Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolites as regulators of insulin sensitivity and metabolism

Abstract

The cause of insulin resistance in obesity and type 2 diabetes mellitus (T2DM) is not limited to impaired insulin signalling but also involves the complex interplay of multiple metabolic pathways. The analysis of large data sets generated by metabolomics and lipidomics has shed new light on the roles of metabolites such as lipids, amino acids and bile acids in modulating insulin sensitivity. Metabolites can regulate insulin sensitivity directly by modulating components of the insulin signalling pathway, such as insulin receptor substrates (IRSs) and AKT, and indirectly by altering the flux of substrates through multiple metabolic pathways, including lipogenesis, lipid oxidation, protein synthesis and degradation and hepatic gluconeogenesis. Moreover, the post-translational modification of proteins by metabolites and lipids, including acetylation and palmitoylation, can alter protein function. Furthermore, the role of the microbiota in regulating substrate metabolism and insulin sensitivity is unfolding. In this Review, we discuss the emerging roles of metabolites in the pathogenesis of insulin resistance and T2DM. A comprehensive understanding of the metabolic adaptations involved in insulin resistance may enable the identification of novel targets for improving insulin sensitivity and preventing, and treating, T2DM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lipids as signalling molecules that regulate metabolism.
Fig. 2: Alterations in lipid metabolism are associated with insulin-resistant states.
Fig. 3: Lipids and metabolites modify proteins to regulate metabolism.
Fig. 4: Increased levels of branched-chain amino acids are associated with insulin resistance.

Similar content being viewed by others

References

  1. Haeusler, R. A., McGraw, T. E. & Accili, D. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol. 19, 31–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Martini, M., De Santis, M. C., Braccini, L., Gulluni, F. & Hirsch, E. PI3K/AKT signaling pathway and cancer: an updated review. Ann. Med. 46, 372–383 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Dennis, E. A. & Norris, P. C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 15, 511–523 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wymann, M. P. & Schneiter, R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9, 162–176 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Chavez, J. A. & Summers, S. A. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch. Biochem. Biophys. 419, 101–109 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Davis, J. E., Gabler, N. K., Walker-Daniels, J. & Spurlock, M. E. The c-Jun N-terminal kinase mediates the induction of oxidative stress and insulin resistance by palmitate and toll-like receptor 2 and 4 ligands in 3T3-L1 adipocytes. Horm. Metab. Res. 41, 523–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Holland, W. L. et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Invest. 121, 1858–1870 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Koska, J. et al. A human model of dietary saturated fatty acid induced insulin resistance. Metabolism 65, 1621–1628 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Stephens, F. B. et al. Lipid-induced insulin resistance is associated with an impaired skeletal muscle protein synthetic response to amino acid ingestion in healthy young men. Diabetes 64, 1615–1620 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, S., Boesch, C., Kuk, J. L. & Arslanian, S. Effects of an overnight intravenous lipid infusion on intramyocellular lipid content and insulin sensitivity in African-American versus Caucasian adolescents. Metabolism 62, 417–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Imamura, F. et al. Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and meta-analysis of randomised controlled feeding trials. PLoS Med. 13, e1002087 (2016).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Riserus, U., Willett, W. C. & Hu, F. B. Dietary fats and prevention of type 2 diabetes. Prog. Lipid Res. 48, 44–51 (2009). References 13 (meta-analysis) and 14 (review) report that SFA consumption is not associated with an increased risk of incident diabetes but that replacing dietary carbohydrates and SFAs with PUFAs is linked to improved glycaemia and insulin sensitivity.

    Article  CAS  PubMed  Google Scholar 

  15. Tao, C. et al. Short-term versus long-term effects of adipocyte toll-like receptor 4 activation on insulin resistance in male mice. Endocrinology 158, 1260–1270 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Zhang, Y. et al. TAK-242, a Toll-like receptor 4 antagonist, protects against aldosterone-induced cardiac and renal injury. PLoS ONE 10, e0142456 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Jia, L. et al. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat. Commun. 5, 3878 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Park, B. S. et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191–1195 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Schaeffler, A. et al. Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology 126, 233–245 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wang, Y. et al. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat. Commun. 8, 13997 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293, 1673–1677 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Gao, Z. et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J. Biol. Chem. 277, 48115–48121 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Rui, L. et al. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J. Clin. Invest. 107, 181–189 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Copps, K. D. et al. Irs1 serine 307 promotes insulin sensitivity in mice. Cell Metab. 11, 84–92 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Copps, K. D. & White, M. F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55, 2565–2582 (2012). References 25 and 26 show that, contrary to the results of cell-based experiments relating Ser307 phosphorylation of IRS1 to impaired insulin signalling, Ser307 in mice is a positive regulatory site that maintains proximal insulin signalling.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Frakes, A. E. & Dillin, A. The UPR(ER): sensor and coordinator of organismal homeostasis. Mol. Cell 66, 761–771 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Hotamisligil, G. S. & Davis, R. J. Cell signaling and stress responses. Cold Spring Harb. Perspect. Biol. 8, a006072 (2016).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Pierre, N. et al. Toll-like receptor 4 knockout mice are protected against endoplasmic reticulum stress induced by a high-fat diet. PLoS ONE 8, e65061 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Perry, B. D. et al. Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require Toll-like receptor 4. PLoS ONE 13, e0191313 (2018).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Robblee, M. M. et al. Saturated fatty acids engage an IRE1alpha-dependent pathway to activate the NLRP3 inflammasome in myeloid cells. Cell Rep. 14, 2611–2623 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Leamy, A. K., Egnatchik, R. A. & Young, J. D. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog. Lipid Res. 52, 165–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Ersoy, B. A., Maner-Smith, K. M., Li, Y., Alpertunga, I. & Cohen, D. E. Thioesterase-mediated control of cellular calcium homeostasis enables hepatic ER stress. J. Clin. Invest. 128, 141–156 (2018).

    Article  PubMed  Google Scholar 

  34. Holzer, R. G. et al. Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell 147, 173–184 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Corpeleijn, E. et al. Improvements in glucose tolerance and insulin sensitivity after lifestyle intervention are related to changes in serum fatty acid profile and desaturase activities: the SLIM study. Diabetologia 49, 2392–2401 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Forouhi, N. G. et al. Association of plasma phospholipid n-3 and n-6 polyunsaturated fatty acids with type 2 diabetes: the EPIC-InterAct case-cohort study. PLoS Med. 13, e1002094 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  38. Kurotani, K. et al. High levels of stearic acid, palmitoleic acid, and dihomo-gamma-linolenic acid and low levels of linoleic acid in serum cholesterol ester are associated with high insulin resistance. Nutr. Res. 32, 669–675.e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Pfeuffer, M. & Jaudszus, A. Pentadecanoic and heptadecanoic acids: multifaceted odd-chain fatty acids. Adv. Nutr. 7, 730–734 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Weitkunat, K. et al. Odd-chain fatty acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propionate. Am. J. Clin. Nutr. 105, 1544–1551 (2017).

    CAS  PubMed  Google Scholar 

  41. Lalia, A. Z. & Lanza, I. R. Insulin-sensitizing effects of omega-3 fatty acids: lost in translation? Nutrients 8, E329 (2016).

    Article  PubMed  CAS  Google Scholar 

  42. Oh, D. Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Storlien, L. H. et al. Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 237, 885–888 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Bosch, J. et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N. Engl. J. Med. 367, 309–318 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Li, X., Yu, Y. & Funk, C. D. Cyclooxygenase-2 induction in macrophages is modulated by docosahexaenoic acid via interactions with free fatty acid receptor 4 (FFA4). FASEB J. 27, 4987–4997 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, Y. et al. The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A(2) via GPR120 receptor to produce prostaglandin E(2) and plays an anti-inflammatory role in macrophages. Immunology 143, 81–95 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Bjursell, M. et al. The beneficial effects of n-3 polyunsaturated fatty acids on diet induced obesity and impaired glucose control do not require Gpr120. PLoS ONE 9, e114942 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Paerregaard, S. I. et al. FFAR4 (GPR120) signaling is not required for anti-inflammatory and insulin-sensitizing effects of omega-3 fatty acids. Mediators Inflamm. 2016, 1536047 (2016).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Serhan, C. N. et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192, 1197–1204 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Claria, J., Nguyen, B. T., Madenci, A. L., Ozaki, C. K. & Serhan, C. N. Diversity of lipid mediators in human adipose tissue depots. Am. J. Physiol. Cell Physiol. 304, C1141–C1149 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Neuhofer, A. et al. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. Diabetes 62, 1945–1956 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Gonzalez-Periz, A. et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J. 23, 1946–1957 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hellmann, J., Tang, Y., Kosuri, M., Bhatnagar, A. & Spite, M. Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice. FASEB J. 25, 2399–2407 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Titos, E. et al. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J. Immunol. 187, 5408–5418 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Chiang, N., Dalli, J., Colas, R. A. & Serhan, C. N. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. J. Exp. Med. 212, 1203–1217 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Hsiao, H. M. et al. Resolvin D1 attenuates polyinosinic-polycytidylic acid-induced inflammatory signaling in human airway epithelial cells via TAK1. J. Immunol. 193, 4980–4987 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Ohira, T. et al. Resolvin E1 receptor activation signals phosphorylation and phagocytosis. J. Biol. Chem. 285, 3451–3461 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Qian, F., Korat, A. A., Malik, V. & Hu, F. B. Metabolic effects of monounsaturated fatty acid-enriched diets compared with carbohydrate or polyunsaturated fatty acid-enriched diets in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Care 39, 1448–1457 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Schwingshackl, L. & Hoffmann, G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis. 13, 154 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  61. Nowak, C. et al. Effect of insulin resistance on monounsaturated fatty acid levels: a multi-cohort non-targeted metabolomics and Mendelian randomization study. PLoS Genet. 12, e1006379 (2016).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Perdomo, L. et al. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc. Diabetol. 14, 75 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Finucane, O. M. et al. Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1beta secretion and insulin resistance despite obesity. Diabetes 64, 2116–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Rodriguez de Fonseca, F. et al. An anorexic lipid mediator regulated by feeding. Nature 414, 209–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Schwartz, G. J. et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 8, 281–288 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Cao, H. et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134, 933–944 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Chan, K. L. et al. Palmitoleate reverses high fat-induced proinflammatory macrophage polarization via AMP-activated protein kinase (AMPK). J. Biol. Chem. 290, 16979–16988 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Souza, C. O. et al. Palmitoleic acid (n-7) attenuates the immunometabolic disturbances caused by a high-fat diet independently of PPARalpha. Mediators Inflamm. 2014, 582197 (2014).

    PubMed Central  PubMed  Google Scholar 

  69. Mozaffarian, D. et al. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am. J. Clin. Nutr. 92, 1350–1358 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Nestel, P., Clifton, P. & Noakes, M. Effects of increasing dietary palmitoleic acid compared with palmitic and oleic acids on plasma lipids of hypercholesterolemic men. J. Lipid Res. 35, 656–662 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014). This study reports the discovery of a novel class of lipids, branched FAHFAs, and shows that FAHFAs have anti-diabetic and anti-inflammatory effects.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Ma, Y. et al. An in silico MS/MS library for automatic annotation of novel FAHFA lipids. J. Cheminform. 7, 53 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Kuda, O. et al. Docosahexaenoic acid-derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties. Diabetes 65, 2580–2590 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Syed, I. et al. Palmitic acid hydroxystearic acids activate GPR40, which is involved in their beneficial effects on glucose homeostasis. Cell Metab. 27, 419–427.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee, J. et al. Branched fatty acid esters of hydroxy fatty acids (FAHFAs) protect against colitis by regulating gut innate and adaptive immune responses. J. Biol. Chem. 291, 22207–22217 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Parsons, W. H. et al. AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs. Nat. Chem. Biol. 12, 367–372 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Kolar, M. J. et al. Branched fatty acid esters of hydroxy fatty acids are preferred substrates of the MODY8 protein carboxyl ester lipase. Biochemistry 55, 4636–4641 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Raeder, H. et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat. Genet. 38, 54–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Nelson, A. T. et al. Stereochemistry of endogenous palmitic acid ester of 9-hydroxystearic acid and relevance of absolute configuration to regulation. J. Am. Chem. Soc. 139, 4943–4947 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Shulman, G. I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 1131–1141 (2014). This is a comprehensive review on the roles of ectopic lipids, especially DAGs, in insulin resistance, dyslipidaemia and cardiometabolic disease.

    Article  CAS  PubMed  Google Scholar 

  81. Erion, D. M. & Shulman, G. I. Diacylglycerol-mediated insulin resistance. Nat. Med. 16, 400–402 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Samuel, V. T., Petersen, K. F. & Shulman, G. I. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375, 2267–2277 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Szendroedi, J. et al. Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc. Natl Acad. Sci. USA 111, 9597–9602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu, C. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277, 50230–50236 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, J. K. et al. PKC-theta knockout mice are protected from fat-induced insulin resistance. J. Clin. Invest. 114, 823–827 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Li, Y. et al. Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). J. Biol. Chem. 279, 45304–45307 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Petersen, M. C. et al. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J. Clin. Invest. 126, 4361–4371 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  88. Finck, B. N. & Hall, A. M. Does diacylglycerol accumulation in fatty liver disease cause hepatic insulin resistance? Biomed. Res. Int. 2015, 104132 (2015). This review article discusses the controversies on the roles of DAGs in insulin resistance.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Samuel, V. T. et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Invest. 117, 739–745 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Ferris, H. A. & Kahn, C. R. Unraveling the paradox of selective insulin resistance in the liver: the brain-liver connection. Diabetes 65, 1481–1483 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Brown, J. M. et al. CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance. J. Lipid Res. 51, 3306–3315 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Turpin, S. M. et al. Adipose triacylglycerol lipase is a major regulator of hepatic lipid metabolism but not insulin sensitivity in mice. Diabetologia 54, 146–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Amati, F. et al. Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes 60, 2588–2597 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U. & Nishizuka, Y. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J. Biol. Chem. 255, 2273–2276 (1980).

    Article  CAS  PubMed  Google Scholar 

  95. Hannun, Y. A. & Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Park, J. W., Park, W. J. & Futerman, A. H. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671–681 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Peraldi, P., Hotamisligil, G. S., Buurman, W. A., White, M. F. & Spiegelman, B. M. Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J. Biol. Chem. 271, 13018–13022 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Chavez, J. A. & Summers, S. A. A ceramide-centric view of insulin resistance. Cell Metab. 15, 585–594 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Ussher, J. R. et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 59, 2453–2464 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Deevska, G. M. et al. Acid sphingomyelinase deficiency prevents diet-induced hepatic triacylglycerol accumulation and hyperglycemia in mice. J. Biol. Chem. 284, 8359–8368 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Blouin, C. M. et al. Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes 59, 600–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Chalfant, C. E. et al. Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. J. Biol. Chem. 274, 20313–20317 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Bourbon, N. A., Sandirasegarane, L. & Kester, M. Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest. J. Biol. Chem. 277, 3286–3292 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Hajduch, E. et al. Targeting of PKCzeta and PKB to caveolin-enriched microdomains represents a crucial step underpinning the disruption in PKB-directed signalling by ceramide. Biochem. J. 410, 369–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Powell, D. J., Hajduch, E., Kular, G. & Hundal, H. S. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol. Cell. Biol. 23, 7794–7808 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Petersen, M. C. & Shulman, G. I. Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends Pharmacol. Sci. 38, 649–665 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Merrill, A. H. Jr Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem. Rev. 111, 6387–6422 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Bergman, B. C. et al. Muscle sphingolipids during rest and exercise: a C18:0 signature for insulin resistance in humans. Diabetologia 59, 785–798 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Chung, J. O., Koutsari, C., Blachnio-Zabielska, A. U., Hames, K. C. & Jensen, M. D. Intramyocellular ceramides: subcellular concentrations and fractional de novo synthesis in postabsorptive humans. Diabetes 66, 2082–2091 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Montgomery, M. K. et al. Regulation of glucose homeostasis and insulin action by ceramide acyl-chain length: a beneficial role for very long-chain sphingolipid species. Biochim. Biophys. Acta 1861, 1828–1839 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Raichur, S. et al. CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 687–695 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785–789 (1963).

    Article  CAS  PubMed  Google Scholar 

  115. Goodpaster, B. H. & Sparks, L. M. Metabolic flexibility in health and disease. Cell Metab. 25, 1027–1036 (2017). This comprehensive review discusses the mechanisms for insulin resistance induced by metabolic inflexibility in muscle and adipose tissue.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Kelley, D. E., Goodpaster, B., Wing, R. R. & Simoneau, J. A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. 277, E1130–E1141 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Kelley, D. E. & Mandarino, L. J. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49, 677–683 (2000). References 116 and 117 show the evidence for and describe the concept of metabolic inflexibility in the development of insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  118. Guilherme, A., Virbasius, J. V., Puri, V. & Czech, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367–377 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015). This study shows that adipose inflammation-stimulated lipolysis increases the influx of acetyl-CoA into the liver, which activates pyruvate carboxylase and promotes hepatic gluconeogenesis, leading to hyperglycaemia. This occurs in insulin-resistant states such as obesity and T2DM.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Zhang, H. H., Halbleib, M., Ahmad, F., Manganiello, V. C. & Greenberg, A. S. Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 51, 2929–2935 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Grant, R. W. & Stephens, J. M. Fat in flames: influence of cytokines and pattern recognition receptors on adipocyte lipolysis. Am. J. Physiol. Endocrinol. Metab. 309, E205–E213 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Lee, S. A., Yuen, J. J., Jiang, H., Kahn, B. B. & Blaner, W. S. Adipocyte-specific overexpression of retinol-binding protein 4 causes hepatic steatosis in mice. Hepatology 64, 1534–1546 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Yang, Q. et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Morigny, P., Houssier, M., Mouisel, E. & Langin, D. Adipocyte lipolysis and insulin resistance. Biochimie 125, 259–266 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Aguer, C. et al. Acylcarnitines: potential implications for skeletal muscle insulin resistance. FASEB J. 29, 336–345 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Koves, T. R. et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 7, 45–56 (2008). This paper provides evidence of increased incomplete β-oxidation of lipids in states of insulin resistance and obesity, resulting in the accumulation of acylcarnitines.

    Article  CAS  PubMed  Google Scholar 

  127. Muoio, D. M. & Neufer, P. D. Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab. 15, 595–605 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Muoio, D. M. et al. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab. 15, 764–777 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Liepinsh, E. et al. Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance. Pharmacol. Res. 113, 788–795 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Bene, J., Hadzsiev, K. & Melegh, B. Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutr. Diabetes 8, 8 (2018).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Nurjhan, N., Consoli, A. & Gerich, J. Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. J. Clin. Invest. 89, 169–175 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Best, C. H. & Ridout, J. H. The effects of cholesterol and choline on liver fat. J. Physiol. 86, 343–352 (1936).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Li, Z. & Vance, D. E. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 49, 1187–1194 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Raubenheimer, P. J., Nyirenda, M. J. & Walker, B. R. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes 55, 2015–2020 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Meikle, P. J. & Summers, S. A. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat. Rev. Endocrinol. 13, 79–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. van der Veen, J. N. et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta 1859, 1558–1572 (2017).

    Article  CAS  Google Scholar 

  137. Lee, J. M. et al. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature 474, 506–510 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Liu, S. et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature 502, 550–554 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Rong, X. et al. LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition. Cell Metab. 18, 685–697 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Singh, A. B. & Liu, J. Identification of hepatic lysophosphatidylcholine acyltransferase 3 as a novel target gene regulated by peroxisome proliferator-activated receptor delta. J. Biol. Chem. 292, 884–897 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Cash, J. G. & Hui, D. Y. Liver-specific overexpression of LPCAT3 reduces postprandial hyperglycemia and improves lipoprotein metabolic profile in mice. Nutr. Diabetes 6, e206 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Drazic, A., Myklebust, L. M., Ree, R. & Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta 1864, 1372–1401 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Menzies, K. J., Zhang, H., Katsyuba, E. & Auwerx, J. Protein acetylation in metabolism — metabolites and cofactors. Nat. Rev. Endocrinol. 12, 43–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Moussaieff, A. et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21, 392–402 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Lee, J. V. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306–319 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Donohoe, D. R. et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612–626 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Cai, L., Sutter, B. M., Li, B. & Tu, B. P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426–437 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Carrer, A. et al. Impact of a high-fat diet on tissue acyl-coA and histone acetylation levels. J. Biol. Chem. 292, 3312–3322 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Lerin, C. et al. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab. 3, 429–438 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Sakai, M. et al. The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch. Nat. Commun. 7, 13147 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Liu, Y. et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269–273 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Park, J. M., Kim, T. H., Jo, S. H., Kim, M. Y. & Ahn, Y. H. Acetylation of glucokinase regulatory protein decreases glucose metabolism by suppressing glucokinase activity. Sci. Rep. 5, 17395 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Fang, S. et al. The p300 acetylase is critical for ligand-activated farnesoid X receptor (FXR) induction of SHP. J. Biol. Chem. 283, 35086–35095 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Kemper, J. K. et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10, 392–404 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Ma, K., Saha, P. K., Chan, L. & Moore, D. D. Farnesoid X receptor is essential for normal glucose homeostasis. J. Clin. Invest. 116, 1102–1109 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Banks, A. S. et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 8, 333–341 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M. & Tschop, M. H. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl Acad. Sci. USA 105, 9793–9798 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Purushotham, A., Xu, Q. & Li, X. Systemic SIRT1 insufficiency results in disruption of energy homeostasis and steroid hormone metabolism upon high-fat-diet feeding. FASEB J. 26, 656–667 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Xu, F. et al. Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/− mice: a role of lipid mobilization and inflammation. Endocrinology 151, 2504–2514 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Chalkiadaki, A. & Guarente, L. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 16, 180–188 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Gillum, M. P. et al. SirT1 regulates adipose tissue inflammation. Diabetes 60, 3235–3245 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. White, A. T. et al. Skeletal muscle-specific overexpression of SIRT1 does not enhance whole-body energy expenditure or insulin sensitivity in young mice. Diabetologia 56, 1629–1637 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. White, A. T. et al. High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression. Am. J. Physiol. Endocrinol. Metab. 307, E764–772 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Qiang, L. et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 150, 620–632 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Li, Y. et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J. 25, 1664–1679 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Wang, R. H. et al. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J. Clin. Invest. 121, 4477–4490 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Daitoku, H. et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl Acad. Sci. USA 101, 10042–10047 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Matsuzaki, H. et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc. Natl Acad. Sci. USA 102, 11278–11283 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rodgers, J. T. & Puigserver, P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl Acad. Sci. USA 104, 12861–12866 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hirschey, M. D. et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177–190 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Ahn, B. H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447–14452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lombard, D. B. et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807–8814 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Lantier, L. et al. SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high-fat-fed mice. Diabetes 64, 3081–3092 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Fernandez-Marcos, P. J. et al. Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci. Rep. 2, 425 (2012).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  178. Hancock, C. R. et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc. Natl Acad. Sci. USA 105, 7815–7820 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Holloszy, J. O. “Deficiency” of mitochondria in muscle does not cause insulin resistance. Diabetes 62, 1036–1040 (2013). References 178 and 179 provide evidence that impaired mitochondrial function may not be a causative factor for insulin resistance.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  180. Holloway, G. P., Bonen, A. & Spriet, L. L. Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals. Am. J. Clin. Nutr. 89, 455S–462S (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Ryu, D. et al. A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function. Cell Metab. 20, 856–869 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Shin, J. et al. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 5, 654–665 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Yoshizawa, T. et al. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab. 19, 712–721 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Canto, C., Menzies, K. J. & Auwerx, J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315–1319 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  186. Sun, Z. et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat. Med. 18, 934–942 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Hong, S. et al. Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion. Nat. Med. 23, 223–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Montgomery, R. L. et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Invest. 118, 3588–3597 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Sun, Z. et al. Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J. Biol. Chem. 286, 33301–33309 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  190. Wang, S. et al. Insulin and mTOR pathway regulate HDAC3-mediated deacetylation and activation of PGK1. PLoS Biol. 13, e1002243 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  191. Yang, X. & Qian, K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18, 452–465 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Hirschey, M. D. & Zhao, Y. Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol. Cell Proteomics 14, 2308–2315 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Resh, M. D. Fatty acylation of proteins: the long and the short of it. Prog. Lipid Res. 63, 120–131 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  195. Guan, X. & Fierke, C. A. Understanding protein palmitoylation: biological significance and enzymology. Sci. China Chem. 54, 1888–1897 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  196. Yalovsky, S., Rodr Guez-Concepcion, M. & Gruissem, W. Lipid modifications of proteins - slipping in and out of membranes. Trends Plant Sci. 4, 439–445 (1999).

    Article  CAS  PubMed  Google Scholar 

  197. Ren, W., Jhala, U. S. & Du, K. Proteomic analysis of protein palmitoylation in adipocytes. Adipocyte 2, 17–28 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  198. Du, K., Murakami, S., Sun, Y., Kilpatrick, C. L. & Luscher, B. DHHC7 palmitoylates glucose transporter 4 (Glut4) and regulates Glut4 membrane translocation. J. Biol. Chem. 292, 2979–2991 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Ren, W., Sun, Y. & Du, K. Glut4 palmitoylation at Cys223 plays a critical role in Glut4 membrane trafficking. Biochem. Biophys. Res. Commun. 460, 709–714 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  200. Wei, X. et al. De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. J. Biol. Chem. 286, 2933–2945 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Spinelli, M. et al. Brain insulin resistance impairs hippocampal synaptic plasticity and memory by increasing GluA1 palmitoylation through FoxO3a. Nat. Commun. 8, 2009 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  202. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  203. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18, 190–195 (2010).

    Article  Google Scholar 

  204. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013). References 202 and 204 provide evidence of altered gut microbiota in obesity and insulin resistance and show that this increases the propensity to develop obesity and insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  205. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916 e917 (2012).

    Article  CAS  PubMed  Google Scholar 

  206. Todesco, T., Rao, A. V., Bosello, O. & Jenkins, D. J. Propionate lowers blood glucose and alters lipid metabolism in healthy subjects. Am. J. Clin. Nutr. 54, 860–865 (1991).

    Article  CAS  PubMed  Google Scholar 

  207. Venter, C. S., Vorster, H. H. & Cummings, J. H. Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am. J. Gastroenterol. 85, 549–553 (1990).

    CAS  PubMed  Google Scholar 

  208. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    Article  PubMed  CAS  Google Scholar 

  210. den Besten, G. et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation. Diabetes 64, 2398–2408 (2015).

    Article  CAS  Google Scholar 

  211. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    Article  CAS  PubMed  Google Scholar 

  212. Gao, Z. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  213. Perry, R. J. et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  214. Ang, Z. & Ding, J. L. GPR41 and GPR43 in obesity and inflammation — protective or causative? Front. Immunol. 7, 28 (2016).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  215. Brown, A. J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

    Article  CAS  PubMed  Google Scholar 

  216. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Karaki, S. et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 39, 135–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  218. Thangaraju, M. et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69, 2826–2832 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  219. Jiang, L. et al. Increased brain uptake and oxidation of acetate in heavy drinkers. J. Clin. Invest. 123, 1605–1614 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Al-Lahham, S. H. et al. Regulation of adipokine production in human adipose tissue by propionic acid. Eur. J. Clin. Invest. 40, 401–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  221. Xiong, Y. et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl Acad. Sci. USA 101, 1045–1050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Freeland, K. R. & Wolever, T. M. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br. J. Nutr. 103, 460–466 (2010).

    Article  CAS  PubMed  Google Scholar 

  223. Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. (Lond.) 39, 424–429 (2015).

    Article  CAS  Google Scholar 

  224. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  225. Aberdein, N., Schweizer, M. & Ball, D. Sodium acetate decreases phosphorylation of hormone sensitive lipase in isoproterenol-stimulated 3T3-L1 mature adipocytes. Adipocyte 3, 121–125 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  226. Ge, H. et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149, 4519–4526 (2008).

    Article  CAS  PubMed  Google Scholar 

  227. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  228. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  229. Al-Lahham, S. et al. Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects. Eur. J. Clin. Invest. 42, 357–364 (2012).

    Article  CAS  PubMed  Google Scholar 

  230. Liu, T. et al. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-kappaB pathway in RAW264.7 cells. Inflammation 35, 1676–1684 (2012).

    Article  CAS  PubMed  Google Scholar 

  231. Cox, M. A. et al. Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E(2) and cytokines. World J. Gastroenterol. 15, 5549–5557 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  232. Li, G., Yao, W. & Jiang, H. Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue. J. Nutr. 144, 1887–1895 (2014).

    Article  CAS  PubMed  Google Scholar 

  233. Dewulf, E. M. et al. Evaluation of the relationship between GPR43 and adiposity in human. Nutr. Metab. 10, 11 (2013).

    Article  CAS  Google Scholar 

  234. Hong, Y. H. et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099 (2005).

    Article  CAS  PubMed  Google Scholar 

  235. Priyadarshini, M. et al. An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol. Endocrinol. 29, 1055–1066 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  236. Felig, P., Marliss, E. & Cahill, G. F. Jr. Plasma amino acid levels and insulin secretion in obesity. N. Engl. J. Med. 281, 811–816 (1969).

    Article  CAS  PubMed  Google Scholar 

  237. Cheng, S. et al. Adipose tissue dysfunction and altered systemic amino acid metabolism are associated with non-alcoholic fatty liver disease. PLoS ONE 10, e0138889 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  238. Iwasa, M. et al. Elevation of branched-chain amino acid levels in diabetes and NAFL and changes with antidiabetic drug treatment. Obes. Res. Clin. Pract. 9, 293–297 (2015).

    Article  PubMed  Google Scholar 

  239. Bhattacharya, S. et al. Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis 232, 191–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  240. Shah, S. H. et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ. Cardiovasc. Genet. 3, 207–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  241. Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  242. Wurtz, P. et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36, 648–655 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  243. Newgard, C. B. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 25, 43–56 (2017). This comprehensive review discusses the emerging roles of metabolites, especially BCAAs, in insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  244. Shah, S. H. & Newgard, C. B. Integrated metabolomics and genomics: systems approaches to biomarkers and mechanisms of cardiovascular disease. Circ. Cardiovasc. Genet. 8, 410–419 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  245. Newgard, C. B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15, 606–614 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  246. She, P. et al. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am. J. Physiol. Endocrinol. Metab. 293, E1552–E1563 (2007).

    Article  CAS  PubMed  Google Scholar 

  247. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  248. Lackey, D. E. et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am. J. Physiol. Endocrinol. Metab. 304, E1175–E1187 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  249. Herman, M. A., She, P., Peroni, O. D., Lynch, C. J. & Kahn, B. B. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 285, 11348–11356 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  250. Burrill, J. S. et al. Inflammation and ER stress regulate branched-chain amino acid uptake and metabolism in adipocytes. Mol. Endocrinol. 29, 411–420 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  251. Zimmerman, H. A., Olson, K. C., Chen, G. & Lynch, C. J. Adipose transplant for inborn errors of branched chain amino acid metabolism in mice. Mol. Genet. Metab. 109, 345–353 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  252. Shin, A. C. et al. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metab. 20, 898–909 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  253. Lefort, N. et al. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes 59, 2444–2452 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  254. White, P. J. et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol. Metab. 5, 538–551 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  255. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  256. Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. PLoS Med. 13, e1002179 (2016).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  257. Smith, G. I. et al. Protein ingestion induces muscle insulin resistance independent of leucine-mediated mTOR activation. Diabetes 64, 1555–1563 (2015).

    Article  CAS  PubMed  Google Scholar 

  258. Macotela, Y. et al. Dietary leucine — an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS ONE 6, e21187 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  259. Zeanandin, G. et al. Differential effect of long-term leucine supplementation on skeletal muscle and adipose tissue in old rats: an insulin signaling pathway approach. Age (Dordr) 34, 371–387 (2012).

    Article  CAS  Google Scholar 

  260. Xiao, F. et al. Effects of individual branched-chain amino acids deprivation on insulin sensitivity and glucose metabolism in mice. Metabolism 63, 841–850 (2014).

    Article  CAS  PubMed  Google Scholar 

  261. Jang, C. et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22, 421–426 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  262. Roberts, L. D. et al. beta-Aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 19, 96–108 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  263. Sun, H. et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133, 2038–2049 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  264. Li, T. et al. Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metab. 25, 374–385 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  265. Green, C. R. et al. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat. Chem. Biol. 12, 15–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  266. Su, X. et al. Adipose tissue monomethyl branched-chain fatty acids and insulin sensitivity: effects of obesity and weight loss. Obesity (Silver Spring) 23, 329–334 (2015).

    Article  CAS  Google Scholar 

  267. Malloy, V. L. et al. Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell 5, 305–314 (2006).

    Article  CAS  PubMed  Google Scholar 

  268. Stone, K. P., Wanders, D., Orgeron, M., Cortez, C. C. & Gettys, T. W. Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes 63, 3721–3733 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  269. Wanders, D. et al. UCP1 is an essential mediator of the effects of methionine restriction on energy balance but not insulin sensitivity. FASEB J. 29, 2603–2615 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  270. Wanders, D. et al. FGF21 mediates the thermogenic and insulin-sensitizing effects of dietary methionine restriction but not its effects on hepatic lipid metabolism. Diabetes 66, 858–867 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  271. Epner, D. E., Morrow, S., Wilcox, M. & Houghton, J. L. Nutrient intake and nutritional indexes in adults with metastatic cancer on a phase I clinical trial of dietary methionine restriction. Nutr. Cancer 42, 158–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  272. Stone, K. P. et al. Compromised responses to dietary methionine restriction in adipose tissue but not liver of ob/ob mice. Obesity (Silver Spring) 23, 1836–1844 (2015).

    Article  CAS  Google Scholar 

  273. Mentch, S. J. et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861–873 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  274. Chen, T. et al. Tryptophan predicts the risk for future type 2 diabetes. PLoS ONE 11, e0162192 (2016).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  275. Shah, S. H. et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 55, 321–330 (2012).

    Article  CAS  PubMed  Google Scholar 

  276. Laferrere, B. et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci. Transl Med. 3, 80re82 (2011).

    Article  CAS  Google Scholar 

  277. Cotter, D. G. et al. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J. Clin. Invest. 124, 5175–5190 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  278. Puchalska, P. & Crawford, P. A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  279. Taggart, A. K. et al. D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 280, 26649–26652 (2005).

    Article  CAS  PubMed  Google Scholar 

  280. Kimura, I. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl Acad. Sci. USA 108, 8030–8035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Shimazu, T. et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  282. Goldberg, E. L. et al. beta-Hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep. 18, 2077–2087 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  283. Youm, Y. H. et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  284. Rheinheimer, J., de Souza, B. M., Cardoso, N. S., Bauer, A. C. & Crispim, D. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism 74, 1–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  285. Houstis, N., Rosen, E. D. & Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948 (2006).

    Article  CAS  PubMed  Google Scholar 

  286. Fisher, F. M. & Maratos-Flier, E. Understanding the physiology of FGF21. Annu. Rev. Physiol. 78, 223–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  287. Foster, G. D. et al. A randomized trial of a low-carbohydrate diet for obesity. N. Engl. J. Med. 348, 2082–2090 (2003).

    Article  CAS  PubMed  Google Scholar 

  288. Chavez, A. O. et al. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 32, 1542–1546 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  289. Fazeli, P. K. et al. FGF21 and the late adaptive response to starvation in humans. J. Clin. Invest. 125, 4601–4611 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  290. Douris, N. et al. Beta-adrenergic receptors are critical for weight loss but not for other metabolic adaptations to the consumption of a ketogenic diet in male mice. Mol. Metab. 6, 854–862 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  291. Chavez-Talavera, O., Tailleux, A., Lefebvre, P. & Staels, B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152, 1679–1694.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  292. Preidis, G. A., Kim, K. H. & Moore, D. D. Nutrient-sensing nuclear receptors PPARalpha and FXR control liver energy balance. J. Clin. Invest. 127, 1193–1201 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  293. Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

    Article  CAS  PubMed  Google Scholar 

  294. Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).

    Article  CAS  PubMed  Google Scholar 

  295. Broeders, E. P. et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 22, 418–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  296. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  297. Somm, E. et al. beta-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. JCI Insight 2, 91809 (2017).

    Article  PubMed  Google Scholar 

  298. Fujisaka, S. et al. Antibiotic effects on gut microbiota and metabolism are host dependent. J. Clin. Invest. 126, 4430–4443 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  299. Kumar, D. P. et al. Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet alpha cells to promote glucose homeostasis. J. Biol. Chem. 291, 6626–6640 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  300. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  301. Ding, L. et al. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice. Hepatology 64, 760–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  302. Weber, G. et al. Regulation of purine and pyrimidine metabolism by insulin and by resistance to tiazofurin. Adv. Enzyme Regul. 23, 81–99 (1985).

    Article  CAS  PubMed  Google Scholar 

  303. Pelley, J. W. (ed.) Purine, Pyrimidine, and Single Carbon Metabolism, (Elsevier, 2012).

  304. Deng, Y. et al. An adipo-biliary-uridine axis that regulates energy homeostasis. Science 355, eaaf5375 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  305. Yamamoto, T. et al. Relationship between plasma uridine and insulin resistance in patients with non-insulin-dependent diabetes mellitus. Nucleosides Nucleotides Nucleic Acids 29, 504–508 (2010).

    Article  CAS  PubMed  Google Scholar 

  306. Hamada, T. et al. Plasma levels of uridine correlate with blood pressure and indicators of myogenic purine degradation and insulin resistance in hypertensive patients. Circ. J. 71, 354–356 (2007).

    Article  CAS  PubMed  Google Scholar 

  307. Urasaki, Y., Pizzorno, G. & Le, T. T. Chronic uridine administration induces fatty liver and pre-diabetic conditions in mice. PLoS ONE 11, e0146994 (2016).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  308. Krylova, I. B., Bulion, V. V., Selina, E. N., Mironova, G. D. & Sapronov, N. S. Effect of uridine on energy metabolism, LPO, and antioxidant system in the myocardium under conditions of acute coronary insufficiency. Bull. Exp. Biol. Med. 153, 644–646 (2012).

    Article  CAS  PubMed  Google Scholar 

  309. Le, T. T. et al. Disruption of uridine homeostasis links liver pyrimidine metabolism to lipid accumulation. J. Lipid Res. 54, 1044–1057 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  310. Hall, A. M. et al. Abrogating monoacylglycerol acyltransferase activity in liver improves glucose tolerance and hepatic insulin signaling in obese mice. Diabetes 63, 2284–2296 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  311. Agarwal, A. K. et al. Mogat1 deletion does not ameliorate hepatic steatosis in lipodystrophic (Agpat2−/−) or obese (ob/ob) mice. J. Lipid Res. 57, 616–630 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  312. Ryu, D. et al. Endoplasmic reticulum stress promotes LIPIN2-dependent hepatic insulin resistance. Diabetes 60, 1072–1081 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  313. Ryu, D. et al. TORC2 regulates hepatic insulin signaling via a mammalian phosphatidic acid phosphatase, LIPIN1. Cell Metab. 9, 240–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  314. Schweitzer, G. G. et al. Liver-specific loss of lipin-1-mediated phosphatidic acid phosphatase activity does not mitigate intrahepatic TG accumulation in mice. J. Lipid Res. 56, 848–858 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  315. Chibalin, A. V. et al. Downregulation of diacylglycerol kinase delta contributes to hyperglycemia-induced insulin resistance. Cell 132, 375–386 (2008).

    Article  CAS  PubMed  Google Scholar 

  316. Zhang, C. et al. Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol. J. Biol. Chem. 290, 3519–3528 (2015).

    Article  CAS  PubMed  Google Scholar 

  317. Jornayvaz, F. R. et al. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. Proc. Natl Acad. Sci. USA 108, 5748–5752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Monetti, M. et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab. 6, 69–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  319. Choi, C. S. et al. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J. Biol. Chem. 282, 22678–22688 (2007).

    Article  CAS  PubMed  Google Scholar 

  320. Aburasayn, H., Al Batran, R. & Ussher, J. R. Targeting ceramide metabolism in obesity. Am. J. Physiol. Endocrinol. Metab. 311, E423–435 (2016).

    Article  PubMed  Google Scholar 

  321. Fayyaz, S. et al. Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P2 receptor subtype. Diabetologia 57, 373–382 (2014).

    Article  CAS  PubMed  Google Scholar 

  322. Hu, W., Bielawski, J., Samad, F., Merrill, A. H. Jr & Cowart, L. A. Palmitate increases sphingosine-1-phosphate in C2C12 myotubes via upregulation of sphingosine kinase message and activity. J. Lipid Res. 50, 1852–1862 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  323. Kaiser, C. & James, S. R. Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. BMC Biol. 2, 23 (2004).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  324. Cao, J. et al. Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity. Nat. Commun. 8, 131 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  325. LaBarge, S., Migdal, C. & Schenk, S. Is acetylation a metabolic rheostat that regulates skeletal muscle insulin action? Mol. Cells 38, 297–303 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  326. Zhao, S. et al. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  327. Sundaresan, N. R. et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci. Signal 4, ra46 (2011).

    Article  CAS  PubMed  Google Scholar 

  328. Glidden, E. J. et al. Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J. Biol. Chem. 287, 581–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  329. Yu, J. et al. Regulation of serine-threonine kinase Akt activation by NAD+-dependent deacetylase SIRT7. Cell Rep. 18, 1229–1240 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  330. Boutant, M. & Canto, C. SIRT1 metabolic actions: integrating recent advances from mouse models. Mol. Metab. 3, 5–18 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Santoro for comments on the manuscript. Q.Y. is supported by US National Institutes of Health (NIH) grant R01 DK100385; B.B.K. is supported by NIH R01 DK43051, R01 DK106210, R01 DK107405 and a grant from the JPB Foundation; A.V. is supported by NIH R01 DK106210.

Author information

Authors and Affiliations

Authors

Contributions

Q.Y., A.V. and B.B.K. contributed to discussion of the content, wrote the article and reviewed and edited the manuscript.

Corresponding authors

Correspondence to Qin Yang or Barbara B. Kahn.

Ethics declarations

Competing interests

B.B.K. is an inventor on patents related to the fatty acid esters of hydroxy fatty acids. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Toll-like receptors

(TLRs). A family of pattern-recognition receptors with a role in innate immunity. For example, TLR4 is activated upon dimerization with the co-receptor myeloid differentiation protein 2 (MD2); signalling via TLR4–MD2 results in the transcription of pro-inflammatory genes.

Mendelian randomization

A novel epidemiological study design that uses genetic variants to investigate the causal relationship of a biomarker to the risk of having a phenotype or disease.

Stereoisomers

Two molecules that have the same molecular formula but differ in the orientation of atoms. Enantiomers are stereoisomers that are mirror images of each other; an enantiomer is labelled ‘R’ in its right-handed configuration and ‘S’ in its left-handed configuration.

Stereospecific numbering

(sn). The sn position is often used to define the configuration of glycerol-containing metabolites. When the OH group on the second carbon (sn-2) of glycerol is oriented to the left, the top (first) carbon is at the sn-1 position and the bottom (third) carbon is at the sn-3 position.

Non-alcoholic steatohepatitis

(NASH). Hepatitis caused by excessive fat deposition in the liver that is not related to heavy alcohol use.

Lands cycle

Cycles to remodel phospholipids by first de-acylating and then re-acylating them, thereby altering the fatty acid moiety to generate mature phospholipids.

Anaplerotic pathways

Pathways that replenish tricarboxylic acid cycle intermediates, which can then be used for energy production or for gluconeogenesis in the liver.

Periportal neural system

The nervous system that innervates the liver.

L cells

A subset of entero-endocrine cells that secrete gut peptides such as glucagon-like peptide 1 (GLP1), incretins, etc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Vijayakumar, A. & Kahn, B.B. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol 19, 654–672 (2018). https://doi.org/10.1038/s41580-018-0044-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0044-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research