Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Urinary tract infections: pathogenesis, host susceptibility and emerging therapeutics

Abstract

Urinary tract infections (UTIs), which include any infection of the urethra, bladder or kidneys, account for an estimated 400 million infections and billions of dollars in health-care spending per year. The most common bacterium implicated in UTI is uropathogenic Escherichia coli, but diverse pathogens including Klebsiella, Enterococcus, Pseudomonas, Staphylococcus and even yeast such as Candida species can also cause UTIs. UTIs occur in both women and men and in both healthy and immunocompromised patients. However, certain patient factors predispose to disease: for example, female sex, history of prior UTI, or the presence of a urinary catheter or other urinary tract abnormality. The current clinical paradigm for the treatment of UTIs involves the use of antibiotics. Unfortunately, the efficacy of this approach is dwindling as the prevalence of antimicrobial resistance rises among UTI isolates, and the immense quantity of antibiotics prescribed annually for these infections contributes to the emergence of resistant pathogens. Therefore, there is an urgent need for new antibiotics and non-antibiotic treatment and prevention strategies. In this Review, we discuss how recent studies of bacterial pathogenesis, recurrence, persistence, host–pathogen interactions and host susceptibility factors have elucidated new and promising targets for the treatment and prevention of UTIs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epidemiology of UTIs.
Fig. 2: Pathogenesis of urinary tract infections.
Fig. 3: Model of the gut–vagina–bladder axis.
Fig. 4: Model for bladder epithelial stem cell remodelling and trained immunity.

Similar content being viewed by others

References

  1. Yang, X. et al. Disease burden and long-term trends of urinary tract infections: a worldwide report. Front. Public Health 10, 888205 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brumbaugh, A. R. & Mobley, H. L. T. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert Rev. Vaccines 11, 663–676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am. J. Med. 113, 5–13 (2002).

    Article  Google Scholar 

  4. Wagenlehner, F., Wullt, B., Ballarini, S., Zingg, D. & Naber, K. G. Social and economic burden of recurrent urinary tract infections and quality of life: a patient web-based study (GESPRIT). Expert Rev. Pharmacoecon. Outcomes Res. 18, 107–117 (2018).

    Article  PubMed  Google Scholar 

  5. Cairns, C., Kang, K. & Santo, L. National Hospital Ambulatory Medical Care Survey: 2018 Emergency Department Summary Tables (CDC, 2018).

  6. Santo, L. & Okeyode, T. National Ambulatory Medical Care Survey: 2018 National Summary (CDC, 2018).

  7. Vallejo-Torres, L. et al. Cost of hospitalised patients due to complicated urinary tract infections: a retrospective observational study in countries with high prevalence of multidrug-resistant Gram-negative bacteria: the COMBACTE-MAGNET, RESCUING study. BMJ Open 8, e020251 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carreno, J. J. et al. Longitudinal, nationwide, cohort study to assess incidence, outcomes, and costs associated with complicated urinary tract infection. Open Forum Infect. Dis. 6, ofz446 (2019).

    Article  Google Scholar 

  9. Wagenlehner, F. M. E. et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat. Rev. Urol. 17, 586–600 (2020).

    Article  PubMed  Google Scholar 

  10. Aslam, S., Albo, M. & Brubaker, L. Recurrent urinary tract infections in adult women. JAMA 323, 658–659 (2020).

    Article  PubMed  Google Scholar 

  11. Schwartz, D. J., Chen, S. L., Hultgren, S. J. & Seed, P. C. Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection. Infect. Immun. 79, 4250–4259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Mulvey, M. A., Schilling, J. D. & Hultgren, S. J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69, 4572–4579 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosen, D. A., Hooton, T. M., Stamm, W. E., Humphrey, P. A. & Hultgren, S. J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4, e329 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. De Nisco, N. J. et al. Direct detection of tissue-resident bacteria and chronic inflammation in the bladder wall of postmenopausal women with recurrent urinary tract infection. J. Mol. Biol. 431, 4368–4379 (2019). This study provides the first direct visualization of intracellular bacterial communities within human bladders, confirming decades of work in mouse models.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schreiber, H. L. et al. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections. Sci. Transl. Med. 9, eaaf1283 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Potter, R. F. et al. Uncharacterized and lineage-specific accessory genes within the Proteus mirabilis pan-genome landscape. mSystems 8, e00159-23 (2023).

    PubMed  PubMed Central  Google Scholar 

  18. Sharon, B. M. et al. Genetic and functional enrichments associated with Enterococcus faecalis isolated from the urinary tract. mBio 14, e02515–e02523 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ambite, I. et al. Molecular determinants of disease severity in urinary tract infection. Nat. Rev. Urol. 18, 468–486 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bunduki, G. K. et al. Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: a systematic review and meta-analysis. BMC Infect. Dis. 21, 753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klein, R. D. & Hultgren, S. J. Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 18, 211–226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wurpel, D. J., Beatson, S. A., Totsika, M., Petty, N. K. & Schembri, M. A. Chaperone-usher fimbriae of Escherichia coli. PLoS ONE 8, e52835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Armbruster, C. E., Mobley, H. L. T. & Pearson, M. M. Pathogenesis of Proteus mirabilis infection. EcoSal Plus https://doi.org/10.1128/ecosalplus.ESP-0009-2017 (2018).

  24. Fonseca-Martínez, S. A., Martínez-Vega, R. A., Farfán-García, A. E., González Rugeles, C. I. & Criado-Guerrero, L. Y. Association between uropathogenic Escherichia coli virulence genes and severity of infection and resistance to antibiotics. Infect. Drug Resist. 16, 3707–3718 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rosen, D. A. et al. Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect. Immun. 76, 3346–3356 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwartz, L., de Dios Ruiz-Rosado, J., Stonebrook, E., Becknell, B. & Spencer, J. D. Uropathogen and host responses in pyelonephritis. Nat. Rev. Nephrol. 19, 658–671 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Spaulding, C. N. et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 546, 528–532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gato, E. et al. Kpi, a chaperone-usher pili system associated with the worldwide-disseminated high-risk clone Klebsiella pneumoniae ST-15. Proc. Natl Acad. Sci. USA 117, 17249–17259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neilands, J. B. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270, 26723–26726 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Robinson, A. E., Heffernan, J. R. & Henderson, J. P. The iron hand of uropathogenic Escherichia coli: the role of transition metal control in virulence. Future Microbiol. 13, 745–756 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shea, A. E., Frick-Cheng, A. E., Smith, S. N. & Mobley, H. L. T. Phenotypic assessment of clinical Escherichia coli isolates as an indicator for uropathogenic potential. mSystems 7, e0082722 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Frick-Cheng, A. E. et al. Ferric citrate uptake is a virulence factor in uropathogenic Escherichia coli. mBio 13, e01035-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez-Ferrer, S. et al. Finding order in the chaos: outstanding questions in Klebsiella pneumoniae pathogenesis. Infect. Immun. 89, e00693-20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hung, C. et al. Escherichia coli biofilms have an organized and complex extracellular matrix structure. mBio 4, e00645-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stahlhut, S. G., Struve, C., Krogfelt, K. A. & Reisner, A. Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol. Med. Microbiol. 65, 350–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Newman, J. W., Floyd, R. V. & Fothergill, J. L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnx124 (2017).

  37. Conover, M. S. et al. Metabolic requirements of Escherichia coli in intracellular bacterial communities during urinary tract infection pathogenesis. mBio 7, e00104-16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pang, Y. et al. Bladder epithelial cell phosphate transporter inhibition protects mice against uropathogenic Escherichia coli infection. Cell Rep. 39, 110698 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Beebout, C. J. et al. Uropathogenic Escherichia coli subverts mitochondrial metabolism to enable intracellular bacterial pathogenesis in urinary tract infection. Nat. Microbiol. 7, 1348–1360 (2022). This study provides insights into how intracellular uropathogenic E. coli bacteria subvert the epithelial exfoliation response to prevent clearance of infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jafari, N. V. & Rohn, J. L. An immunoresponsive three-dimensional urine-tolerant human urothelial model to study urinary tract infection. Front. Cell. Infect. Microbiol. 13, 1128132 (2023). The study reports an in vitro, urine-tolerant human bladder epithelial model capable of supporting intracellular bacterial communities, with the potential to rapidly expand our understanding of the molecular mechanisms of IBC formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Flores, C. et al. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. Sci. Adv. 9, eadi9834 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saleem, Z. et al. Point prevalence surveys of health-care-associated infections: a systematic review. Pathog. Glob. Health 113, 191–205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. European Centre for Disease Prevention and Control. Healthcare-Associated Infections Acquired in Intensive Care Units (ECDC, 2017).

  44. Flores-Mireles, A. L. et al. Fibrinogen release and deposition on urinary catheters placed during urologic procedures. J. Urol. 196, 416–421 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci. Transl. Med. 6, 254ra127 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Di Venanzio, G. et al. Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes. Nat. Commun. 10, 2763 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tamadonfar, K. O. et al. Structure-function correlates of fibrinogen binding by Acinetobacter adhesins critical in catheter-associated urinary tract infections. Proc. Natl Acad. Sci. USA 120, e2212694120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. La Bella, A. A. et al. The catheterized bladder environment promotes Efg1- and Als1-dependent Candida albicans infection. Sci. Adv. 9, eade7689 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Walker, J. N. et al. Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the urinary tract. Proc. Natl Acad. Sci. USA 114, E8721–E8730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walker, J. N. et al. High-resolution imaging reveals microbial biofilms on patient urinary catheters despite antibiotic administration. World J. Urol. 38, 2237–2245 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. Infect. Immun. 81, 329–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hazen, J. E., Di Venanzio, G., Hultgren, S. J. & Feldman, M. F. Catheterization of mice triggers resurgent urinary tract infection seeded by a bladder reservoir of Acinetobacter baumannii. Sci. Transl. Med. 15, eabn8134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Armbruster, C. E., Brauer, A. L., Humby, M. S., Shao, J. & Chakraborty, S. Prospective assessment of catheter-associated bacteriuria clinical presentation, epidemiology, and colonization dynamics in nursing home residents. JCI Insight 6, e144775 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nye, T. M. et al. Microbial co-occurrences on catheters from long-term catheterized patients. Nat. Commun. 15, 61 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gaston, J. R. et al. Enterococcus faecalis polymicrobial interactions facilitate biofilm formation, antibiotic recalcitrance, and persistent colonization of the catheterized urinary tract. Pathogens 9, 835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hou, J. et al. Enhanced antibiotic tolerance of an in vitro multispecies uropathogen biofilm model, useful for studies of catheter-associated urinary tract infections. Microorganisms 10, 1207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, L., Li, Y., Yang, J., Xie, X. & Chen, H. The immune responses to different uropathogens call individual interventions for bladder infection. Front. Immunol. 13, 953354 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chromek, M. et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. 12, 636–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Valore, E. V. et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest. 101, 1633–1642 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao, J., Wang, Z., Chen, X., Wang, J. & Li, J. Effects of intravesical liposome-mediated human beta-defensin-2 gene transfection in a mouse urinary tract infection model. Microbiol. Immunol. 55, 217–223 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Rosen, A. L. et al. Secretory leukocyte protease inhibitor protects against severe urinary tract infection in mice. mBio 15, e02554-23 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  62. James-Ellison, M. Y., Roberts, R., Verrier-Jones, K., Williams, J. D. & Topley, N. Mucosal immunity in the urinary tract: changes in sIgA, FSC and total IgA with age and in urinary tract infection. Clin. Nephrol. 48, 69–78 (1997).

    CAS  PubMed  Google Scholar 

  63. Behzadi, E. & Behzadi, P. The role of Toll-like receptors (TLRs) in urinary tract infections (UTIs). Cent. Eur. J. Urol. 69, 404–410 (2016).

    CAS  Google Scholar 

  64. Zhang, D. et al. A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Abraham, S. N. & Miao, Y. The nature of immune responses to urinary tract infections. Nat. Rev. Immunol. 15, 655–663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kuhn, H. W., Hreha, T. N. & Hunstad, D. A. Immune defenses in the urinary tract. Trends Immunol. 44, 701–711 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lacerda Mariano, L. & Ingersoll, M. A. The immune response to infection in the bladder. Nat. Rev. Urol. 17, 439–458 (2020). This in-depth review of the immune response to urinary tract infections covers intrinsic, innate and adaptive defences in the bladder.

    Article  PubMed  Google Scholar 

  68. Sarkissian, C. A., Alteri, C. J. & Mobley, H. L. T. UTI patients have pre-existing antigen-specific antibody titers against UTI vaccine antigens. Vaccine 37, 4937–4946 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Hawas, S., Vagenas, D., Haque, A. & Totsika, M. Bladder-draining lymph nodes support germinal center B cell responses during urinary tract infection in mice. Infect. Immun. 91, e00317-23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Silverman, J. A., Schreiber, H. L., Hooton, T. M. & Hultgren, S. J. From physiology to pharmacy: developments in the pathogenesis and treatment of recurrent urinary tract infections. Curr. Urol. Rep. 14, 448–456 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. O’Brien, V. P., Dorsey, D. A., Hannan, T. J. & Hultgren, S. J. Host restriction of Escherichia coli recurrent urinary tract infection occurs in a bacterial strain-specific manner. PLoS Pathog. 14, e1007457 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wu, J. et al. A highly polarized TH2 bladder response to infection promotes epithelial repair at the expense of preventing new infections. Nat. Immunol. 21, 671–683 (2020). This study examines the role of adaptive immunity in bladder remodelling and its effect on subsequent recurrent infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rousseau, M., Lacerda Mariano, L., Canton, T. & Ingersoll, M. A. Tissue-resident memory T cells mediate mucosal immunity to recurrent urinary tract infection. Sci. Immunol. 8, eabn4332 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Butler, C. C., Hawking, M. K. D., Quigley, A. & McNulty, C. A. M. Incidence, severity, help seeking, and management of uncomplicated urinary tract infection: a population-based survey. Br. J. Gen. Pract. 65, e702–e707 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Vihta, K.-D. et al. Trends over time in Escherichia coli bloodstream infections, urinary tract infections, and antibiotic susceptibilities in Oxfordshire, UK, 1998-2016: a study of electronic health records. Lancet Infect. Dis. 18, 1138–1149 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Luo, Y. et al. Similarity and divergence of phylogenies, antimicrobial susceptibilities, and virulence factor profiles of Escherichia coli isolates causing recurrent urinary tract infections that persist or result from reinfection. J. Clin. Microbiol. 50, 4002–4007 (2020).

    Article  Google Scholar 

  77. Sharma, K. et al. Early invasion of the bladder wall by solitary bacteria protects UPEC from antibiotics and neutrophil swarms in an organoid model. Cell Rep. 36, 109351 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Mysorekar, I. U. & Hultgren, S. J. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl Acad. Sci. USA 103, 14170–14175 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jantunen, M. E., Saxén, H., Lukinmaa, S., Ala-Houhala, M. & Siitonen, A. Genomic identity of pyelonephritogenic Escherichia coli isolated from blood, urine and faeces of children with urosepsis. J. Med. Microbiol. 50, 650–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Magruder, M. et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat. Commun. 10, 5521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thänert, R. et al. Comparative genomics of antibiotic-resistant uropathogens implicates three routes for recurrence of urinary tract infections. mBio 10, e01977-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Worby, C. J. et al. Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in women. Nat. Microbiol. 7, 630–639 (2022). This study reports a long-term paired sampling of bladder and gut microbiota in women with rUTI, demonstrating that intestinal carriage of E. coli occurs in both healthy patients and those with rUTI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Worby, C. J., Olson, B. S., Dodson, K. W., Earl, A. M. & Hultgren, S. J. Establishing the role of the gut microbiota in susceptibility to recurrent urinary tract infections. J. Clin. Invest. 132, e158497 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lewis, A. L. & Gilbert, N. M. Roles of the vagina and the vaginal microbiota in urinary tract infection: evidence from clinical correlations and experimental models. GMS Infect. Dis. 8, Doc02 (2020).

    PubMed  PubMed Central  Google Scholar 

  85. Brannon, J. R. et al. Invasion of vaginal epithelial cells by uropathogenic Escherichia coli. Nat. Commun. 11, 2803 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kline, K. A., Schwartz, D. J., Lewis, W. G., Hultgren, S. J. & Lewis, A. L. Immune activation and suppression by group B Streptococcus in a murine model of urinary tract infection. Infect. Immun. 79, 3588–3595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gilbert, N. M., O’Brien, V. P. & Lewis, A. L. Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease. PLoS Pathog. 13, e1006238 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. O’Brien, V. P., Lewis, A. L. & Gilbert, N. M. Bladder exposure to Gardnerella activates host pathways necessary for Escherichia coli recurrent UTI. Front. Cell. Infect. Microbiol. 11, 788229 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gilbert, N. M. et al. Gardnerella exposures alter bladder gene expression and augment uropathogenic Escherichia coli urinary tract infection in mice. Front. Cell. Infect. Microbiol. 12, 909799 (2022). This study provides mechanistic insights into the significance of the common vaginal bacterium G. vaginalis in the bladder.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Song, C. H. et al. Lactobacillus crispatus limits bladder uropathogenic E. coli infection by triggering a host type I interferon response. Proc. Natl Acad. Sci. USA 119, e2117904119 (2022). This study explores how the most commonly reported member of the urobiome, L. crispatus, may provide protection from urinary tract infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yu, J. et al. Genetic polymorphisms associated with UTI in children and adults: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 230, 600–609.e3 (2023).

    Article  PubMed  Google Scholar 

  92. Deltourbe, L., Lacerda Mariano, L., Hreha, T. N., Hunstad, D. A. & Ingersoll, M. A. The impact of biological sex on diseases of the urinary tract. Mucosal Immunol. 15, 857–866 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ligon, M. M., Joshi, C. S., Fashemi, B. E., Salazar, A. M. & Mysorekar, I. U. Effects of aging on urinary tract epithelial homeostasis and immunity. Dev. Biol. 493, 29–39 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Hannan, T. J., Mysorekar, I. U., Hung, C. S., Isaacson-Schmid, M. L. & Hultgren, S. J. Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog. 6, e1001042 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. O’Brien, V. P. et al. A mucosal imprint left by prior Escherichia coli bladder infection sensitizes to recurrent disease. Nat. Microbiol. 2, 16196 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yu, L. et al. Mucosal infection rewires TNFɑ signaling dynamics to skew susceptibility to recurrence. eLife 8, e46677 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Russell, S. K. et al. Uropathogenic Escherichia coli infection-induced epithelial trained immunity impacts urinary tract disease outcome. Nat. Microbiol. 8, 875–888 (2023). This study reveals how a history of prior infection alters immune signalling through epigenetic remodelling of the bladder epithelium, explaining why prior UTI is the most significant risk factor for future UTI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Elling, R. et al. Genetic models reveal cis and trans immune-regulatory activities for lincRNA-Cox2. Cell Rep. 25, 1511–1524.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gupta, K. et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 52, e103–e120 (2011).

    Article  PubMed  Google Scholar 

  100. Infectious Disease Society of America. IDSA Practice Guideline Highlights & Status (IDSA, 2024).

  101. Langner, J. L., Chiang, K. F. & Stafford, R. S. Current prescribing practices and guideline concordance for the treatment of uncomplicated urinary tract infections in women. Am. J. Obstet. Gynecol. 225, 272.e1–272.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  CAS  Google Scholar 

  103. Gibson, E. G., Bax, B., Chan, P. F. & Osheroff, N. Mechanistic and structural basis for the actions of the antibacterial gepotidacin against Staphylococcus aureus gyrase. ACS Infect. Dis. 5, 570–581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bax, B. D. et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466, 935–940 (2010).

    Article  PubMed  Google Scholar 

  105. Wagenlehner, F. et al. Oral gepotidacin versus nitrofurantoin in patients with uncomplicated urinary tract infection (EAGLE-2 and EAGLE-3): two randomised, controlled, double-blind, double-dummy, phase 3, non-inferiority trials. Lancet 403, 741–755 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. Eckburg, P. B. et al. Oral tebipenem pivoxil hydrobromide in complicated urinary tract infection. N. Engl. J. Med. 386, 1327–1338 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Szili, P. et al. Rapid evolution of reduced susceptibility against a balanced dual-targeting antibiotic through stepping-stone mutations. Antimicrob. Agents Chemother. 63, e00207-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sun, Z. et al. Evaluation of tebipenem hydrolysis by β-lactamases prevalent in complicated urinary tract infections. Antimicrob. Agents Chemother. 66, e0239621 (2022).

    Article  PubMed  Google Scholar 

  109. Williams, G., Hahn, D., Stephens, J. H., Craig, J. C. & Hodson, E. M. Cranberries for preventing urinary tract infections. Cochrane Database Syst. Rev. 4, CD001321 (2023).

    PubMed  Google Scholar 

  110. Cooper, T. E. et al. d‐Mannose for preventing and treating urinary tract infections. Cochrane Database Syst. Rev. 8, CD013608 (2022).

    PubMed  Google Scholar 

  111. Hayward, G. et al. d-Mannose for prevention of recurrent urinary tract infection among women: a randomized clinical trial. JAMA Intern. Med. 184, 619–628 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mydock-McGrane, L. et al. Antivirulence C-mannosides as antibiotic-sparing, oral therapeutics for urinary tract infections. J. Med. Chem. 59, 9390–9408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04488770 (2023).

  114. Hasanzadeh, S. et al. Silk fibroin nanoadjuvant as a promising vaccine carrier to deliver the fimH-IutA antigen for urinary tract infection. ACS Biomater. Sci. Eng. 6, 4573–4582 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Kelly, S. H. et al. A sublingual nanofiber vaccine to prevent urinary tract infections. Sci. Adv. 8, eabq4120 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04899336 (2024).

  117. Huttner, A. et al. Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect. Dis. 17, 528–537 (2017). This study shows that a top UPEC vaccine candidate that is currently in phase III clinical trials reduces UTI incidence in a cohort of women with recurrent UTI.

    Article  CAS  PubMed  Google Scholar 

  118. Frenck, R. W. et al. Safety and immunogenicity of a vaccine for extra-intestinal pathogenic Escherichia coli (ESTELLA): a phase 2 randomised controlled trial. Lancet Infect. Dis. 19, 631–640 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Nickel, J. C. & Doiron, R. C. An effective sublingual vaccine, MV140, safely reduces risk of recurrent urinary tract infection in women. Pathogens 12, 359 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Eldridge, G. R. et al. Safety and immunogenicity of an adjuvanted Escherichia coli adhesin vaccine in healthy women with and without histories of recurrent urinary tract infections: results from a first-in-human phase 1 study. Hum. Vaccines Immunother. 17, 1262–1270 (2021). This study provides human data available for a vaccine targeting the UPEC adhesin, FimH, which showed a promising trend towards a reduction in recurrent urinary tract infection in immunized patients.

    Article  CAS  Google Scholar 

  121. Flores-Mireles, A. L. et al. Antibody-based therapy for enterococcal catheter-associated urinary tract infections. mBio 7, e01653-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Timm, M. R. et al. Vaccination with Acinetobacter baumannii adhesin Abp2D provides protection against catheter-associated urinary tract infection. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3213777/v1 (2023).

  123. Andersen, M. J. & Flores-Mireles, A. L. Urinary catheter coating modifications: the race against catheter-associated infections. Coatings 10, 23 (2020).

    Article  CAS  Google Scholar 

  124. Andersen, M. J. et al. Inhibiting host-protein deposition on urinary catheters reduces associated urinary tract infections. eLife 11, e75798 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dubern, J.-F. et al. Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation. Sci. Adv. 9, eadd7474 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Butler, D. et al. Immunomodulation therapy offers new molecular strategies to treat UTI. Nat. Rev. Urol. 19, 419–437 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ong Lopez, A. M. C., Tan, C. J. L., Yabon, A. S. & Masbang, A. N. Symptomatic treatment (using NSAIDS) versus antibiotics in uncomplicated lower urinary tract infection: a meta-analysis and systematic review of randomized controlled trials. BMC Infect. Dis. 21, 619 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ambite, I. et al. Molecular basis of acute cystitis reveals susceptibility genes and immunotherapeutic targets. PLoS Pathog. 12, e1005848 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ambite, I. et al. Therapeutic effects of IL-1RA against acute bacterial infections, including antibiotic-resistant strains. Pathogens 13, 42 (2024).

    Article  CAS  Google Scholar 

  130. Straub, T. J. et al. Limited effects of long-term daily cranberry consumption on the gut microbiome in a placebo-controlled study of women with recurrent urinary tract infections. BMC Microbiol. 21, 53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tariq, R., Tosh, P. K., Pardi, D. S. & Khanna, S. Reduction in urinary tract infections in patients treated with fecal microbiota transplantation for recurrent Clostridioides difficile infection. Eur. J. Clin. Microbiol. Infect. Dis. 42, 1037–1041 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Wood, N., Propst, K., Yao, M. & Ferrando, C. A. Fecal microbiota transfer for Clostridium difficile infection and its effects on recurrent urinary tract infection. Urogynecology 29, 814–826 (2023).

    Article  PubMed  Google Scholar 

  133. Jeney, S. E. S., Lane, F., Oliver, A., Whiteson, K. & Dutta, S. Fecal microbiota transplantation for the treatment of refractory recurrent urinary tract infection. Obstet. Gynecol. 136, 771–773 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Vendrik, K. E. W. et al. Transmission of antibiotic-susceptible Escherichia coli causing urinary tract infections in a fecal microbiota transplantation recipient: consequences for donor screening? Open Forum Infect. Dis. 9, ofac324 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Reid, G. et al. Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women. FEMS Immunol. Med. Microbiol. 35, 131–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Stapleton, A. E. et al. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin. Infect. Dis. 52, 1212–1217 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Guiton, P. S. et al. Combinatorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrob. Agents Chemother. 56, 4738–4745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kalas, V. et al. Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection. Proc. Natl Acad. Sci. USA 115, E2819–E2828 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fierro, C. A. et al. Safety, reactogenicity, immunogenicity, and dose selection of 10-valent extraintestinal pathogenic Escherichia coli bioconjugate vaccine (VAC52416) in adults aged 60–85 years in a randomized, multicenter, interventional, first-in-human, phase 1/2a study. Open Forum Infect. Dis. 10, ofad417 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Nickel, J. C., Saz-Leal, P. & Doiron, R. C. Could sublingual vaccination be a viable option for the prevention of recurrent urinary tract infection in Canada? A systematic review of the current literature and plans for the future. Can. Urol. Assoc. J. 14, 281–287 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lorenzo-Gómez, M.-F. et al. Sublingual MV140 for prevention of recurrent urinary tract infections. NEJM Evid. 1, EVIDoa2100018 (2022). This study demonstrates the efficacy of the vaccine candidate MV140, which is approved for compassionate use in Europe.

    Article  PubMed  Google Scholar 

  142. Mobley, H. L. T. & Alteri, C. J. Development of a vaccine against Escherichia coli urinary tract infections. Pathogens 5, 1 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Forsyth, V. S. et al. Optimization of an experimental vaccine to prevent Escherichia coli urinary tract infection. mBio 11, e00555-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mike, L. A., Smith, S. N., Sumner, C. A., Eaton, K. A. & Mobley, H. L. T. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection. Proc. Natl Acad. Sci. USA 113, 13468–13473 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hannan, T. J. et al. Inhibition of cyclooxygenase-2 prevents chronic and recurrent cystitis. eBioMedicine 1, 46–57 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Hinman, F. An experimental study of the antiseptic value in the urine of the internal use of hexamethylenamin. J. Am. Med. Assoc. 61, 1601–1605 (1913).

    Article  Google Scholar 

  147. Bakhit, M. et al. Use of methenamine hippurate to prevent urinary tract infections in community adult women: a systematic review and meta-analysis. Br. J. Gen. Pract. 71, e528–e537 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Botros, C. et al. Methenamine hippurate compared with trimethoprim for the prevention of recurrent urinary tract infections: a randomized clinical trial. Int. Urogynecology J. 33, 571–580 (2022).

    Article  Google Scholar 

  149. Harding, C. et al. Alternative to prophylactic antibiotics for the treatment of recurrent urinary tract infections in women: multicentre, open label, randomised, non-inferiority trial. BMJ 376, e068229 (2022). This study is one of two recent clinical trials of the century-old therapy, methenamine hippurate, which shows non-inferiority compared to antibiotic prophylaxis for the prevention of recurrent urinary tract infection.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Sawhill, J. L. et al. The impact of methenamine hippurate treatment on urothelial integrity and bladder inflammation in aged female mice and women with urinary tract infections. Female Pelvic Med. Reconstr. Surg. 28, e205–e210 (2022).

    PubMed  PubMed Central  Google Scholar 

  151. Uyttebroek, S. et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect. Dis. 22, e208–e220 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Silva, A., Costa, E., Freitas, A. & Almeida, A. Revisiting the frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections. Antibiotics 11, 768 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Eure, T. R., Stone, N. D., Mungai, E. A., Bell, J. M. & Thompson, N. D. Antibiotic-resistant pathogens associated with urinary tract infections in nursing homes: summary of data reported to the national healthcare safety network long-term care facility component, 2013–2017. Infect. Control Hosp. Epidemiol. 42, 31–36 (2021).

    Article  PubMed  Google Scholar 

  154. Huang, L., Huang, C., Yan, Y., Sun, L. & Li, H. Urinary tract infection etiological profiles and antibiotic resistance patterns varied among different age categories: a retrospective study from a tertiary general hospital during a 12-year period. Front. Microbiol. 12, 813145 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bailey, A. L. & Burnham, C.-A. D. Reducing the time between inoculation and first-read of urine cultures using total lab automation significantly reduces turn-around-time of positive culture results with minimal loss of first-read sensitivity. Eur. J. Clin. Microbiol. Infect. Dis. 38, 1135–1141 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Gharavi, M. J. et al. Comprehensive study of antimicrobial susceptibility pattern and extended spectrum beta-lactamase (ESBL) prevalence in bacteria isolated from urine samples. Sci. Rep. 11, 578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zilberberg, M. D., Nathanson, B. H., Sulham, K. & Shorr, A. F. Antimicrobial susceptibility and cross-resistance patterns among common complicated urinary tract infections in U.S. hospitals, 2013 to 2018. Antimicrob. Agents Chemother. 64, e00346-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rossignol, L. et al. Incidence of urinary tract infections and antibiotic resistance in the outpatient setting: a cross-sectional study. Infection 45, 33–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. van Driel, A. A. et al. Antibiotic resistance of Escherichia coli isolated from uncomplicated UTI in general practice patients over a 10-year period. Eur. J. Clin. Microbiol. Infect. Dis. 38, 2151–2158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Heytens, S., Boelens, J., Claeys, G., DeSutter, A. & Christiaens, T. Uropathogen distribution and antimicrobial susceptibility in uncomplicated cystitis in Belgium, a high antibiotics prescribing country: 20-year surveillance. Eur. J. Clin. Microbiol. Infect. Dis. 36, 105–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Koh, S. W. C. et al. Antibiotic treatment failure of uncomplicated urinary tract infections in primary care. Antimicrob. Resist. Infect. Control 12, 73 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Sanchez, G. V. et al. Antibiotic resistance among urinary isolates from female outpatients in the United States in 2003 and 2012. Antimicrob. Agents Chemother. 60, 2680–2683 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. NkontCho, F. et al. Antimicrobial susceptibility of community-acquired urine bacterial isolates in French Amazonia. Am. J. Trop. Med. Hyg. 108, 927–935 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chooramani, G., Jain, B. & Chauhan, P. S. Prevalence and antimicrobial sensitivity pattern of bacteria causing urinary tract infection; study of a tertiary care hospital in North India. Clin. Epidemiol. Glob. Health 8, 890–893 (2020).

    Article  Google Scholar 

  165. Saad, D. et al. Etiological agents of urinary tract infection and 7 years trend of antibiotic resistance of bacterial uropathogens in Sudan. Open Microbiol. J. 14, 312–320 (2020).

    Article  CAS  Google Scholar 

  166. Maldonado-Barragán, A. et al. Predominance of multidrug-resistant bacteria causing urinary tract infections among symptomatic patients in East Africa: a call for action. JAC Antimicrob. Resist. 6, dlae019 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Roth, R. S., Liden, M. & Huttner, A. The urobiome in men and women: a clinical review. Clin. Microbiol. Infect. 29, 1242–1248 (2023). This review provides an overview of the currently available literature on the structure and clinical implications of the urobiome in different groups of patients, including men and patients with urological diseases.

    Article  PubMed  Google Scholar 

  168. Dou, W. et al. Defective expression of Tamm-Horsfall protein/uromodulin in COX-2-deficient mice increases their susceptibility to urinary tract infections. Am. J. Physiol. Ren. Physiol. 289, F49–F60 (2005).

    Article  CAS  Google Scholar 

  169. Mohanty, S. et al. Inhibition of COX-2 signaling favors E. coli during urinary tract infection. J. Inflamm. 20, 30 (2023).

    Article  CAS  Google Scholar 

  170. Ebrahimzadeh, T. et al. Urinary prostaglandin E2 as a biomarker for recurrent UTI in postmenopausal women. Life Sci. Alliance 4, e202000948 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Siddiqui, H., Nederbragt, A. J., Lagesen, K., Jeansson, S. L. & Jakobsen, K. S. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol 11, 244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lewis, D. A. et al. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front. Cell. Infect. Microbiol. 3, 41 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wolfe, A. J. et al. Evidence of uncultivated bacteria in the adult female bladder. J. Clin. Microbiol. 50, 1376–1383 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hrbacek, J., Morais, D., Cermak, P., Hanacek, V. & Zachoval, R. Alpha-diversity and microbial community structure of the male urinary microbiota depend on urine sampling method. Sci. Rep. 11, 23758 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Price, T. K. et al. The urobiome of continent adult women: a cross-sectional study. BJOG 127, 193–201 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Thomas-White, K. J. et al. Urinary microbes and postoperative urinary tract infection risk in urogynecologic surgical patients. Int. Urogynecol. J. 29, 1797–1805 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Ammitzbøll, N. et al. Pre- and postmenopausal women have different core urinary microbiota. Sci. Rep. 11, 2212 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. W. Dodson for editorial assistance and helpful suggestions on the manuscript. The work in the laboratory of the authors was supported by grants AI157797, AI029549 and AI048689 from the US National Institution of Allergy and Infectious Diseases and by grants DK132327 and DK121822 from the US National Institute of Diabetes and Digestive and Kidney Diseases. M.R.T. was supported by F30DK135390 and S.K.R. was supported by T32DK077653 from the US National Institute of Diabetes and Digestive and Kidney Diseases. The authors apologize to researchers whose work was not included in this Review owing to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Scott J. Hultgren.

Ethics declarations

Competing interests

S.J.H. has an ownership interest in Fimbrion Therapeutics and may benefit if the company is successful in marketing mannosides. S.J.H. is also the chief scientific officer of QureTech Bio. S.J.H. is an inventor on multiple patents pertaining to urinary tract infection therapeutics including the FimCH and EbpA vaccines. M.R.T. and S.J.H are inventors on a patent for the Abp2D vaccine. S.K.R. declares no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Suzanne Gerlings, Ann E. Stapleton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timm, M.R., Russell, S.K. & Hultgren, S.J. Urinary tract infections: pathogenesis, host susceptibility and emerging therapeutics. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01092-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01092-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing