scholar 

  193. Schneider, K. & Bertolotti, A. Surviving protein quality control catastrophes—from cells to organisms. J. Cell Sci. 128, 3861–3869 (2015).

    CAS  PubMed  Google Scholar 

  194. Walther, D. M. et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161, 919–932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Ciryam, P., Kundra, R., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Supersaturation is a major driving force for protein aggregation in neurodegenerative diseases. Trends Pharmacol. Sci. 36, 72–77 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Kundra, R., Ciryam, P., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Protein homeostasis of a metastable subproteome associated with Alzheimer’s disease. Proc. Natl Acad. Sci. USA 114, E5703–E5711 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Bonar, L., Cohen, A. S. & Skinner, M. M. Characterization of the amyloid fibril as a cross-beta protein. Proc. Soc. Exp. Biol. Med. 131, 1373–1375 (1969).

    CAS  PubMed  Google Scholar 

  198. Blake, C. & Serpell, L. C. Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous β-sheet helix. Structure 4, 989–998 (1996).

    CAS  PubMed  Google Scholar 

  199. Serpell, L. C. & Smith, J. M. Direct visualisation of the β-sheet structure of synthetic Alzheimer’s amyloid. J. Mol. Biol. 299, 225–231 (2000).

    CAS  PubMed  Google Scholar 

  200. Jahn, T. R., Tennent, G. A. & Radford, S. E. A common beta-sheet architecture underlies in vitro and in vivo β-2-microglobulin amyloid fibrils. J. Biol. Chem. 283, 17279–17286 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Zandomeneghi, G., Krebs, M. R., McCammon, M. G. & Fandrich, M. FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein. Sci. 13, 3314–3321 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Sarroukh, R., Goormaghtigh, E., Ruysschaert, J. M. & Raussens, V. ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. Biochim. Biophys. Acta 1828, 2328–2338 (2013).

    CAS  PubMed  Google Scholar 

  203. Adler-Abramovich, L. et al. Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nat. Chem. Biol. 8, 701–706 (2012).

    CAS  PubMed  Google Scholar 

  204. Julien, O. et al. Unraveling the mechanism of cell death induced by chemical fibrils. Nat. Chem. Biol. 10, 969–976 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Lazar, K. L., Miller-Auer, H., Getz, G. S., Orgel, J. P. R. O. & Meredith, S. C. Helix-turn-helix peptides that form alpha-helical fibrils: turn sequences drive fibril structure. Biochemistry 44, 12681–12689 (2005).

    CAS  PubMed  Google Scholar 

  206. Tayeb-Fligelman, E. et al. The cytotoxic Staphylococcus aureus PSMa3 reveals a cross-α amyloid-like fibril. Science 355, 831–833 (2017).

    PubMed  PubMed Central  Google Scholar 

  207. Sangwan, S. et al. Atomic structure of a toxic, oligomeric segment of SOD1 linked to amyotrophic lateral sclerosis (ALS). Proc. Natl Acad. Sci. USA 114, 8770–8775 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Laganowsky, A. et al. Atomic view of a toxic amyloid small oligomer. Science 335, 1228–1231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Shirahama, T. & Cohen, A. S. Structure of amyloid fibrils after negative staining and high-resolution electron microscopy. Nature 206, 737–738 (1965).

    CAS  PubMed  Google Scholar 

  210. Tattum, M. H. et al. Elongated oligomers assemble into mammalian PrP amyloid fibrils. J. Mol. Biol. 357, 975–985 (2006).

    CAS  PubMed  Google Scholar 

  211. White, H. E. et al. Globular tetramers of β(2)-microglobulin assemble into elaborate amyloid fibrils. J. Mol. Biol. 389, 48–57 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Paravastua, A. K., Leapman, R. D., Yau, W. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc. Natl Acad. Sci. USA 105, 18349–18354 (2008).

    Google Scholar 

  213. Lu, J. X. et al. Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154, 1257–1268 (2013).

    CAS  PubMed  Google Scholar 

  214. Kajava, A. V., Baxa, U., Wickner, R. B. & Steven, A. C. A model for Ure2p prion filaments and other amyloids: the parallel superpleated beta-structure. Proc. Natl Acad. Sci. USA 101, 7885–7890 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Kajava, A. V., Aebi, U. & Steven, A. C. The parallel superpleated β-structure as a model for amyloid fibrils of human amylin. J. Mol. Biol. 348, 247–252 (2005).

    CAS  PubMed  Google Scholar 

  216. Tuttle, M. D. et al. Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein. Nat. Struct. Mol. Biol. 23, 409–415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Marshall, K. E. et al. Characterizing the assembly of the Sup35 yeast prion fragment, GNNQQNY: structural changes accompany a fiber-to-crystal switch. Biophys. J. 98, 330–338 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Reynolds, N. P. et al. Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides. Nat. Commun. 8, 1338 (2017).

    PubMed  PubMed Central  Google Scholar 

  219. Saracino, G. A., Villa, A., Moro, G., Cosentino, U. & Salmona, M. Spontaneous beta-helical fold in prion protein: the case of PrP(82–146). Proteins 75, 964–976 (2009).

    CAS  PubMed  Google Scholar 

  220. Kajava, A. V. & Steven, A. C. β-rolls, β-helices, and other β-solenoid proteins. Adv. Protein Chem. 73, 55–96 (2006).

    CAS  PubMed  Google Scholar 

  221. Peng, Z., Peralta, M. D. R. & Toney, M. D. Extraordinarily stable amyloid fibrils engineered from structurally defined beta-solenoid proteins. Biochemistry 56, 6041–6050 (2017).

    CAS  PubMed  Google Scholar 

  222. Wolfram, F. et al. Catalytic mechanism and mode of action of the periplasmic alginate epimerase AlgG. J. Biol. Chem. 289, 6006–6019 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Leinala, E. K., Davies, P. L. & Jia, Z. Crystal structure of beta-helical antifreeze protein points to a general ice binding model. Structure 10, 619–627 (2002).

    CAS  PubMed  Google Scholar 

  224. Muller, J. J. et al. An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6. Structure 16, 766–775 (2008).

    PubMed  Google Scholar 

  225. Kajava, A. V., Baxa, U. & Steven, A. C. Beta arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils. FASEB J. 24, 1311–1319 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Ritter, C. et al. Correlation of structural elements and infectivity of the HET-s prion. Nature 435, 844–848 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Bousset, L. et al. Structural and functional characterization of two alpha-synuclein strains. Nat. Commun. 4, 2575 (2013).

    PubMed  Google Scholar 

  228. Goldsbury, C. S. et al. Polymorphic fibrillar assembly of human amylin. J. Struct. Biol. 119, 17–21 (1997).

    CAS  PubMed  Google Scholar 

  229. Jiménez, J. et al. The protofilament structure of insulin amyloid fibrils. Proc. Natl Acad. Sci. USA 99, 9196–9201 (2002).

    PubMed  PubMed Central  Google Scholar 

  230. Dearborn, A. D. et al. Alpha-synuclein amyloid fibrils with two entwined, asymmetrically associated protofibrils. J. Biol. Chem. 291, 2310–2318 (2016).

    CAS  PubMed  Google Scholar 

  231. Andersen, C. B. et al. Glucagon fibril polymorphism reflects differences in protofilament backbone structure. J. Mol. Biol. 397, 932–946 (2010).

    CAS  PubMed  Google Scholar 

  232. Xiao, Y. et al. Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 22, 499–505 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Chen, B., Thurber, K. R., Shewmaker, F., Wickner, R. B. & Tycko, R. Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy. Proc. Natl Acad. Sci. USA 106, 14339–14344 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Doussineau, T. et al. Mass determination of entire amyloid fibrils by using mass spectrometry. Angew. Chem. Int. Ed. Engl. 55, 2340–2344 (2016).

    CAS  PubMed  Google Scholar 

  235. Crick, F. H. C. & Rich, A. Structure of polyglyciene II. Nature 176, 780–781 (1955).

    CAS  PubMed  Google Scholar 

  236. Lee, M. et al. Zinc-binding structure of a catalytic amyloid from solid-state NMR. Proc. Natl Acad. Sci. USA 114, 6191–6196 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Viles, J. H. Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer’s, Parkinson’s and prion diseases. Coords. Chem. Rev. 256, 2271–2284 (2012).

    CAS  Google Scholar 

  238. Gath, J. et al. Yet another polymorph of α-synuclein: solid-state sequential assignments. Biomol. NMR Assign. 8, 395–404 (2014).

    CAS  PubMed  Google Scholar 

  239. Gath, J. et al. Unlike twins: an NMR comparison of two α-synuclein polymorphs featuring different toxicity. PLOS One 9, e90659 (2014).

    PubMed  PubMed Central  Google Scholar 

  240. Anfinsen, C. Principals that govern the folding of protein chains. Science 181, 223–230 (1973).

    CAS  PubMed  Google Scholar 

  241. Sidhu, A., Segers-Nolten, I., Raussens, V., Claessens, M. M. & Subramaniam, V. Distinct mechanisms determine α-synuclein fibril morphology during growth and maturation. ACS Chem. Neurosci. 8, 538–547 (2017).

    CAS  PubMed  Google Scholar 

  242. Eichner, T. & Radford, S. E. A diversity of assembly mechanisms of a generic amyloid fold. Mol. Cell 43, 8–18 (2011).

    CAS  PubMed  Google Scholar 

  243. Weissmann, C. & Flechsig, E. PrP knock-out and PrP transgenic mice in prion research. Br. Med. Bull. 66, 43–60 (2003).

    CAS  PubMed  Google Scholar 

  244. Geschwind, M. D. Prion diseases. Continuum (Minneap. Minn.) 21, 1612–1638 (2015).

    Google Scholar 

  245. Kitazawa, M., Medeiros, R. & LaFerla, F. M. Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr. Pharm. Des. 18, 1131–1147 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Khalaf, O. et al. The H50Q mutation enhances α-synuclein aggregation, secretion, and toxicity. J. Biol. Chem. 289, 21856–21876 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Appel-Cresswell, S. et al. Alpha-synuclein p. H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov. Disord. 28, 811–813 (2013).

    CAS  PubMed  Google Scholar 

  248. Lesage, S. et al. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann. Neurol. 73, 459–471 (2013).

    CAS  PubMed  Google Scholar 

  249. Nielsen, S. B. et al. Wildtype and A30P mutant α-synuclein form different fibril structures. PLOS One 8, e67713 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Petrucci, S., Ginevrino, M. & Valente, E. M. Phenotypic spectrum of α-synuclein mutations: New insights from patients and cellular models. Parkinsonism Relat. Disord. 22 (Suppl. 1), S16–S20 (2016).

    PubMed  Google Scholar 

  251. Schutz, A. K. et al. Atomic-resolution three-dimensional structure of amyloid beta fibrils bearing the Osaka mutation. Angew. Chem. Int. Ed. Engl. 54, 331–335 (2015).

    PubMed  Google Scholar 

  252. Andresen, J. M. et al. The relationship between CAG repeat length and age of onset differs for Huntington’s disease patients with juvenile onset or adult onset. Ann. Hum. Genet. 71, 295–301 (2007).

    CAS  PubMed  Google Scholar 

  253. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307, 262–265 (2005).

    CAS  PubMed  Google Scholar 

  254. Stöhr, j. et al. Purified and synthetic Alzheimer’s amyloid beta (Aβ) prions. Proc. Natl Acad. Sci. USA 109, 11025–11030 (2012).

    PubMed  PubMed Central  Google Scholar 

  255. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    CAS  PubMed  Google Scholar 

  256. Liu, J. et al. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue. Sci. Rep. 6, 33079 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Nyström, S. et al. Evidence for age-dependent in vivo conformational rearrangement within Aβ amyloid deposits. ACS Chem. Biol 8, 1128–1133 (2013).

    PubMed  Google Scholar 

  258. Perez-Nievas, B. G. et al. Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain 136, 2510–2526 (2013).

    PubMed  PubMed Central  Google Scholar 

  259. Elman, J. A. et al. Neural compensation in older people with brain amyloid-beta deposition. Nat. Neurosci. 17, 1316–1318 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Strømland, Ø., Jakubec, M., Furse, S. & Halskau, Ø. Detection of misfolded protein aggregates from a clinical perspective. J. Clin. Transl Res. 2, 11–26 (2016).

    PubMed  PubMed Central  Google Scholar 

  261. Bulawa, C. E. et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl Acad. Sci. USA 109, 9629–9634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Ludtmann, M. H. et al. Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase. J. Neurosci. 36, 10510–10521 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Pearson, H. A. & Peers, C. Physiological roles for amyloid beta peptides. J. Physiol. 575, 5–10 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Barucker, C. et al. Abeta42-oligomer interacting peptide (AIP) neutralizes toxic amyloid-beta42 species and protects synaptic structure and function. Sci. Rep. 5, 15410 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Du, W. J. et al. Brazilin inhibits amyloid beta-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. Sci. Rep. 5, 7992 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Jarosz-Griffiths, H. H., Noble, E., Rushworth, J. V. & Hooper, N. M. Amyloid-beta receptors: the good, the bad, and the prion protein. J. Biol. Chem. 291, 3174–3183 (2016).

    CAS  PubMed  Google Scholar 

  267. Mao, X. et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, aah3374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Verma, M., Vats, A. & Taneja, V. Toxic species in amyloid disorders: Oligomers or mature fibrils. Ann. Indian Acad. Neurol. 18, 138–145 (2015).

    PubMed  PubMed Central  Google Scholar 

  269. Berry, D. B. et al. Drug resistance confounding prion therapeutics. Proc. Natl Acad. Sci. USA Proc. Natl Acad. Sci. USA 110, E4160–E4169 (2013).

    CAS  PubMed  Google Scholar 

  270. Li, J., Browning, S., Mahal, S. P., Oelschlegel, A. M. & Weissmann, C. Darwinian evolution of prions in cell culture. Science 327, 869–872 (2010).

    CAS  PubMed  Google Scholar 

  271. Oelschlegel, A. M. & Weissmann, C. Acquisition of drug resistance and dependence by prions. PLOS Pathog. 9, e1003158 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Seidler, P. M. et al. Structure-based inhibitors of tau aggregation. Nat. Chem. 10, 170–176 (2018).

    CAS  PubMed  Google Scholar 

  273. Sievers, S. A. et al. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475, 96–100 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Jiang, L. et al. Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. eLife 2, e00857 (2013).

    PubMed  PubMed Central  Google Scholar 

  275. Kad, N. M. et al. Hierarchical assembly of β2-microglobulin amyloid in vitro revealed by atomic force microscopy. J. Mol. Biol. 330, 785–797 (2003).

    CAS  PubMed  Google Scholar 

  276. Watanabe-Nakayama, T. et al. High-speed atomic force microscopy reveals structural dynamics of amyloid beta1-42 aggregates. Proc. Natl Acad. Sci. USA 113, 5835–5840 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Silvers, R. et al. Aggregation and fibril structure of AβMO1-42 and Aβ1-42. Biochemistry 56, 4850–4859 (2017).

    CAS  PubMed  Google Scholar 

  278. Colvin, M. T. et al. Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. J. Am. Chem. Soc. 138, 9663–9674 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Schütz, A. K. et al. Binding of polythiophenes to amyloids: structural mapping of the pharmacophore. ACS Chem. Neurosci. 9, 475–481 (2017).

    PubMed  Google Scholar 

  280. Ries, J. et al. Superresolution imaging of amyloid fibrils with binding-activated probes. ACS Chem. Neurosci. 4, 1057–1061 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Choi, J. H., May, B. C., Wille, H. & Cohen, F. E. Molecular modeling of the misfolded insulin subunit and amyloid fibril. Biophys. J. 97, 3187–3195 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Ladner, C. L. et al. Stacked sets of parallel, in-register beta-strands of beta2-microglobulin in amyloid fibrils revealed by site-directed spin labeling and chemical labeling. J. Biol. Chem. 285, 17137–17147 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Zhang, Y. et al. Pulsed hydrogen-deuterium exchange mass spectrometry probes conformational changes in amyloid beta (Abeta) peptide aggregation. Proc. Natl Acad. Sci. USA 110, 14604–14609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Der-Sarkissian, A., Jao, C. C., Chen, J. & Langen, R. Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. J. Biol. Chem. 278, 37530–37535 (2003).

    CAS  PubMed  Google Scholar 

  285. Varkey, J. & Langen, R. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR. J. Magn. Reson. 280, 127–139 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Cohen, A. S. & Calkins, E. Electron microscopic observations on a fiberous component in amyloid of diverse origins. Nature 183, 1202–1203 (1959).

    CAS  PubMed  Google Scholar 

  287. Cohen, A. S. & Shirahama, T. High resolution electron microscopic analysis of the amyloid fibril. J. Cell Bio. 33, 679 (1967).

    Google Scholar 

  288. Astbury, W. T. X-ray studies of protein structure. Cold Spring Harb. Symp. Quant. Biol. 2, 15–27 (1934).

    CAS  Google Scholar 

  289. Jimenez, J. L., Tennent, G., Pepys, M. & Saibil, H. R. Structural diversity of ex vivo amyloid fibrils studied by cryo-electron microscopy. J. Mol. Biol. 311, 241–247 (2001).

    CAS  PubMed  Google Scholar 

  290. Schaffer, J. et al. Recombinant versus natural human 111In-beta2-microglobulin for scintigraphic detection of Abeta2m amyloid in dialysis patients. Kidney Int. 58, 873–880 (2000).

    CAS  PubMed  Google Scholar 

  291. Pras, M., Schubert, M., Zucker-Franklin, D., Rimon, A. & Franklin, E. C. The characterization of soluble amyloid prepared in water. J. Clin. Invest. 47, 924–933 (1968).

    CAS  PubMed  Google Scholar 

  292. Fändrich, M. & Dobson, C. M. The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J. 21, 5682–5690 (2002).

    PubMed  PubMed Central  Google Scholar 

  293. Sikorski, P. & Atkins, E. New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils. Biomacromolecules 6, 425–432 (2005).

    CAS  PubMed  Google Scholar 

  294. Ranson, N., Stromer, T., Bousset, L., Melki, R. & Serpell, L. C. Insights into the architecture of the Ure2p yeast protein assemblies from helical twisted fibrils. Protein Sci. 15, 2481–2487 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Graeber, M. B., Kösel, S., Grasbon-Frodl, E., Möller, H. J. & Mehraein, P. Histopathology and APOE genotype of the first Alzheimer disease patient, Auguste D. Neurogenetics 1, 223–228 (1998).

    CAS  PubMed  Google Scholar 

  296. Nicoll, A. J. et al. Amyloid-beta nanotubes are associated with prion protein-dependent synaptotoxicity. Nat. Commun. 4, 2416 (2013).

    PubMed  Google Scholar 

  297. Martins, I. C. et al. Lipids revert inert Aβ amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J. 27, 224–233 (2008).

    CAS  PubMed  Google Scholar 

  298. Jakhria, T. et al. beta2-microglobulin amyloid fibrils are nanoparticles that disrupt lysosomal membrane protein trafficking and inhibit protein degradation by lysosomes. J. Biol. Chem. 289, 35781–35794 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Fujioka, S. et al. Update on novel familial forms of Parkinson’s disease and multiple system atrophy. Parkinsonism Relat. Disord. 20, S29–S34 (2014).

    PubMed  PubMed Central  Google Scholar 

  300. Pagano, G., Ferrara, N., Brooks, D. J. & Pavese, N. Age at onset and Parkinson disease phenotype. Neurology 86, 1400–1407 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of their laboratories and their colleagues for many helpful discussions while preparing this Review. M.G.I., M.P.J., E.W.H., N.A.R and S.E.R. acknowledge funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 322408 and from the Wellcome Trust (092896MA and 204963).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the manuscript.

Corresponding author

Correspondence to Sheena E. Radford.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Protein Data Bank: http://www.rcsb.org/pdb/home/home.do

Glossary

Amyloid

Fibrils formed from proteins, marked by a characteristic cross-β organization with an ~4.7–4.8 Å repeat running down the fibril axis.

Cross-β

The structural motif consisting of β-strands organized perpendicular to the axis of a fibril and stabilized by inter-strand hydrogen bonds and dry steric zipper interfaces between adjacent β-sheets.

Chaperones

Proteins that assist in the folding, unfolding, assembly or disassembly of other macromolecular structures.

Protofilament

A structural component of an amyloid fibril with a cross-β structure that twists together with one or more additional protofibrils to form a mature amyloid fibril.

Subunits

The smallest units that make up an amyloid fibril, generally single copies of the precursor protein.

Amyloidoses

A class of diseases associated with the formation of amyloid fibrils, tangles and plaques, although the causative agents of disease have yet to be determined definitively.

Prion

A class of infectious amyloid fibrils.

Age of onset

The age at which a patient first presents symptoms. For amyloid-associated disorders, this is not necessarily directly correlated with fibril load: high fibril loads may be asymptomatic, whereas low fibril loads may lead to severe symptoms.

Haemodialysis

A dialysis-based filtration treatment that acts to replace kidney function in patients experiencing kidney failure.

Phase separation

A process driven by liquid–liquid demixing, leading to a liquid mixture separating into individual components. In cells, this can lead to localized increased concentration and supersaturation of biological molecules.

Intrinsically disordered proteins

Proteins that lack a fixed or ordered 3D structure.

Fibril load

A measure of the total amount of amyloid fibril within a sample or patient.

Native protein

The properly assembled form of a protein required for functionality.

Crossover

The distance it takes a fibril to achieve 180° of rotation. Crossover appears as the distance between the two narrowest points on a 2D EM or atomic force microscopy image of a twisted fibril.

Long-term potentiation

A persistent increase in synaptic strength after stimulation of the synapse.

Pi-stacking interactions

Attractive, noncovalent interactions between aromatic rings (phenylalanine, Tyr and Trp in proteins).

Biofilm

A group of microorganisms that have adhered to each other and/or a surface.

Gram-positive organisms

Bacteria that possess a peptidoglycan-containing cell wall, which can be positively stained with crystal violet dye, known as Gram stain.

Polymorphism

The same protein can assemble into amyloid fibrils that have different arrangements of subunits in the fibril, numbers of protofilaments, widths and/or crossover distances.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iadanza, M.G., Jackson, M.P., Hewitt, E.W. et al. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 19, 755–773 (2018). https://doi.org/10.1038/s41580-018-0060-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0060-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing