Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of chromatin and gene expression by metabolic enzymes and metabolites

Abstract

Metabolism and gene expression, which are two fundamental biological processes that are essential to all living organisms, reciprocally regulate each other to maintain homeostasis and regulate cell growth, survival and differentiation. Metabolism feeds into the regulation of gene expression via metabolic enzymes and metabolites, which can modulate chromatin directly or indirectly — through regulation of the activity of chromatin trans-acting proteins, including histone-modifying enzymes, chromatin-remodelling complexes and transcription regulators. Deregulation of these metabolic activities has been implicated in human diseases, prominently including cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chromatin modulation by metabolites.
Fig. 2: Regulation of chromatin methylation by metabolic enzymes and metabolites and their roles in DNA repair.
Fig. 3: Core metabolic functions of metabolic enzymes that also function in epigenetic modifications.
Fig. 4: The roles of nuclear PKM2 in gene expression.
Fig. 5: Acetylation of histones regulated by metabolic enzymes and metabolites.
Fig. 6: Association of metabolites and metabolic enzymes with cancer development.

Similar content being viewed by others

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011). This study describes a large number of novel histone marks, including lysine crotonylation and tyrosine hydroxylation as novel histone modifications.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Huang, H., Sabari, B. R., Garcia, B. A., Allis, C. D. & Zhao, Y. SnapShot: histone modifications. Cell 159, 458–458.e1 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wu, H. & Zhang, Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 25, 2436–2452 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    Article  PubMed  CAS  Google Scholar 

  11. Ronan, J. L., Wu, W. & Crabtree, G. R. From neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14, 347–359 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lu, C. et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352, 844–849 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cheng, X. Structural and functional coordination of DNA and histone methylation. Cold Spring Harb. Perspect. Biol. 6, a018747 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Berger, S. L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. Grillo, M. A. & Colombatto, S. S-adenosylmethionine and its products. Amino Acids 34, 187–193 (2008).

    Article  PubMed  CAS  Google Scholar 

  17. Mentch, S. J. et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell. Metab. 22, 861–873 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shiraki, N. et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell. Metab. 19, 780–794 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Janke, R., Dodson, A. E. & Rine, J. Metabolism and epigenetics. Annu. Rev. Cell Dev. Biol. 31, 473–496 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dolinoy, D. C., Huang, D. & Jirtle, R. L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl Acad. Sci. USA 104, 13056–13061 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. Ye, C., Sutter, B. M., Wang, Y., Kuang, Z. & Tu, B. P. A metabolic function for phospholipid and histone methylation. Mol. Cell 66, 180–193.e8 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Metzger, E. et al. Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 464, 792–796 (2010).

    Article  PubMed  CAS  Google Scholar 

  23. Forneris, F., Binda, C., Vanoni, M. A., Mattevi, A. & Battaglioli, E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203–2207 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. Shi, Y. G. & Tsukada, Y. The discovery of histone demethylases. Cold Spring Harb. Perspect. Biol. 5, a017947 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. Hwang, I. Y. et al. Psat1-Dependent Fluctuations in alpha-Ketoglutarate Affect the Timing of ESC Differentiation. Cell. Metab. 24, 494–501 (2016).

    Article  PubMed  CAS  Google Scholar 

  27. Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Salminen, A., Kauppinen, A., Hiltunen, M. & Kaarniranta, K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res. Rev. 16, 45–65 (2014).

    Article  PubMed  CAS  Google Scholar 

  29. Sciacovelli, M. et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537, 544–547 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Unoki, M. et al. Lysyl 5-hydroxylation, a novel histone modification, by Jumonji domain containing 6 (JMJD6). J. Biol. Chem. 288, 6053–6062 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Shimazu, T. et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    Article  PubMed  CAS  Google Scholar 

  33. Canto, C., Menzies, K. J. & Auwerx, J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sivanand, S., Viney, I. & Wellen, K. E. Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem. Sci. 43, 61–74 (2018).

    Article  PubMed  CAS  Google Scholar 

  35. Cai, L., Sutter, B. M., Li, B. & Tu, B. P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426–437 (2011). This study describes a link between lipid metabolism and histone methylation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chen, Y. et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteom. 6, 812–819 (2007).

    Article  CAS  Google Scholar 

  37. Dai, L. et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nature Chem. Biol. 10, 365–370 (2014).

    Article  CAS  Google Scholar 

  38. Xie, Z. et al. Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteom. 11, 100–107 (2012). References 36–38 identify new types of histone modification.

    Article  CAS  Google Scholar 

  39. Sabari, B. R., Zhang, D., Allis, C. D. & Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18, 90–101 (2017).

    Article  PubMed  CAS  Google Scholar 

  40. Sabari, B. R. et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell 58, 203–215 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Xie, Z. et al. Metabolic regulation of gene expression by histone lysine beta-hydroxybutyrylation. Mol. Cell 62, 194–206 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Liu, B. et al. Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J. Biol. Chem. 284, 32288–32295 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Goudarzi, A. et al. Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol. Cell 62, 169–180 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kebede, A. F. et al. Histone propionylation is a mark of active chromatin. Nat. Struct. Mol. Biol. 24, 1048–1056 (2017).

    Article  PubMed  CAS  Google Scholar 

  45. Cahill, G. F. Jr. Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 (2006).

    Article  PubMed  CAS  Google Scholar 

  46. Laffel, L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab. Res. Rev. 15, 412–426 (1999).

    Article  PubMed  CAS  Google Scholar 

  47. Robinson, A. M. & Williamson, D. H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol. Rev. 60, 143–187 (1980).

    Article  PubMed  CAS  Google Scholar 

  48. Yang, X. & Qian, K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18, 452–465 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hardiville, S. & Hart, G. W. Nutrient regulation of gene expression by O-GlcNAcylation of chromatin. Curr. Opin. Chem. Biol. 33, 88–94 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gambetta, M. C. & Muller, J. A critical perspective of the diverse roles of O-GlcNAc transferase in chromatin. Chromosoma 124, 429–442 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kraus, W. L. & Lis, J. T. PARP goes transcription. Cell 113, 677–683 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. Gupte, R., Liu, Z. & Kraus, W. L. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 31, 101–126 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gibbs-Seymour, I., Fontana, P., Rack, J. G. M. & Ahel, I. HPF1/C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol. Cell 62, 432–442 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Poirier, G. G., de Murcia, G., Jongstra-Bilen, J., Niedergang, C. & Mandel, P. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc. Natl Acad. Sci. USA 79, 3423–3427 (1982).

    Article  PubMed  CAS  Google Scholar 

  55. Wright, R. H. et al. CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer cells. Genes Dev. 26, 1972–1983 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gibson, B. A. & Kraus, W. L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nature reviews. Mol. Cell Biol. 13, 411–424 (2012).

    CAS  Google Scholar 

  57. Bai, P. & Canto, C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell. Metab. 16, 290–295 (2012).

    Article  PubMed  CAS  Google Scholar 

  58. Gibson, B. A. et al. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 353, 45–50 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Krishnakumar, R. & Kraus, W. L. PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol. Cell 39, 736–749 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Yang, W. & Lu, Z. Pyruvate kinase M2 at a glance. J. Cell Sci. 128, 1655–1660 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. David, C. J., Chen, M., Assanah, M., Canoll, P. & Manley, J. L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010).

    Article  PubMed  CAS  Google Scholar 

  62. Desai, S. et al. Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget 5, 8202–8210 (2014).

    Article  PubMed  Google Scholar 

  63. Bluemlein, K. et al. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget 2, 393–400 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yang, W. et al. EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Mol. Cell 48, 771–784 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kuan, C. T., Wikstrand, C. J. & Bigner, D. D. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr. Relat. Cancer 8, 83–96 (2001).

    Article  PubMed  CAS  Google Scholar 

  66. Yang, W. et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14, 1295–1304 (2012). This study describes an instrumental mechanism of the Warburg effect regulated by nuclear PKM2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lu, Z. & Hunter, T. Prolyl isomerase Pin1 in cancer. Cell Res. 24, 1033–1049 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Spoden, G. A. et al. The SUMO-E3 ligase PIAS3 targets pyruvate kinase M2. J. Cell. Biochem. 107, 293–302 (2009).

    Article  PubMed  CAS  Google Scholar 

  69. Lv, L. et al. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol. Cell 52, 340–352 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang, H. J. et al. JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism. Proc. Natl Acad. Sci. USA 111, 279–284 (2014).

    Article  PubMed  CAS  Google Scholar 

  71. Yang, W. et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685–696 (2012). This study discovers that a metabolic enzyme can directly phosphorylate histone proteins.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Yang, W. et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 480, 118–122 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hosios, A. M., Fiske, B. P., Gui, D. Y. & Vander Heiden, M. G. Lack of evidence for PKM2 protein kinase activity. Mol. Cell 59, 850–857 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Li, S. et al. Serine and SAM responsive complex SESAME regulates histone modification crosstalk by sensing cellular metabolism. Mol. Cell 60, 408–421 (2015).

    Article  PubMed  CAS  Google Scholar 

  75. Yu, Q. et al. Regulation of SESAME-mediated H3T11 phosphorylation by glycolytic enzymes and metabolites. PLoS ONE 12, e0175576 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gao, X., Wang, H., Yang, J. J., Liu, X. & Liu, Z. R. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598–609 (2012). This study discovers that PKM2 phosphorylates the STAT3 transcription factor.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kato, H., Fukuda, T., Parkison, C., McPhie, P. & Cheng, S. Y. Cytosolic thyroid hormone-binding protein is a monomer of pyruvate kinase. Proc. Natl Acad. Sci. USA 86, 7861–7865 (1989).

    Article  PubMed  CAS  Google Scholar 

  79. Morfouace, M. et al. Control of glioma cell death and differentiation by PKM2-Oct4 interaction. Cell Death Dis. 5, e1036 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Matsuda, S. et al. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res. 44, 636–647 (2016).

    Article  PubMed  CAS  Google Scholar 

  81. Dasgupta, S. et al. Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature 556, 249–254 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Weinert, B. T. et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 4, 842–851 (2013).

    Article  PubMed  CAS  Google Scholar 

  83. Zhang, Z. et al. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7, 58–63 (2011).

    Article  PubMed  CAS  Google Scholar 

  84. Wang, Y. et al. KAT2A coupled with the alpha-KGDH complex acts as a histone H3 succinyltransferase. Nature 552, 273–277 (2017). This study discovers that KAT2A, which was already known as a HAT, is also a histone H3 succinyltransferase.

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Jiang, Y. et al. Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nat. Cell Biol. 17, 1158–1168 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Yogev, O. et al. Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. PLoS Biol. 8, e1000328 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ooi, A. et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20, 511–523 (2011).

    Article  PubMed  CAS  Google Scholar 

  88. Adam, J. et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20, 524–537 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wang, T. et al. O-GlcNAcylation of fumarase maintains tumour growth under glucose deficiency. Nat. Cell Biol. 19, 833–843 (2017).

    Article  PubMed  CAS  Google Scholar 

  90. Li, B. et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513, 251–255 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zheng, L., Roeder, R. G. & Luo, Y. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114, 255–266 (2003).

    Article  PubMed  CAS  Google Scholar 

  92. Hedstrom, L. IMP dehydrogenase: structure, mechanism, and inhibition. Chem. Rev. 109, 2903–2928 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Kozhevnikova, E. N. et al. Metabolic enzyme IMPDH is also a transcription factor regulated by cellular state. Mol. Cell 47, 133–139 (2012).

    Article  PubMed  CAS  Google Scholar 

  94. Frappier, L. & Verrijzer, C. P. Gene expression control by protein deubiquitinases. Curr. Opin. Genet. Dev. 21, 207–213 (2011).

    Article  PubMed  CAS  Google Scholar 

  95. van der Knaap, J. A. et al. GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Mol. Cell 17, 695–707 (2005).

    Article  PubMed  CAS  Google Scholar 

  96. van der Knaap, J. A., Kozhevnikova, E., Langenberg, K., Moshkin, Y. M. & Verrijzer, C. P. Biosynthetic enzyme GMP synthetase cooperates with ubiquitin-specific protease 7 in transcriptional regulation of ecdysteroid target genes. Mol. Cell. Biol. 30, 736–744 (2010).

    Article  PubMed  CAS  Google Scholar 

  97. Katoh, Y. et al. Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol. Cell 41, 554–566 (2011).

    Article  PubMed  CAS  Google Scholar 

  98. Li, X. et al. Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol. Cell 66, 684–697.e9 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Mews, P. et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546, 381–386 (2017). References 98 and 99 report that nuclear ACSS2 regulates histone acetylation in specific sets of gene promoter regions under physiological and pathological conditions.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Sivanand, S. et al. Nuclear acetyl-CoA production by ACLY promotes homologous recombination. Mol. Cell 67, 252–265.e6 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Sutendra, G. et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84–97 (2014).

    Article  PubMed  CAS  Google Scholar 

  103. Takahashi, H., McCaffery, J. M., Irizarry, R. A. & Boeke, J. D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol. Cell 23, 207–217 (2006). References 100–103 reveal important roles of nuclear acetyl-CoA synthesizing enzymes in histone acetylation.

    Article  PubMed  CAS  Google Scholar 

  104. Bulusu, V. et al. Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 18, 647–658 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Li, X., Qian, X. & Lu, Z. Local histone acetylation by ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Autophagy 13, 1790–1791 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Peleg, S. et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753–756 (2010).

    Article  PubMed  CAS  Google Scholar 

  107. Bennett, D. A. et al. Epigenomics of Alzheimer’s disease. Transl Res. 165, 200–220 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Fischer, A. Targeting histone-modifications in Alzheimer’s disease. What is the evidence that this is a promising therapeutic avenue? Neuropharmacology 80, 95–102 (2014).

    Article  PubMed  CAS  Google Scholar 

  109. Lu, X. et al. Histone acetyltransferase p300 mediates histone acetylation of PS1 and BACE1 in a cellular model of Alzheimer’s disease. PLoS ONE 9, e103067 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Egervari, G., Ciccocioppo, R., Jentsch, J. D. & Hurd, Y. L. Shaping vulnerability to addiction - the contribution of behavior, neural circuits and molecular mechanisms. Neurosci. Biobehav. Rev. 85, 117–125 (2018).

    Article  PubMed  Google Scholar 

  111. Egervari, G. et al. A functional 3’UTR polymorphism (rs2235749) of prodynorphin alters microRNA-365 binding in ventral striatonigral neurons to influence novelty seeking and positive reward traits. Neuropsychopharmacology 41, 2512–2520 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Egervari, G. et al. Striatal H3K27 acetylation linked to glutamatergic gene dysregulation in human heroin abusers holds promise as therapeutic target. Biol Psychiatry 81, 585–594 (2017).

    Article  PubMed  CAS  Google Scholar 

  113. Koo, J. W. et al. Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nat. Neurosci. 18, 415–422 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Robison, A. J. & Nestler, E. J. Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. 12, 623–637 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Xu, M. et al. An acetate switch regulates stress erythropoiesis. Nat. Med. 20, 1018–1026 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Chen, R. et al. The acetate/ACSS2 switch regulates HIF-2 stress signaling in the tumor cell microenvironment. PLoS ONE 10, e0116515 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Nagaraj, R. et al. Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell 168, 210–223.e1 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Shi, W. Y., Yang, X., Huang, B., Shen, W. H. & Liu, L. NOK mediates glycolysis and nuclear PDC associated histone acetylation. Front. Biosci. 22, 1792–1804 (2017).

    Article  CAS  Google Scholar 

  119. Lu, Z. & Hunter, T. Metabolic kinases moonlighting as protein kinases. Trends Biochem. Sci. 43, 301–310 (2018).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Neurological Disorders and Stroke grant R01 NS089754 (to Z.L.), NCI grants 2R01 CA109035 and R01CA204996 (to Z.L.) and the US National Institutes of Health (NIH) National Cancer Institute (NCI) under award number P30CA016672, 2P50 CA127001 (Brain Cancer SPORE). Z.L. is a Ruby E. Rutherford Distinguished Professor.

Reviewer information

Nature Reviews Molecular Cell Biology thanks Y. Zhao and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

X.L., G.E., S.L.B. and Z.L. wrote the article. All authors researched data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript.

Corresponding authors

Correspondence to Shelley L. Berger or Zhimin Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cofactors

Non-protein chemical compounds or metallic ions that are required for the activity of an enzyme.

β-Oxidation

The catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA.

Ketone bodies

Any of three related compounds (acetone, acetoacetic acid and β-hydroxybutyric acid) produced during the metabolism of fats.

Streptozotocin

A naturally occurring alkylating anti-neoplastic agent that is particularly toxic to the insulin-producing β-cells of the pancreas in mammals.

Homeotic genes

A group of genes that regulates the development of anatomical structures in various organisms.

Linker histone

Member of a family of histones that bind to the nucleosomal core particle around the DNA entry and exit sites and serve as key components of chromatin. Also known as H1 histone.

β-Catenin

A protein that regulates cell–cell adhesion and gene transcription by translocating to the nucleus and associating with T cell factor (TCF) and lymphoid enhancer factor (LEF) transcription factors; it is encoded by the CTNNB1 gene.

Warburg effect

The elevated glucose uptake and lactate production observed in many cancer cell lines regardless of oxygen availability.

Aryl hydrocarbon receptor

(AhR). A ligand-activated transcription factor involved in the regulation of biological responses to planar aromatic (aryl) hydrocarbons.

Pentose phosphate pathway

A glycolysis-parallel metabolic pathway that generates NADPH, pentoses and ribose 5-phosphate for nucleotide synthesis.

DNA-dependent protein kinase

(DNA-PK). A nuclear serine/threonine-protein kinase that is activated upon DNA damage.

Histone H2A.Z

An evolutionarily conserved histone variant involved in transcription regulation and genome stability.

Nonhomologous end joining

(NHEJ). A pathway that repairs double-strand DNA breaks by direct ligation without the need for a homologous template.

Hereditary leiomyomatosis

An autosomal dominant condition in which susceptible individuals are at risk of the development of cutaneous leiomyomas, early onset multiple uterine leiomyomas and an aggressive form of type 2 papillary renal cell cancer.

Gluconeogenesis

A metabolic pathway that results in the generation of glucose from non-carbohydrate carbon substrates such as lactate, glycerol and glucogenic amino acids.

von Hippel–Lindau

An inherited disorder characterized by the formation of tumours and fluid-filled sacs (cysts) in many different parts of the body.

Retinitis pigmentosa

A genetic disorder of the eyes that causes loss of vision.

Ecdysone

A steroid hormone secreted by the prothoracic gland that, in its active form, stimulates metamorphosis and regulates moulting in insects.

NuRD complex

The nucleosome remodelling and deacetylase complex.

SWI/SNF complex

An evolutionarily conserved multisubunit chromatin-remodelling complex that uses the energy of ATP hydrolysis to mobilize nucleosomes and remodel chromatin.

Haem

The component of haemoglobin (and other haemoproteins) responsible for binding oxygen.

Haematocrit

The ratio of the volume of red blood cells to the total volume of blood.

Homologous recombination

(HR). A type of genetic recombination in which nucleotide sequences are exchanged between two similar or identical molecules of DNA.

Ataxia-telangiectasia mutated (ATM) kinase

A serine/threonine-protein kinase that is recruited and activated by DNA double-strand breaks.

TP53-binding protein

(53BP1). A protein involved in DNA repair, which is encoded by the TP53BP1 gene.

Breast cancer type 1 susceptibility protein

(BRCA1). A tumour suppressor protein involved in DNA repair.

Retinoblastoma protein

A tumour suppressor protein that inhibits cell cycle progression and is dysfunctional in several major cancers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Egervari, G., Wang, Y. et al. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat Rev Mol Cell Biol 19, 563–578 (2018). https://doi.org/10.1038/s41580-018-0029-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0029-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing