Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translation deregulation in human disease

Abstract

Advances in sequencing and high-throughput techniques have provided an unprecedented opportunity to interrogate human diseases on a genome-wide scale. The list of disease-causing mutations is expanding rapidly, and mutations affecting mRNA translation are no exception. Translation (protein synthesis) is one of the most complex processes in the cell. The orchestrated action of ribosomes, tRNAs and numerous translation factors decodes the information contained in mRNA into a polypeptide chain. The intricate nature of this process renders it susceptible to deregulation at multiple levels. In this Review, we summarize current evidence of translation deregulation in human diseases other than cancer. We discuss translation-related diseases on the basis of the molecular aberration that underpins their pathogenesis (including tRNA dysfunction, ribosomopathies, deregulation of the integrated stress response and deregulation of the mTOR pathway) and describe how deregulation of translation generates the phenotypic variability observed in these disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Defects in tRNAs, aminoacyl-tRNA synthetases and translation elongation factors.
Fig. 2: Human diseases linked to mitochondrial or cytosolic tRNA modifications.
Fig. 3: A simplified overview of ribosome biogenesis.
Fig. 4: Integrated stress response-related diseases.
Fig. 5: Human diseases linked to the mTOR complex 1 pathway.
Fig. 6: Proposed mechanisms for tissue specificity of diseases caused by deregulation of protein synthesis.

Similar content being viewed by others

References

  1. Shoffner, J. M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61, 931–937 (1990).This study provides the first link between mutation of a translation factor and an inherited human disease.

    CAS  PubMed  Google Scholar 

  2. Lucas, C. L., Chandra, A., Nejentsev, S., Condliffe, A. M. & Okkenhaug, K. PI3Kdelta and primary immunodeficiencies. Nat. Rev. Immunol. 16, 702–714 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Piccirillo, C. A., Bjur, E., Topisirovic, I., Sonenberg, N. & Larsson, O. Translational control of immune responses: from transcripts to translatomes. Nat. Immunol. 15, 503–511 (2014).

    CAS  PubMed  Google Scholar 

  4. Morita, M. et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 18, 698–711 (2013).

    CAS  PubMed  Google Scholar 

  5. Buffington, S. A., Huang, W. & Costa-Mattioli, M. Translational control in synaptic plasticity and cognitive dysfunction. Annu. Rev. Neurosci. 37, 17–38 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhat, M. et al. Targeting the translation machinery in cancer. Nat. Rev. Drug Discov. 14, 261–278 (2015).

    CAS  PubMed  Google Scholar 

  7. Truitt, M. L. & Ruggero, D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer 16, 288–304 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Walsh, D., Mathews, M. B. & Mohr, I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb. Persp. Biol. 5, a012351 (2013).

    Google Scholar 

  9. Robichaud, N., Sonenberg, N., Ruggero, D. & Schneider, R. J. Translational control in cancer. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a032896 (2018).

    Article  Google Scholar 

  10. Stern-Ginossar, N., Thompson, S. R., Mathews, M. B. & Mohr, I. Translational control in virus-infected cells. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a033001 (2018).

    Article  Google Scholar 

  11. Hershey, J. W. B., Sonenberg, N. & Mathews, M. B. Principles of translational control. Cold Spring Harb. Persp. Biol. https://doi.org/10.1101/cshperspect.a032607 (2018).

    Article  Google Scholar 

  12. Yan, X., Hoek, T. A., Vale, R. D. & Tanenbaum, M. E. Dynamics of translation of single mRNA molecules in vivo. Cell 165, 976–989 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, B., Eliscovich, C., Yoon, Y. J. & Singer, R. H. Translation dynamics of single mRNAs in live cells and neurons. Science 352, 1430–1435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Morisaki, T. et al. Real-time quantification of single RNA translation dynamics in living cells. Science 352, 1425–1429 (2016).

    CAS  PubMed  Google Scholar 

  15. Wek, R. C. Role of eIF2alpha kinases in translational control and adaptation to cellular stress. Cold Spring Harbor Persp. Biol. 10, a032870 (2018).

    Google Scholar 

  16. Proud, C. G. Phosphorylation and signal transduction pathways in translational control. Cold Spring Harbor Persp. Biol. https://doi.org/10.1101/cshperspect.a033050 (2018).

    Article  Google Scholar 

  17. Smits, P., Smeitink, J. & van den Heuvel, L. Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J. Biomed. Biotechnol. 2010, 737385 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Suomalainen, A. & Battersby, B. J. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat. Rev. Mol. Cell Biol. 19, 77–92 (2018).

    CAS  PubMed  Google Scholar 

  19. Iadevaia, V., Huo, Y., Zhang, Z., Foster, L. J. & Proud, C. G. Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochem. Soc. Trans. 40, 168–172 (2012).

    CAS  PubMed  Google Scholar 

  20. Braun, D. A. et al. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat. Genet. 49, 1529–1538 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Eyries, M. et al. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat. Genet. 46, 65–69 (2014).This paper reports the link between recessive mutations in GCN2 and PVOD.

    CAS  PubMed  Google Scholar 

  22. Stessman, H. A. et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 49, 515–526 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Goodenbour, J. M. & Pan, T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res. 34, 6137–6146 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Budde, B. S. et al. tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat. Genet. 40, 1113–1118 (2008).This study provides the link between mutation in TSEN complex subunits and pontocerebellar hypoplasia.

    CAS  PubMed  Google Scholar 

  25. Breuss, M. W. et al. Autosomal-recessive mutations in the tRNA splicing endonuclease subunit TSEN15 cause pontocerebellar hypoplasia and progressive microcephaly. Am. J. Hum. Genet. 99, 785 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Karaca, E. et al. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157, 636–650 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schaffer, A. E. et al. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 157, 651–663 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Birky, C. W. Jr The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu. Rev. Genet. 35, 125–148 (2001).

    CAS  PubMed  Google Scholar 

  29. Song, S. et al. DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. Proc. Natl Acad. Sci. USA 102, 4990–4995 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Neiman, M. & Taylor, D. R. The causes of mutation accumulation in mitochondrial genomes. Proc. Biol. Sci. 276, 1201–1209 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schon, E. A. Mitochondrial genetics and disease. Trends Biochem. Sci. 25, 555–560 (2000).

    CAS  PubMed  Google Scholar 

  32. Abbott, J. A., Francklyn, C. S. & Robey-Bond, S. M. Transfer RNA and human disease. Front. Genet. 5, 158 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Lombes, A. et al. Myoclonic epilepsy and ragged-red fibers with cytochrome oxidase deficiency: neuropathology, biochemistry, and molecular genetics. Ann. Neurol. 26, 20–33 (1989).

    CAS  PubMed  Google Scholar 

  34. Yasukawa, T., Suzuki, T., Ueda, T., Ohta, S. & Watanabe, K. Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J. Biol. Chem. 275, 4251–4257 (2000).

    CAS  PubMed  Google Scholar 

  35. Kirino, Y. et al. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc. Natl Acad. Sci. USA 101, 15070–15075 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ravn, K. et al. An mtDNA mutation, 14453G→A, in the NADH dehydrogenase subunit 6 associated with severe MELAS syndrome. Eur. J. Hum. Genet. 9, 805–809 (2001).

    CAS  PubMed  Google Scholar 

  37. Ghezzi, D. et al. Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am. J. Hum. Genet. 90, 1079–1087 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kopajtich, R. et al. Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am. J. Hum. Genet. 95, 708–720 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeharia, A. et al. Acute infantile liver failure due to mutations in the TRMU gene. Am. J. Hum. Genet. 85, 401–407 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tucker, E. J. et al. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab. 14, 428–434 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, Y. et al. Mitochondrial tRNA mutations in Chinese hypertensive individuals. Mitochondrion 28, 1–7 (2016).

    CAS  PubMed  Google Scholar 

  42. Huang, B., Johansson, M. J. & Bystrom, A. S. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11, 424–436 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Anderson, S. L. et al. Familial dysautonomia is caused by mutations of the IKAP gene. Am. J. Hum. Genet. 68, 753–758 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Slaugenhaupt, S. A. et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am. J. Hum. Genet. 68, 598–605 (2001).References 43 and 44 report that a mutation in ELP1 is responsible for familial dysautonomia.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gold-von Simson, G. et al. Kinetin in familial dysautonomia carriers: implications for a new therapeutic strategy targeting mRNA splicing. Pediatr. Res. 65, 341–346 (2009).

    CAS  PubMed  Google Scholar 

  46. Simpson, C. L. et al. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum. Mol. Genet. 18, 472–481 (2009).

    CAS  PubMed  Google Scholar 

  47. Cohen, J. S. et al. ELP2 is a novel gene implicated in neurodevelopmental disabilities. Am. J. Med. Genet. Part A 167, 1391–1395 (2015).

    CAS  PubMed  Google Scholar 

  48. Edvardson, S. et al. tRNA N6-adenosine threonylcarbamoyltransferase defect due to KAE1/TCS3 (OSGEP) mutation manifest by neurodegeneration and renal tubulopathy. Eur. J. Hum. Genet. 25, 545–551 (2017).References 20 and 48 report the link between mutations in four subunits of the KEOPS–EKC complex and Galloway–Mowat syndrome.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Akizu, N. et al. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder. Cell 154, 505–517 (2013).

    CAS  PubMed  Google Scholar 

  50. Weitzer, S. & Martinez, J. The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature 447, 222–226 (2007).

    CAS  PubMed  Google Scholar 

  51. Paushkin, S. V., Patel, M., Furia, B. S., Peltz, S. W. & Trotta, C. R. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 117, 311–321 (2004).

    CAS  PubMed  Google Scholar 

  52. Sissler, M., Gonzalez-Serrano, L. E. & Westhof, E. Recent advances in mitochondrial aminoacyl-tRNA synthetases and disease. Trends Mol. Med. 23, 693–708 (2017).

    CAS  PubMed  Google Scholar 

  53. Yao, P. & Fox, P. L. Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol. Med. 5, 332–343 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Robinson, J. C., Kerjan, P. & Mirande, M. Macromolecular assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein-protein interactions and mechanism of complex assembly. J. Mol. Biol. 304, 983–994 (2000).

    CAS  PubMed  Google Scholar 

  55. Zhang, X. et al. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am. J. Hum. Genet. 94, 547–558 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Storkebaum, E. Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation. BioEssays 38, 818–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wallen, R. C. & Antonellis, A. To charge or not to charge: mechanistic insights into neuropathy-associated tRNA synthetase mutations. Curr. Opin. Genet. Dev. 23, 302–309 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Motzik, A., Nechushtan, H., Foo, S. Y. & Razin, E. Non-canonical roles of lysyl-tRNA synthetase in health and disease. Trends Mol. Med. 19, 726–731 (2013).

    CAS  PubMed  Google Scholar 

  59. He, W. et al. CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature 526, 710–714 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Blocquel, D. et al. Alternative stable conformation capable of protein misinteraction links tRNA synthetase to peripheral neuropathy. Nucleic Acids Res. 45, 8091–8104 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wakasugi, K. et al. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc. Natl Acad. Sci. USA 99, 173–177 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou, J. J. et al. Secreted histidyl-tRNA synthetase splice variants elaborate major epitopes for autoantibodies in inflammatory myositis. J. Biol. Chem. 289, 19269–19275 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wei, N. et al. Oxidative stress diverts tRNA synthetase to nucleus for protection against DNA damage. Mol. Cell 56, 323–332 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Narla, A. & Ebert, B. L. Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196–3205 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yelick, P. C. & Trainor, P. A. Ribosomopathies: global process, tissue specific defects. Rare Dis. 3, e1025185 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Draptchinskaia, N. et al. The gene encoding ribosomal protein S19 is mutated in Diamond–Blackfan anaemia. Nat. Genet. 21, 169–175 (1999).This study reports for the first time the involvement of a ribosomal gene ( RPS19 ) in human disease.

    CAS  PubMed  Google Scholar 

  67. Gazda, H. T. et al. Frameshift mutation in p53 regulator RPL26 is associated with multiple physical abnormalities and a specific pre-ribosomal RNA processing defect in Diamond–Blackfan anemia. Hum. Mutat. 33, 1037–1044 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mills, E. W. & Green, R. Ribosomopathies: there’s strength in numbers. Science 358 (2017). This review article provides a comprehensive discussion of current models explaining the tissue-specificity phenotype of ribosomopathies

  69. Ludwig, L. S. et al. Altered translation of GATA1 in Diamond–Blackfan anemia. Nat. Med. 20, 748–753 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sankaran, V. G. et al. Exome sequencing identifies GATA1 mutations resulting in Diamond–Blackfan anemia. J. Clin. Invest. 122, 2439–2443 (2012).References 69 and 70 uncover the importance of GATA1 expression in the pathogenesis of Diamond–Blackfan anaemia.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ebert, B. L. et al. Identification of RPS14 as a 5q syndrome gene by RNA interference screen. Nature 451, 335–339 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ebert, B. L. Deletion 5q in myelodysplastic syndrome: a paradigm for the study of hemizygous deletions in cancer. Leukemia 23, 1252–1256 (2009).

    CAS  PubMed  Google Scholar 

  73. Starczynowski, D. T. et al. Identification of miR-145 and miR-146a as mediators of the 5q syndrome phenotype. Nat. Med. 16, 49–58 (2010).

    CAS  PubMed  Google Scholar 

  74. Joslin, J. M. et al. Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood 110, 719–726 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fonseca, B. D. et al. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1). J. Biol. Chem. 290, 15996–16020 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gentilella, A. et al. Autogenous control of 5′TOP mRNA stability by 40S ribosomes. Mol. Cell 67, 55–70 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Boultwood, J., Yip, B. H., Vuppusetty, C., Pellagatti, A. & Wainscoat, J. S. Activation of the mTOR pathway by the amino acid (l)-leucine in the 5q syndrome and other ribosomopathies. Adv. Biol. Regul. 53, 8–17 (2013).

    CAS  PubMed  Google Scholar 

  78. Pospisilova, D., Cmejlova, J., Hak, J., Adam, T. & Cmejla, R. Successful treatment of a Diamond–Blackfan anemia patient with amino acid leucine. Haematologica 92, e66–e67 (2007).

    CAS  PubMed  Google Scholar 

  79. Knott, S. R. V. et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554, 378–381 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Myers, K. C. et al. Variable clinical presentation of Shwachman–Diamond syndrome: update from the North American Shwachman–Diamond Syndrome Registry. J. Pediatr. 164, 866–870 (2014).

    PubMed  Google Scholar 

  81. Warren, A. J. Molecular basis of the human ribosomopathy Shwachman–Diamond syndrome. Adv. Biol. Regul. 67, 109–127 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ridanpaa, M. et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104, 195–203 (2001).

    CAS  PubMed  Google Scholar 

  83. Hermanns, P. et al. Consequences of mutations in the non-coding RMRP RNA in cartilage-hair hypoplasia. Hum. Mol. Genet. 14, 3723–3740 (2005).

    CAS  PubMed  Google Scholar 

  84. McKusick, V. A., Eldridge, R., Hostetler, J. A., Ruangwit, U. & Egeland, J. A. Dwarfism in the Amish. Ii. Cartilage-hair hypoplasia. Bull. Johns Hopkins Hosp. 116, 285–326 (1965).

    CAS  PubMed  Google Scholar 

  85. Goldfarb, K. C. & Cech, T. R. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing. Genes Dev. 31, 59–71 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Armistead, J. et al. Mutation of a gene essential for ribosome biogenesis, EMG1, causes Bowen–Conradi syndrome. Am. J. Hum. Genet. 84, 728–739 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Marneros, A. G. BMS1 is mutated in aplasia cutis congenita. PLOS Genet. 9, e1003573 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Valdez, B. C., Henning, D., So, R. B., Dixon, J. & Dixon, M. J. The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc. Natl Acad. Sci. USA 101, 10709–10714 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dauwerse, J. G. et al. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat. Genet. 43, 20–22 (2011).This study demonstrates that Treacher Collins syndrome results from dysfunction of different components of Pol I and Pol III.

    CAS  PubMed  Google Scholar 

  90. The Treacher Collins Syndrome Collaborative Group. Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. Nat. Genet. 12, 130–136 (1996).

    Google Scholar 

  91. Ruggero, D. et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299, 259–262 (2003).

    CAS  PubMed  Google Scholar 

  92. McCann, K. L. & Baserga, S. J. Genetics. Mysterious ribosomopathies. Science 341, 849–850 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ruggero, D. & Shimamura, A. Marrow failure: a window into ribosome biology. Blood 124, 2784–2792 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Dai, M. S. & Lu, H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J. Biol. Chem. 279, 44475–44482 (2004).

    CAS  PubMed  Google Scholar 

  95. Dai, M. S. et al. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol. Cell. Biol. 24, 7654–7668 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).

    CAS  PubMed  Google Scholar 

  97. Lindstrom, M. S., Deisenroth, C. & Zhang, Y. Putting a finger on growth surveillance: insight into MDM2 zinc finger-ribosomal protein interactions. Cell Cycle 6, 434–437 (2007).

    CAS  PubMed  Google Scholar 

  98. Rubbi, C. P. & Milner, J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 22, 6068–6077 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lohrum, M. A., Ludwig, R. L., Kubbutat, M. H., Hanlon, M. & Vousden, K. H. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577–587 (2003).

    CAS  PubMed  Google Scholar 

  100. McGowan, K. A. et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat. Genet. 40, 963–970 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Barlow, J. L. et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q syndrome. Nat. Med. 16, 59–66 (2010).

    CAS  PubMed  Google Scholar 

  102. Donati, G., Montanaro, L. & Derenzini, M. Ribosome biogenesis and control of cell proliferation: p53 is not alone. Cancer Res. 72, 1602–1607 (2012).

    CAS  PubMed  Google Scholar 

  103. Jones, N. C. et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat. Med. 14, 125–133 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Simsek, D. et al. The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell 169, 1051–1065 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Parks, M. M. et al. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci. Adv. 4, eaao0665 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. Khajuria, R. K. et al. Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. Cell 173, 90–103 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, W. et al. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med. Res. Rev. 35, 225–285 (2015).

    PubMed  Google Scholar 

  108. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    CAS  PubMed  Google Scholar 

  109. Ma, Y. & Hendershot, L. M. The unfolding tale of the unfolded protein response. Cell 107, 827–830 (2001).

    CAS  PubMed  Google Scholar 

  110. Lin, J. H., Walter, P. & Yen, T. S. Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol. 3, 399–425 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wolcott, C. D. & Rallison, M. L. Infancy-onset diabetes mellitus and multiple epiphyseal dysplasia. J. Pediatr. 80, 292–297 (1972).

    CAS  PubMed  Google Scholar 

  112. Julier, C. & Nicolino, M. Wolcott–Rallison syndrome. Orphanet J. Rare Dis. 5, 29 (2010).

    PubMed  PubMed Central  Google Scholar 

  113. Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001).

    CAS  PubMed  Google Scholar 

  114. Zhang, P. et al. The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22, 3864–3874 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, W. et al. PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab. 4, 491–497 (2006).

    CAS  PubMed  Google Scholar 

  116. Feng, D., Wei, J., Gupta, S., McGrath, B. C. & Cavener, D. R. Acute ablation of PERK results in ER dysfunctions followed by reduced insulin secretion and cell proliferation. BMC Cell Biol. 10, 61 (2009).

    PubMed  PubMed Central  Google Scholar 

  117. Yu, Q. et al. Type I interferons mediate pancreatic toxicities of PERK inhibition. Proc. Natl Acad. Sci. USA 112, 15420–15425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Senderek, J. et al. Mutations in SIL1 cause Marinesco–Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat. Genet. 37, 1312–1314 (2005).

    CAS  PubMed  Google Scholar 

  119. Synofzik, M. et al. Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am. J. Hum. Genet. 95, 689–697 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Poulton, C. J. et al. Microcephaly with simplified gyration, epilepsy, and infantile diabetes linked to inappropriate apoptosis of neural progenitors. Am. J. Hum. Genet. 89, 265–276 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang, H. et al. Functional characterization of 58-kilodalton inhibitor of protein kinase in protecting against diabetic retinopathy via the endoplasmic reticulum stress pathway. Mol. Vis. 17, 78–84 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Yan, W. et al. Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc. Natl Acad. Sci. USA 99, 15920–15925 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Roobol, A. et al. p58IPK is an inhibitor of the eIF2alpha kinase GCN2 and its localization and expression underpin protein synthesis and ER processing capacity. Biochem. J. 465, 213–225 (2015).

    CAS  PubMed  Google Scholar 

  124. Ladiges, W. C. et al. Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes 54, 1074–1081 (2005).

    CAS  PubMed  Google Scholar 

  125. Abdulkarim, B. et al. A missense mutation in PPP1R15B causes a syndrome including diabetes, short stature, and microcephaly. Diabetes 64, 3951–3962 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kernohan, K. D. et al. Homozygous mutation in the eukaryotic translation initiation factor 2alpha phosphatase gene, PPP1R15B, is associated with severe microcephaly, short stature and intellectual disability. Hum. Mol. Genet. 24, 6293–6300 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Borck, G. et al. eIF2gamma mutation that disrupts eIF2 complex integrity links intellectual disability to impaired translation initiation. Mol. Cell 48, 641–646 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Skopkova, M. et al. EIF2S3 mutations associated with severe X-linked intellectual disability syndrome MEHMO. Hum. Mutat. 38, 409–425 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Moortgat, S. et al. Two novel EIF2S3 mutations associated with syndromic intellectual disability with severe microcephaly, growth retardation, and epilepsy. Am. J. Med. Genet. A 170, 2927–2933 (2016).

    CAS  PubMed  Google Scholar 

  130. Bugiani, M., Boor, I., Powers, J. M., Scheper, G. C. & van der Knaap, M. S. Leukoencephalopathy with vanishing white matter: a review. J. Neuropathol. Exp. Neurol. 69, 987–996 (2010).

    PubMed  Google Scholar 

  131. van der Knaap, M. S., Pronk, J. C. & Scheper, G. C. Vanishing white matter disease. Lancet Neurol. 5, 413–423 (2006).

    PubMed  Google Scholar 

  132. Pierce, S. B. et al. Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc. Natl Acad. Sci. USA 108, 6543–6548 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Pierce, S. B. et al. Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome. Am. J. Hum. Genet. 92, 614–620 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Dallabona, C. et al. Novel (ovario) leukodystrophy related to AARS2 mutations. Neurology 82, 2063–2071 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Dooves, S. et al. Astrocytes are central in the pathomechanisms of vanishing white matter. J. Clin. Invest. 126, 1512–1524 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Dietrich, J. et al. EIF2B5 mutations compromise GFAP+ astrocyte generation in vanishing white matter leukodystrophy. Nat. Med. 11, 277–283 (2005).

    CAS  PubMed  Google Scholar 

  137. Raini, G. et al. Mutant eIF2B leads to impaired mitochondrial oxidative phosphorylation in vanishing white matter disease. J. Neurochem. 141, 694–707 (2017).

    CAS  PubMed  Google Scholar 

  138. Elroy-Stein, O. Mitochondrial malfunction in vanishing white matter disease: a disease of the cytosolic translation machinery. Neural Regen. Res. 12, 1610–1612 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Pietra, G. G. et al. Pathologic assessment of vasculopathies in pulmonary hypertension. J. Am. Coll. Cardiol. 43, 25S–32S (2004).

    PubMed  Google Scholar 

  140. Montani, D. et al. Pulmonary veno-occlusive disease. Eur. Respiratory J. 47, 1518–1534 (2016).

    Google Scholar 

  141. Montani, D. et al. Clinical phenotypes and outcomes of heritable and sporadic pulmonary veno-occlusive disease: a population-based study. Lancet Respir. Med. 5, 125–134 (2017).

    CAS  PubMed  Google Scholar 

  142. Hu, H. et al. Genetics of intellectual disability in consanguineous families. Mol. Psychiatry. https://doi.org/10.1038/s41380-017-0012-2 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Barbet, N. C. et al. TOR controls translation initiation and early G1 progression in yeast. Mol. Biol. Cell 7, 25–42 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Beretta, L., Gingras, A. C., Svitkin, Y. V., Hall, M. N. & Sonenberg, N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 15, 658–664 (1996).References 143 and 144 show that TOR and mTOR control mRNA translation initiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hsieh, A. C. et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 17, 249–261 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Signer, R. A., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Shackelford, D. B. & Shaw, R. J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Sato, A. mTOR, a potential target to treat autism spectrum disorder. CNS Neurol. Disord. Drug Targets 15, 533–543 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wong, M. A critical review of mTOR inhibitors and epilepsy: from basic science to clinical trials. Expert Rev. Neurother. 13, 657–669 (2013).

    CAS  PubMed  Google Scholar 

  153. Lipton, J. O. & Sahin, M. The neurology of mTOR. Neuron 84, 275–291 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lee, J. H. et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat. Genet. 44, 941–945 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Butler, M. G. et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J. Med. Genet. 42, 318–321 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Riviere, J. B. et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat. Genet. 44, 934–940 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Lim, J. S. et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 21, 395–400 (2015).

    CAS  PubMed  Google Scholar 

  158. Crino, P. B. mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb. Persp. Med. 5, a022442 (2015).

    Google Scholar 

  159. Deau, M. C. et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J. Clin. Invest. 124, 3923–3928 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Angulo, I. et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science 342, 866–871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Lucas, C. L. et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat. Immunol. 15, 88–97 (2014).

    CAS  PubMed  Google Scholar 

  162. Tsujita, Y. et al. Phosphatase and tensin homolog (PTEN) mutation can cause activated phosphatidylinositol 3-kinase delta syndrome-like immunodeficiency. J. Allergy Clin. Immunol. 138, 1672–1680 (2016).

    CAS  PubMed  Google Scholar 

  163. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    CAS  PubMed  Google Scholar 

  164. Nelen, M. R. et al. Localization of the gene for Cowden disease to chromosome 10q22-23. Nat. Genet. 13, 114–116 (1996).

    CAS  PubMed  Google Scholar 

  165. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 16, 64–67 (1997).

    CAS  PubMed  Google Scholar 

  166. Caux, F. et al. Segmental overgrowth, lipomatosis, arteriovenous malformation and epidermal nevus (SOLAMEN) syndrome is related to mosaic PTEN nullizygosity. Eur. J. Hum. Genet. 15, 767–773 (2007).

    CAS  PubMed  Google Scholar 

  167. Eng, C. PTEN: one gene, many syndromes. Hum. Mut. 22, 183–198 (2003).

    CAS  PubMed  Google Scholar 

  168. Leslie, N. R. & Longy, M. Inherited PTEN mutations and the prediction of phenotype. Semin. Cell Dev. Biol. 52, 30–38 (2016).

    CAS  PubMed  Google Scholar 

  169. Lindhurst, M. J. et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 365, 611–619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Hussain, K. et al. An activating mutation of AKT2 and human hypoglycemia. Science 334, 474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Nellist, M. et al. Germline activating AKT3 mutation associated with megalencephaly, polymicrogyria, epilepsy and hypoglycemia. Mol. Genet. Metab. 114, 467–473 (2015).

    CAS  PubMed  Google Scholar 

  172. Boland, E. et al. Mapping of deletion and translocation breakpoints in 1q44 implicates the serine/threonine kinase AKT3 in postnatal microcephaly and agenesis of the corpus callosum. Am. J. Hum. Genet. 81, 292–303 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. George, S. et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304, 1325–1328 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kandt, R. S. et al. Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease. Nat. Genet. 2, 37–41 (1992).

    CAS  PubMed  Google Scholar 

  175. van Slegtenhorst, M. et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277, 805–808 (1997).

    PubMed  Google Scholar 

  176. Crino, P. B., Nathanson, K. L. & Henske, E. P. The tuberous sclerosis complex. N. Engl. J. Med. 355, 1345–1356 (2006).

    CAS  PubMed  Google Scholar 

  177. Alfaiz, A. A. et al. TBC1D7 mutations are associated with intellectual disability, macrocrania, patellar dislocation, and celiac disease. Hum. Mutat. 35, 447–451 (2014).

    PubMed  Google Scholar 

  178. Mirzaa, G. M. et al. Association of mTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol. 73, 836–845 (2016).

    PubMed  PubMed Central  Google Scholar 

  179. Bohn, G. et al. A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat. Med. 13, 38–45 (2007).

    CAS  PubMed  Google Scholar 

  180. Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wolfson, R. L. & Sabatini, D. M. The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab. 26, 301–309 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Dibbens, L. M. et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat. Genet. 45, 546–551 (2013).

    CAS  PubMed  Google Scholar 

  185. Ricos, M. G. et al. Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann. Neurol. 79, 120–131 (2016).

    CAS  PubMed  Google Scholar 

  186. Basel-Vanagaite, L. et al. Biallelic SZT2 mutations cause infantile encephalopathy with epilepsy and dysmorphic corpus callosum. Am. J. Hum. Genet. 93, 524–529 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Baple, E. L. et al. Mutations in KPTN cause macrocephaly, neurodevelopmental delay, and seizures. Am. J. Hum. Genet. 94, 87–94 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Mc Cormack, A. et al. 12q14 microdeletions: additional case series with confirmation of a macrocephaly region. Case Rep. Genet. 2015, 192071 (2015).

    Google Scholar 

  189. Morita, M. et al. A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol. Cell. Biol. 32, 3585–3593 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Chartier-Harlin, M. C. et al. Translation initiator EIF4G1 mutations in familial Parkinson disease. Am. J. Hum. Genet. 89, 398–406 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Dhungel, N. et al. Parkinson’s disease genes VPS35 and EIF4G1 interact genetically and converge on alpha-synuclein. Neuron 85, 76–87 (2015).

    CAS  PubMed  Google Scholar 

  192. Nichols, N. et al. EIF4G1 mutations do not cause Parkinson’s disease. Neurobiol. Aging 36, 2444 (2015).

    PubMed  PubMed Central  Google Scholar 

  193. Cestra, G., Rossi, S., Di Salvio, M. & Cozzolino, M. Control of mRNA translation in ALS proteinopathy. Front. Mol. Neurosci. 10, 85 (2017).

    PubMed  PubMed Central  Google Scholar 

  194. Hagerman, R. J. et al. Fragile X syndrome. Nat. Rev. Dis. Primers 3, 17065 (2017).

    PubMed  Google Scholar 

  195. Zu, T., Pattamatta, A. & Ranum, L. P. W. RAN translation in neurological diseases. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a033019 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Masvidal, L., Hulea, L., Furic, L., Topisirovic, I. & Larsson, O. mTOR-sensitive translation: cleared fog reveals more trees. RNA Biol. 14, 1299–1305 (2017).

    PubMed  PubMed Central  Google Scholar 

  197. Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).

    CAS  PubMed  Google Scholar 

  198. Meyuhas, O. Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem. 267, 6321–6330 (2000).

    CAS  PubMed  Google Scholar 

  199. Mergenthaler, P., Lindauer, U., Dienel, G. A. & Meisel, A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 36, 587–597 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Napoli, E., Duenas, N. & Giulivi, C. Potential therapeutic use of the ketogenic diet in autism spectrum disorders. Front. Pediatr. 2, 69 (2014).

    PubMed  PubMed Central  Google Scholar 

  201. Dy, A. B. C. et al. Metformin as targeted treatment in fragile X syndrome. Clin. Genet. 93, 216–222 (2018).

    CAS  PubMed  Google Scholar 

  202. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E. Shoubridge, D. Ruggero, A. Shimamura, E. Storkebaum and S. J. Baserga for insightful discussions and input on this Review.

Author information

Authors and Affiliations

Authors

Contributions

S.T. and A.K. researched data for the article and made substantial contributions to the discussion of content; S.T., A.K., M.B.M. and N.S. wrote the article and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Soroush Tahmasebi or Nahum Sonenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ProteomicsDB server: https://www.ProteomicsDB.org

OMIM server: http://omim.org/about

Supplementary information

Glossary

Aminoacyl-tRNA synthetases

(ARSs). Enzymes that catalyse the addition of an amino acid to the appropriate tRNA.

5-Taurinomethyluridine

(τm5U). A post-transcriptional modification of uridine at the wobble position of the mammalian mitochondrial tRNAs for Leu (UUR) and Trp.

fMet-tRNAMet

A formylated form of the elongating Met-tRNAMet that is used as an initiator of tRNA in mammalian mitochondria.

Threonylcarbamoyladenosine

(t6A). A universal tRNA modification at position 37 of tRNAs that decode ANN codons.

Haploinsufficiency

A condition in diploid organisms where one gene copy is inactivated by mutation and the activity of the remaining copy is insufficient to maintain normal function.

Clonal dominance

A condition in which a single clone of haematopoietic stem cells (HSCs) supersedes the other HSC clones.

Overgrowth syndromes

A group of genetic diseases that are manifested as abnormal growth of the whole body or of body parts.

Codon usage

The frequency with which a specific codon is used in the coding sequence of a mRNA or set of mRNAs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, S., Khoutorsky, A., Mathews, M.B. et al. Translation deregulation in human disease. Nat Rev Mol Cell Biol 19, 791–807 (2018). https://doi.org/10.1038/s41580-018-0034-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0034-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing