Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanism and medical implications of mammalian autophagy

Abstract

Autophagy is a highly conserved catabolic process induced under various conditions of cellular stress, which prevents cell damage and promotes survival in the event of energy or nutrient shortage and responds to various cytotoxic insults. Thus, autophagy has primarily cytoprotective functions and needs to be tightly regulated to respond correctly to the different stimuli that cells experience, thereby conferring adaptation to the ever-changing environment. It is now apparent that autophagy is deregulated in the context of various human pathologies, including cancer and neurodegeneration, and its modulation has considerable potential as a therapeutic approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the autophagy process.
Fig. 2: Autophagy in cancer.
Fig. 3: Autophagy in neurodegeneration.

Similar content being viewed by others

References

  1. De Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R. & Appelmans, F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J. 60, 604–617 (1955).

    Article  PubMed Central  Google Scholar 

  2. Deter, R. L., Baudhuin, P. & De Duve, C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J. Cell Biol. 35, C11–C16 (1967).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. Abada, A. & Elazar, Z. Getting ready for building: signaling and autophagosome biogenesis. EMBO Rep. 15, 839–852 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759–774 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    Article  PubMed  CAS  Google Scholar 

  7. Klionsky, D. J. et al. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7, 1273–1294 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hamasaki, M. et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389–393 (2013).

    Article  PubMed  CAS  Google Scholar 

  9. Nascimbeni, A. C. et al. ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 36, 2018–2033 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Karanasios, E. et al. Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J. Cell Sci. 126, 5224–5238 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Manifava, M. et al. Dynamics of mTORC1 activation in response to amino acids. eLife 5, e19960 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nishimura, T. et al. Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains. EMBO J. 36, 1719–1735 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Gonzalez, A. & Hall, M. N. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 36, 397–408 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bar-Peled, L. & Sabatini, D. M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 24, 400–406 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jung, C. H. et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Settembre, C., Fraldi, A., Medina, D. L. & Ballabio, A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14, 283–296 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Di Malta, C. et al. Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth. Science 356, 1188–1192 (2017). This study describes an important mechanism by which TFEB, a major regulator of autophagy, links cellular metabolic states to the regulation of mTORC1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gurumurthy, S. et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468, 659–663 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tripathi, D. N. et al. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc. Natl Acad. Sci. USA 110, E2950–E2957 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bakula, D. et al. WIPI3 and WIPI4 beta-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat. Commun. 8, 15637 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sakamaki, J. I. et al. Bromodomain protein BRD4 is a transcriptional repressor of autophagy and lysosomal function. Mol. Cell 66, 517–532.e9 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458–471 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. Zhao, J. et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472–483 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005). This work describes an interesting link between apoptosis and autophagy, characterizing BCL-2 as a negative regulator of both processes.

    Article  PubMed  CAS  Google Scholar 

  28. Fimia, G. M. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125 (2007).

    PubMed  CAS  Google Scholar 

  29. Di Bartolomeo, S. et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol. 191, 155–168 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cinque, L. et al. FGF signalling regulates bone growth through autophagy. Nature 528, 272–275 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Xu, D. Q. et al. PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity. EMBO J. 35, 496–514 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Su, H. et al. VPS34 acetylation controls its lipid kinase activity and the initiation of canonical and non-canonical autophagy. Mol. Cell 67, 907–921.e7 (2017).

    Article  PubMed  CAS  Google Scholar 

  33. McKnight, N. C. et al. Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC. EMBO J. 31, 1931–1946 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Joachim, J. et al. Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130. Mol. Cell 60, 899–913 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Fan, W., Nassiri, A. & Zhong, Q. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc. Natl Acad. Sci. USA 108, 7769–7774 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Itakura, E., Kishi, C., Inoue, K. & Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19, 5360–5372 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Park, J. M. et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 12, 547–564 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tan, X., Thapa, N., Liao, Y., Choi, S. & Anderson, R. A. PtdIns(4,5)P2 signaling regulates ATG14 and autophagy. Proc. Natl Acad. Sci. USA 113, 10896–10901 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Papinski, D. et al. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol. Cell 53, 471–483 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lamb, C. A. et al. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. EMBO J. 35, 281–301 (2016).

    Article  PubMed  CAS  Google Scholar 

  41. Shirahama-Noda, K., Kira, S., Yoshimori, T. & Noda, T. TRAPPIII is responsible for vesicular transport from early endosomes to Golgi, facilitating Atg9 cycling in autophagy. J. Cell Sci. 126, 4963–4973 (2013).

    Article  PubMed  CAS  Google Scholar 

  42. Webster, C. P. et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 35, 1656–1676 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mi, N. et al. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat. Cell Biol. 17, 1112–1123 (2015).

    Article  PubMed  CAS  Google Scholar 

  44. Kast, D. J., Zajac, A. L., Holzbaur, E. L., Ostap, E. M. & Dominguez, R. WHAMM directs the Arp2/3 complex to the er for autophagosome biogenesis through an actin comet tail mechanism. Curr. Biol. 25, 1791–1797 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Slobodkin, M. R. & Elazar, Z. The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem. 55, 51–64 (2013).

    Article  PubMed  CAS  Google Scholar 

  46. Li, M. et al. Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J. Biol. Chem. 286, 7327–7338 (2011).

    Article  PubMed  CAS  Google Scholar 

  47. Woo, J., Park, E. & Dinesh-Kumar, S. P. Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases. Proc. Natl Acad. Sci. USA 111, 863–868 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5. Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 277, 18619–18625 (2002).

    Article  PubMed  CAS  Google Scholar 

  49. Fujioka, Y., Noda, N. N., Nakatogawa, H., Ohsumi, Y. & Inagaki, F. Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J. Biol. Chem. 285, 1508–1515 (2010).

    Article  PubMed  CAS  Google Scholar 

  50. Dooley, H. C. et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55, 238–252 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kaufmann, A., Beier, V., Franquelim, H. G. & Wollert, T. Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell 156, 469–481 (2014).

    Article  PubMed  CAS  Google Scholar 

  52. Weidberg, H. et al. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 20, 444–454 (2011).

    Article  PubMed  CAS  Google Scholar 

  53. Ge, L. et al. Remodeling of ER-exit sites initiates a membrane supply pathway for autophagosome biogenesis. EMBO Rep. 18, 1586–1603 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Ge, L., Zhang, M. & Schekman, R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. eLife 3, e04135 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Graef, M., Friedman, J. R., Graham, C., Babu, M. & Nunnari, J. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell 24, 2918–2931 (2013). Studies in refs 54 and 55 implicate ER exit sites in the process of autophagosome biogenesis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Tsuboyama, K. et al. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354, 1036–1041 (2016).

    Article  PubMed  CAS  Google Scholar 

  57. Nguyen, T. N. et al. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 215, 857–874 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26, 1749–1760 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Pengo, N., Agrotis, A., Prak, K., Jones, J. & Ketteler, R. A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protease ATG4B. Nat. Commun. 8, 294 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sanchez-Wandelmer, J. et al. Atg4 proteolytic activity can be inhibited by Atg1 phosphorylation. Nat. Commun. 8, 295 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cherra, S. J. 3rd et al. Regulation of the autophagy protein LC3 by phosphorylation. J. Cell Biol. 190, 533–539 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Diao, J. et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563–566 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012). This important study characterizes syntaxin 17 (STX17) as an autophagosome-associated SNARE molecule that mediates autophagosomal–lysosomal membrane fusion. STX17 may therefore serve as an endogenous marker for the mature autophagosome.

    Article  PubMed  CAS  Google Scholar 

  64. Koyama-Honda, I., Itakura, E., Fujiwara, T. K. & Mizushima, N. Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 9, 1491–1499 (2013).

    Article  PubMed  CAS  Google Scholar 

  65. Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495–501 (2014).

    Article  PubMed  CAS  Google Scholar 

  66. Olsvik, H. L. et al. FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy. J. Biol. Chem. 290, 29361–29374 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. McEwan, D. G. et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57, 39–54 (2015).

    Article  PubMed  CAS  Google Scholar 

  68. Kim, Y. M. et al. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol. Cell 57, 207–218 (2015).

    Article  PubMed  CAS  Google Scholar 

  69. Jiang, P. et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 25, 1327–1337 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wilkinson, D. S. et al. Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy. Mol. Cell 57, 55–68 (2015).

    Article  PubMed  CAS  Google Scholar 

  71. Lamming, D. W., Ye, L., Sabatini, D. M. & Baur, J. A. Rapalogs and mTOR inhibitors as anti-aging therapeutics. J. Clin. Invest. 123, 980–989 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  PubMed  CAS  Google Scholar 

  73. Kimmelman, A. C. & White, E. Autophagy and tumor metabolism. Cell Metab. 25, 1037–1043 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Apel, A., Herr, I., Schwarz, H., Rodemann, H. P. & Mayer, A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res. 68, 1485–1494 (2008).

    Article  PubMed  CAS  Google Scholar 

  75. Liu, D., Yang, Y., Liu, Q. & Wang, J. Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells. Med. Oncol. 28, 105–111 (2011).

    Article  PubMed  CAS  Google Scholar 

  76. Shingu, T. et al. Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells. Int. J. Cancer 124, 1060–1071 (2009).

    Article  PubMed  Google Scholar 

  77. Rao, S. et al. A dual role for autophagy in a murine model of lung cancer. Nat. Commun. 5, 3056 (2014).

    Article  PubMed  CAS  Google Scholar 

  78. Perera, R. M. et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524, 361–365 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905–913 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011). This study describes how human cancers with activating HRAS and KRAS mutations commonly have upregulated basal autophagy that is required to maintain functional mitochondria and cell metabolism. Increased basal autophagy is required to maintain functional mitochondria and cell metabolism, thereby supporting tumour cell survival upon nutrient starvation (which often occurs in the core of the tumour mass) and consequently promoting tumorigenesis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Zou, Z. et al. Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy 8, 1798–1810 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Galluzzi, L., Bravo-San Pedro, J. M., Demaria, S., Formenti, S. C. & Kroemer, G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat. Rev. Clin. Oncol. 14, 247–258 (2017).

    Article  PubMed  CAS  Google Scholar 

  84. Hu, Y. L., Jahangiri, A., Delay, M. & Aghi, M. K. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res. 72, 4294–4299 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    Article  PubMed  CAS  Google Scholar 

  86. Martins, I. et al. Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy 8, 413–415 (2012).

    Article  PubMed  CAS  Google Scholar 

  87. Michaud, M. et al. An autophagy-dependent anticancer immune response determines the efficacy of melanoma chemotherapy. Oncoimmunology 3, e944047 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Parodi, M. et al. Natural Killer (NK)/melanoma cell interaction induces NK-mediated release of chemotactic High Mobility Group Box-1 (HMGB1) capable of amplifying NK cell recruitment. Oncoimmunology 4, e1052353 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Thorburn, J. et al. Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ. 16, 175–183 (2009).

    Article  PubMed  Google Scholar 

  90. Pietrocola, F. et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30, 147–160 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Rosenfeldt, M. T. et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 504, 296–300 (2013).

    Article  PubMed  CAS  Google Scholar 

  92. Kimura, T. et al. Cellular and molecular mechanism for secretory autophagy. Autophagy 13, 1084–1085 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ponpuak, M. et al. Secretory autophagy. Curr. Opin. Cell Biol. 35, 106–116 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lock, R., Kenific, C. M., Leidal, A. M., Salas, E. & Debnath, J. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov. 4, 466–479 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Papandreou, M. E. & Tavernarakis, N. Autophagy and the endo/exosomal pathways in health and disease. Biotech. J. 12, 1600175 (2016).

    Article  CAS  Google Scholar 

  96. Villarroya-Beltri, C. et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat. Commun. 7, 13588 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ruivo, C. F., Adem, B., Silva, M. & Melo, S. A. The biology of cancer exosomes: insights and new perspectives. Cancer Res. 77, 6480–6488 (2017).

    Article  PubMed  CAS  Google Scholar 

  98. Kiyono, K. et al. Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res. 69, 8844–8852 (2009).

    Article  PubMed  CAS  Google Scholar 

  99. Catalano, M. et al. Autophagy induction impairs migration and invasion by reversing EMT in glioblastoma cells. Mol. Oncol. 9, 1612–1625 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Lv, Q. et al. DEDD interacts with PI3KC3 to activate autophagy and attenuate epithelial-mesenchymal transition in human breast cancer. Cancer Res. 72, 3238–3250 (2012).

    Article  PubMed  CAS  Google Scholar 

  101. Qiang, L. et al. Regulation of cell proliferation and migration by p62 through stabilization of Twist1. Proc. Natl Acad. Sci. USA 111, 9241–9246 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Gugnoni, M. et al. Cadherin-6 promotes EMT and cancer metastasis by restraining autophagy. Oncogene 36, 667–677 (2017).

    Article  PubMed  CAS  Google Scholar 

  103. Peng, Y. F. et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9, 2056–2068 (2013).

    Article  PubMed  CAS  Google Scholar 

  104. Cai, Q., Yan, L. & Xu, Y. Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells. Oncogene 34, 3315–3324 (2015).

    Article  PubMed  CAS  Google Scholar 

  105. Schafer, Z. T. et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461, 109–113 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Avivar-Valderas, A. et al. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 32, 4932–4940 (2013).

    Article  PubMed  CAS  Google Scholar 

  107. Sequeira, S. J. et al. Inhibition of proliferation by PERK regulates mammary acinar morphogenesis and tumor formation. PloS ONE 2, e615 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Chen, N. & Debnath, J. IkappaB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy 9, 1214–1227 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Buchheit, C. L., Angarola, B. L., Steiner, A., Weigel, K. J. & Schafer, Z. T. Anoikis evasion in inflammatory breast cancer cells is mediated by Bim-EL sequestration. Cell Death Differ 22, 1275–1286 (2015).

    Article  PubMed  CAS  Google Scholar 

  110. Delgado, M. & Tesfaigzi, Y. BH3-only proteins, Bmf and Bim, in autophagy. Cell Cycle 12, 3453–3454 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Luo, S. et al. Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol. Cell 47, 359–370 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Sharifi, M. N. et al. Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3. Cell Rep. 15, 1660–1672 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Sandilands, E. et al. Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat. Cell Biol. 14, 51–60 (2011).

    Article  PubMed  CAS  Google Scholar 

  114. Belaid, A. et al. Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability. Cancer Res. 73, 4311–4322 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Yoshida, T., Tsujioka, M., Honda, S., Tanaka, M. & Shimizu, S. Autophagy suppresses cell migration by degrading GEF-H1, a RhoA GEF. Oncotarget 7, 34420–34429 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Ma, Z., Myers, D. P., Wu, R. F., Nwariaku, F. E. & Terada, L. S. p66Shc mediates anoikis through RhoA. J. Cell Biol. 179, 23–31 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Gordon, B. S. et al. RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells. Cell. Signal. 26, 461–467 (2014).

    Article  PubMed  CAS  Google Scholar 

  118. Cullup, T. et al. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat. Genet. 45, 83–87 (2013).

    Article  PubMed  CAS  Google Scholar 

  119. Vantaggiato, C. et al. Defective autophagy in spastizin mutated patients with hereditary spastic paraparesis type 15. Brain 136, 3119–3139 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Saitsu, H. et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet. 45, 445–449 (2013).

    Article  PubMed  CAS  Google Scholar 

  121. Dikic, I. Proteasomal and autophagy degradation systems. Annu. Rev. Biochem. 86, 193–224 (2017).

    Article  PubMed  CAS  Google Scholar 

  122. Karsli-Uzunbas, G. et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 4, 914–927 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  PubMed  CAS  Google Scholar 

  124. Gan-Or, Z., Dion, P. A. & Rouleau, G. A. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy 11, 1443–1457 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Trinh, J. & Farrer, M. Advances in the genetics of Parkinson disease. Nat. Rev. Neurol. 9, 445–454 (2013).

    Article  PubMed  CAS  Google Scholar 

  126. Moors, T. et al. Lysosomal dysfunction and alpha-synuclein aggregation in Parkinson’s disease: diagnostic links. Movement Disord. 31, 791–801 (2016).

    Article  PubMed  CAS  Google Scholar 

  127. Dijkstra, A. A. et al. Evidence for immune response, axonal dysfunction and reduced endocytosis in the substantia nigra in early stage Parkinson’s disease. PloS ONE 10, e0128651 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Elstner, M. et al. Expression analysis of dopaminergic neurons in Parkinson’s disease and aging links transcriptional dysregulation of energy metabolism to cell death. Acta Neuropathol. 122, 75–86 (2011).

    Article  PubMed  CAS  Google Scholar 

  129. Mutez, E. et al. Involvement of the immune system, endocytosis and EIF2 signaling in both genetically determined and sporadic forms of Parkinson’s disease. Neurobiol. Dis. 63, 165–170 (2014).

    Article  PubMed  CAS  Google Scholar 

  130. Jackson, K. L. et al. p62 pathology model in the rat substantia nigra with filamentous inclusions and progressive neurodegeneration. PloS ONE 12, e0169291 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Seibenhener, M. L. et al. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 24, 8055–8068 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  PubMed  CAS  Google Scholar 

  133. Lim, J. et al. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet. 11, e1004987 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Ordureau, A. et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360–375 (2014). Employing quantitative proteomics and live-cell imaging, this study comprehensively dissects the regulatory steps by which PINK1-mediated phosphorylation of Parkin and ubiquitin triggers the recruitment of Parkin to damaged mitochondria and reveals a feedforward mechanism that is responsible for the observed effects.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Shiba-Fukushima, K. et al. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet. 10, e1004861 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Walden, H. & Muqit, M. M. Ubiquitin and Parkinson’s disease through the looking glass of genetics. Biochem. J. 474, 1439–1451 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Koentjoro, B., Park, J. S. & Sue, C. M. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson’s disease. Sci. Rep. 7, 44373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Cirulli, E. T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18, 631–636 (2015). This study shows that mutations in TBK1 affecting the post-translational modification of the autophagy receptor cause a neurodegenerative disease, thus highlighting not only the importance of autophagy in neurodegeneration but also the crucial role of phosphorylation of autophagy receptors.

    Article  PubMed  CAS  Google Scholar 

  141. Lee, J. K., Shin, J. H., Lee, J. E. & Choi, E. J. Role of autophagy in the pathogenesis of amyotrophic lateral sclerosis. Biochim. Biophys. Acta 1852, 2517–2524 (2015).

    Article  PubMed  CAS  Google Scholar 

  142. Moore, A. S. & Holzbaur, E. L. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl Acad. Sci. USA 113, E3349–E3358 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Heo, J. M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7–20 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Matsumoto, G., Shimogori, T., Hattori, N. & Nukina, N. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 24, 4429–4442 (2015).

    Article  PubMed  CAS  Google Scholar 

  145. Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl Acad. Sci. USA 113, 4039–4044 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414–418 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Gomes, L. C. & Dikic, I. Autophagy in antimicrobial immunity. Mol. Cell 54, 224–233 (2014).

    Article  PubMed  CAS  Google Scholar 

  148. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264–268 (2008).

    Article  PubMed  CAS  Google Scholar 

  150. Paludan, C. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596 (2005).

    Article  PubMed  CAS  Google Scholar 

  151. Loi, M. et al. Macroautophagy proteins control MHC Class I levels on dendritic cells and shape anti-viral CD8(+) T cell responses. Cell Rep. 15, 1076–1087 (2016).

    Article  PubMed  CAS  Google Scholar 

  152. Wei, J. et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17, 277–285 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Rockel, J. S. & Kapoor, M. Autophagy: controlling cell fate in rheumatic diseases. Nat. Rev. Rheumatol. 12, 517–531 (2016).

    Article  PubMed  CAS  Google Scholar 

  155. Ma, Y., Galluzzi, L., Zitvogel, L. & Kroemer, G. Autophagy and cellular immune responses. Immunity 39, 211–227 (2013).

    Article  PubMed  CAS  Google Scholar 

  156. Criollo, A. et al. The IKK complex contributes to the induction of autophagy. EMBO J 29, 619–631 (2010).

    Article  PubMed  CAS  Google Scholar 

  157. Niso-Santano, M. et al. Direct molecular interactions between Beclin 1 and the canonical NFkappaB activation pathway. Autophagy 8, 268–270 (2012).

    Article  PubMed  CAS  Google Scholar 

  158. Copetti, T., Bertoli, C., Dalla, E., Demarchi, F. & Schneider, C. p65/RelA modulates BECN1 transcription and autophagy. Mol. Cell. Biol. 29, 2594–2608 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Djavaheri-Mergny, M. et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J. Biol. Chem. 281, 30373–30382 (2006).

    Article  PubMed  CAS  Google Scholar 

  160. Schlottmann, S. et al. Prolonged classical NF-kappaB activation prevents autophagy upon E. coli stimulation in vitro: a potential resolving mechanism of inflammation. Mediators Inflamm. 2008, 725854 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Criollo, A. et al. Autophagy is required for the activation of NFkappaB. Cell Cycle 11, 194–199 (2012).

    Article  PubMed  CAS  Google Scholar 

  162. Kim, J. E. et al. Suppression of NF-kappaB signaling by KEAP1 regulation of IKKbeta activity through autophagic degradation and inhibition of phosphorylation. Cell. Signal. 22, 1645–1654 (2010).

    Article  PubMed  CAS  Google Scholar 

  163. Niida, M., Tanaka, M. & Kamitani, T. Downregulation of active IKK beta by Ro52-mediated autophagy. Mol. Immunol. 47, 2378–2387 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004). This seminal work shows that induction of autophagy suppresses intracellular survival of mycobacteria, thus acting as an innate defence mechanism against intracellular pathogens.

    Article  PubMed  CAS  Google Scholar 

  165. Noad, J. et al. LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-kappaB. Nat. Microbiol 2, 17063 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. van Wijk, S. J. L. et al. Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-kappaB and restricts bacterial proliferation. Nat. Microbiol 2, 17066 (2017).

    Article  PubMed  CAS  Google Scholar 

  167. Neumann, Y. et al. Intracellular Staphylococcus aureus eludes selective autophagy by activating a host cell kinase. Autophagy 12, 2069–2084 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Nguyen, L. et al. Role of protein kinase G in growth and glutamine metabolism of Mycobacterium bovis BCG. J. Bacteriol. 187, 5852–5856 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Real, E. et al. Plasmodium UIS3 sequesters host LC3 to avoid elimination by autophagy in hepatocytes. Nat. Microbiol. 3, 17–25 (2018).

    Article  PubMed  CAS  Google Scholar 

  170. Devenish, R. J. & Lai, S. C. Autophagy and burkholderia. Immunol. Cell Biol. 93, 18–24 (2015).

    Article  PubMed  CAS  Google Scholar 

  171. Rui, Y. N. et al. Huntingtin functions as a scaffold for selective macroautophagy. Nat. Cell Biol. 17, 262–275 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Chu, C. T. et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Sentelle, R. D. et al. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol. 8, 831–838 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Pasquier, B. Autophagy inhibitors. Cell. Mol. Life Sci. 73, 985–1001 (2016).

    Article  PubMed  CAS  Google Scholar 

  175. Egan, D. F. et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59, 285–297 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Petherick, K. J. et al. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J. Biol. Chem. 290, 28726 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Bago, R. et al. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem. J. 463, 413–427 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Dowdle, W. E. et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069–1079 (2014).

    Article  PubMed  CAS  Google Scholar 

  179. Ronan, B. et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 10, 1013–1019 (2014).

    Article  PubMed  CAS  Google Scholar 

  180. Shoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494, 201–206 (2013). To avoid the pleiotropic effects of conventional autophagy inducers, Shoji-Kawata et al. design a cell-permeable peptide, Tat–Beclin 1, which comprises the HIV-1 Tat protein transduction domain (PTD) attached to a fragment derived from the autophagy inducer Beclin 1. TAT–Beclin 1 effectively clears protein aggregates and improves the clinical outcome of mice infected with the West Nile virus.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Wu, W. et al. Co-targeting IGF-1 R and autophagy enhances the effects of cell growth suppression and apoptosis induced by the IGF-1 R Inhibitor NVP-AEW541 in triple-negative breast cancer cells. PloS ONE 12, e0169229 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Akin, D. et al. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy 10, 2021–2035 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Bove, J., Martinez-Vicente, M. & Vila, M. Fighting neurodegeneration with rapamycin: mechanistic insights. Nature Rev. Neurosci. 12, 437–452 (2011).

    Article  CAS  Google Scholar 

  184. Liu, Z. et al. Sesamol induces human hepatocellular carcinoma cells apoptosis by impairing mitochondrial function and suppressing autophagy. Sci. Rep. 7, 45728 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Buttner, S. et al. Spermidine protects against alpha-synuclein neurotoxicity. Cell Cycle 13, 3903–3908 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Jiang, T. F. et al. Curcumin ameliorates the neurodegenerative pathology in A53T alpha-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J. Neuroimmune Pharmacol 8, 356–369 (2013).

    Article  PubMed  Google Scholar 

  187. Macedo, D. et al. (Poly)phenols protect from alpha-synuclein toxicity by reducing oxidative stress and promoting autophagy. Hum. Mol. Genet. 24, 1717–1732 (2015).

    Article  PubMed  CAS  Google Scholar 

  188. Filomeni, G. et al. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol. Aging 33, 767–785 (2012).

    Article  PubMed  CAS  Google Scholar 

  189. Efferth, T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin. Cancer Biol. 46, 65–83 (2017).

    Article  PubMed  CAS  Google Scholar 

  190. Hua, F., Shang, S. & Hu, Z. W. Seeking new anti-cancer agents from autophagy-regulating natural products. J. Asian Nat. Prod. Res. 19, 305–313 (2017).

    Article  PubMed  CAS  Google Scholar 

  191. Yang, Z. et al. Fluvastatin prevents lung adenocarcinoma bone metastasis by triggering autophagy. EBioMedicine 19, 49–59 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Zhou, X. et al. Elaborating the role of natural products on the regulation of autophagy and their potentials in breast cancer therapy. Cancer Drug Targets. https://doi.org/10.2174/1568009617666170330124819 (2017).

    Article  Google Scholar 

  193. Ji, H. F. & Shen, L. The multiple pharmaceutical potential of curcumin in Parkinson’s disease. CNS Neurol. Disord. Drug Targets 13, 369–373 (2014).

    Article  PubMed  CAS  Google Scholar 

  194. Mukhopadhyay, S. et al. Clinical relevance of autophagic therapy in cancer: Investigating the current trends, challenges, and future prospects. Crit. Rev. Clin. Lab. Sci. 53, 228–252 (2016).

    Article  PubMed  Google Scholar 

  195. Towers, C. G. & Thorburn, A. Therapeutic targeting of autophagy. EBioMedicine 14, 15–23 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Nah, J., Yuan, J. & Jung, Y. K. Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Molecules Cells 38, 381–389 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Harris, H. & Rubinsztein, D. C. Control of autophagy as a therapy for neurodegenerative disease. Nature Rev. Neurol. 8, 108–117 (2011).

    Article  CAS  Google Scholar 

  199. Boland, B. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci. 28, 6926–6937 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Jo, E. K., Yuk, J. M., Shin, D. M. & Sasakawa, C. Roles of autophagy in elimination of intracellular bacterial pathogens. Front. Immunol. 4, 97 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Kim, T. S. et al. Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway. Sci. Rep. 7, 3431 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Hoeller and O. Shatz for their constructive discussions, comments and help with figures. The authors apologize to all scientists whose important contributions were not referenced in this review owing to space limitations. I.D. is supported by the Deutsche Forschungsgemeinschaft-funded Collaborative Research Centre on Selective Autophagy (SFB 1177), the European Research Council (ERC) advanced grant (Agreement No. 742720), the LOEWE program Ubiquitin Networks (Ub-Net) and the LOEWE Center for Gene and Cell Therapy Frankfurt (CGT). Z.E. is supported in part by the Israeli Science Foundation (Grant 1247/15), the Legacy Heritage Fund (Grant 1935/16) and the Minerva foundation with funding from the Federal German Ministry for Education and Research.

Competing interests

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this work (researching data for the article, discussion of content, writing and editing).

Corresponding authors

Correspondence to Ivan Dikic or Zvulun Elazar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Glossary

Contact sites

Interorganellar connections with distinct biochemical properties and a characteristic set of proteins that function as signalling hot spots.

TSC2 (tuberous sclerosis 2) complex

Complex that is part of TSC that acts as a GTPase accelerating protein (GAP) for GTP-binding protein RHEB; because GDP-loaded RHEB is unable to activate mTORC1, TSC effectively shuts off mTORC1 signalling.

Raptor

Scaffold protein unique to mTORC1 (not present in mTORC2); binds substrates as well as regulators

FOXO (forkhead box O) proteins

Family of transcription factors activated in response to cell stress; they regulate genes involved in cellular energy production, oxidative stress resistance, cell viability and proliferation.

JNK

Member of the MAPK family activated by extracellular signals; associated with several pathological conditions, including neurodegenerative diseases, inflammation and cancer.

E1

Ubiquitin (Ub)-activating enzyme; first enzyme in the E1–E2–E3 ubiquitylation cascade that activates Ub in an ATP-dependent manner.

E3

Ubiquitin (Ub)-ligating enzyme; cooperates with E2 to attach Ub to a lysine residue in the target protein. Only component of the Ub machinery that interacts with the target, thus conferring substrate specificity to the reaction.

E2

Ubiquitin (Ub)-conjugating enzyme; takes over activated Ub from E1 and hands it over to E3. Plays a key role in defining the linkage type of Ub conjugation when chains of multiple Ub molecules are assembled.

ER exit sites

Areas of the endoplasmic reticulum (ER) where transport vesicles that contain lipids and proteins made in the ER detach from the ER and move to the Golgi complex.

Galectins

Carbohydrate-binding lectins that recognize intracellular bacteria-containing vesicles when their membrane integrity is compromised.

SNAREs

Proteins that mediate the fusion of vesicles with target membranes. SNARE proteins on the vesicle (v-SNAREs) and on the target membrane (t-SNAREs) combine to form a trans-SNARE complex that provides the force for membrane fusion.

Hippo kinase

A kinase that functions as a central node in the regulation of cell division and controls organ size in flies and mammals as well as the growth of cancer cells.

High-mobility group box 1 protein (HMGB1)

A protein that senses and coordinates the cellular stress response acting as a DNA chaperone, autophagy sustainer and protector from apoptotic cell death. Outside the cell, it functions as a prototypic damage associated molecular pattern molecule (DAMP).

Unconventional secretion

Comprises the translocation across the plasma membrane of cargo without a signal peptide or a transmembrane domain and cargos that reach the plasma membrane by bypassing the Golgi apparatus despite entering the endoplasmic reticulum (ER).

Exosomes

Small extracellular vesicles that contain various molecular constituents and are released directly from the plasma membrane or when multivesicular bodies fuse with the plasma membrane.

NF-κB (nuclear factor-κB) pathway

A transcription factor that controls cytokine production and cell survival and plays a key role in the cellular response to infection. Disturbance of the pathway has been linked to cancer, inflammatory and autoimmune diseases, septic shock, viral infection and improper immune development.

Leading edge

Front edge of a cell that is pushed forward by rapid actin polymerization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikic, I., Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19, 349–364 (2018). https://doi.org/10.1038/s41580-018-0003-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0003-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer