Abstract
Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Coughlan, M. P. The role of iron in microbial metabolism. Sci. Prog. 59, 1–23 (1971).
Crichton, R. Iron Metabolism (Wiley, 2009).
Braun, V. & Killmann, H. Bacterial solutions to the iron-supply problem. Trends Biochem. Sci. 24, 104–109 (1999).
Kehl-Fie, T. E. & Skaar, E. P. Nutritional immunity beyond iron: a role for manganese and zinc. Curr. Opin. Chem. Biol. 14, 218–224 (2010).
Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell Host Microbe 13, 509–519 (2013).
Núñez, G., Sakamoto, K. & Soares, M. P. Innate nutritional immunity. J. Immunol. 201, 11–18 (2018).
Lopez, C. A. & Skaar, E. P. The impact of dietary transition metals on host–bacterial interactions. Cell Host Microbe 23, 737–748 (2018).
Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).
Obisesan, A. O., Zygiel, E. M. & Nolan, E. M. Bacterial responses to iron withholding by calprotectin. Biochemistry 60, 3337–3346 (2021).
Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020).
Ratledge, C. & Dover, L. G. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54, 881–941 (2000).
Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637–657 (2011).
Bearden, S. W., Fetherston, J. D. & Perry, R. D. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect. Immun. 65, 1659–1668 (1997).
Schalk, I. J., Rigouin, C. & Godet, J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ. Microbiol. 22, 1447–1466 (2020).
Schalk, I. J., Mislin, G. L. A. & Brillet, K. Structure, function and binding selectivity and stereoselectivity of siderophore–iron outer membrane transporters. Curr. Top. Membr. 69, 37–66 (2012).
Schalk, I. J. & Guillon, L. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44, 1267–1277 (2013).
Schalk, I. J. & Perraud, Q. Pseudomonas aeruginosa and its multiple strategies to access iron. Environ. Microbiol. 25, 811–831 (2023).
Hernlem, B. J., Vane, L. M. & Sayles, G. D. Stability constants for complexes of the siderophore desferrioxamine B with selected heavy metal cations. Inorg. Chim. Acta 244, 179–184 (1996).
Neubauer, U., Nowack, B., Furrer, G. & Schulin, R. Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ. Sci. Technol. 34, 2749–2755 (2000).
Lozano-González, J. M. et al. Evaluation of siderophores generated by Pseudomonas bacteria and their possible application as Fe biofertilizers. Plants 12, 4054 (2023).
Gómez-Godínez, L. J. et al. A look at plant-growth-promoting bacteria. Plants 12, 1668 (2023).
Zhong, J. et al. Characterization and biocontrol mechanism of Streptomyces olivoreticuli as a potential biocontrol agent against Rhizoctonia solani. Pestic. Biochem. Physiol. 197, 105681 (2023).
Zhu, H.-X. et al. Identification of a novel streptomyces sp. Strain HU2014 showing growth promotion and biocontrol effect against Rhizoctonia spp. in wheat. Plant. Dis. 107, 1139–1150 (2023).
Roskova, Z., Skarohlid, R. & McGachy, L. Siderophores: an alternative bioremediation strategy? Sci. Total Environ. 819, 153144 (2022).
Passari, A. K. et al. Opportunities and challenges of microbial siderophores in the medical field. Appl. Microbiol. Biotechnol. 107, 6751–6759 (2023).
Fan, D. & Fang, Q. Siderophores for medical applications: imaging, sensors, and therapeutics. Int. J. Pharm. 597, 120306 (2021).
Khan, A. et al. Induction of iron stress in hepatocellular carcinoma cell lines by siderophore of Aspergillus nidulans towards promising anticancer effect. Biol. Trace Elem. Res. 200, 3594–3607 (2022).
Ribeiro, M., Sousa, C. A. & Simões, M. Harnessing microbial iron chelators to develop innovative therapeutic agents. J. Adv. Res. 39, 89–101 (2022).
Ochsner, U. A. & Vasil, M. L. Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc. Natl Acad. Sci. USA 93, 4409–4414 (1996).
Nader, S. et al. New insights into the tetrameric family of the Fur metalloregulators. Biometals 32, 501–519 (2019).
Troxell, B. & Hassan, H. M. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Front. Cell Infect. Microbiol. 3, 59 (2013).
Pérard, J. et al. Quaternary structure of fur proteins, a new subfamily of tetrameric proteins. Biochemistry 55, 1503–1515 (2016).
Massé, E. & Gottesman, S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl Acad. Sci. USA 99, 4620–4625 (2002).
Chareyre, S. & Mandin, P. Bacterial iron homeostasis regulation by sRNAs. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.RWR-0010-2017 (2018).
Heinrichs, D. E. & Poole, K. Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. J. Bacteriol. 175, 5882–5889 (1993).
Dean, C. R., Neshat, S. & Poole, K. PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa. J. Bacteriol. 178, 5361–5369 (1996).
Hantke, K. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4, 172–177 (2001).
Braun, V. Iron uptake mechanisms and their regulation in pathogenic bacteria. Int. J. Med. Microbiol. 291, 67–79 (2001).
Visca, P., Leoni, L., Wilson, M. J. & Lamont, I. L. Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol. Microbiol. 45, 1177–1190 (2002).
Carpenter, C. & Payne, S. M. Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability. J. Inorg. Biochem. 133, 110–117 (2014).
Ge, R. & Sun, X. Iron acquisition and regulation systems in Streptococcus species. Metallomics 6, 996–1003 (2014).
Cornelis, P. et al. High affinity iron uptake by pyoverdine in Pseudomonas aeruginosa involves multiple regulators besides Fur, PvdS, and FpvI. Biometals 36, 255–261 (2023).
Raymond, K. N., Dertz, E. A. & Kim, S. S. Enterobactin: an archetype for microbial iron transport. Proc. Natl Acad. Sci. USA 100, 3584–3588 (2003).
Quadri, L. E., Sello, J., Keating, T. A., Weinreb, P. H. & Walsh, C. T. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 5, 631–645 (1998).
Pelludat, C., Rakin, A., Jacobi, C. A., Schubert, S. & Heesemann, J. The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica: organization and siderophore-dependent regulation. J. Bacteriol. 180, 538–546 (1998).
Gehring, A. M., Mori, I., Perry, R. D. & Walsh, C. T. The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of Yersinia pestis. Biochemistry 37, 11637–11650 (1998).
Hur, G. H., Vickery, C. R. & Burkart, M. D. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat. Prod. Rep. 29, 1074–1098 (2012).
Gulick, A. M. Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens. Nat. Prod. Rep. 34, 981–1009 (2017).
Süssmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis — principles and prospects. Angew. Chem. Int. Ed. Engl. 56, 3770–3821 (2017).
Meier, J. L. & Burkart, M. D. The chemical biology of modular biosynthetic enzymes. Chem. Soc. Rev. 38, 2012–2045 (2009).
Singh, M., Chaudhary, S. & Sareen, D. Non-ribosomal peptide synthetases: identifying the cryptic gene clusters and decoding the natural product. J. Biosci. 42, 175–187 (2017).
Crosa, J. H. & Walsh, C. T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66, 223–249 (2002).
Liu, J., Quinn, N., Berchtold, G. A. & Walsh, C. T. Overexpression, purification, and characterization of isochorismate synthase (EntC), the first enzyme involved in the biosynthesis of enterobactin from chorismate. Biochemistry 29, 1417–1425 (1990).
Liu, J., Duncan, K. & Walsh, C. T. Nucleotide sequence of a cluster of Escherichia coli enterobactin biosynthesis genes: identification of entA and purification of its product 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. J. Bacteriol. 171, 791–798 (1989).
Gehring, A. M., Mori, I. & Walsh, C. T. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37, 2648–2659 (1998).
de Chial, M. et al. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology 149, 821–831 (2003).
Albrecht-Gary, A. M., Blanc, S., Rochel, N., Ocacktan, A. Z. & Abdallah, M. A. Bacterial iron transport: coordination properties of pyoverdin PaA, a peptidic siderophore of Pseudomonas aeruginosa. Inorg. Chem. 33, 6391–6402 (1994).
Visca, P., Imperi, F. & Lamont, I. L. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 15, 22–30 (2007).
Vandenende, C. S., Vlasschaert, M. & Seah, S. Y. Functional characterization of an aminotransferase required for pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa PAO1. J. Bacteriol. 186, 5596–5602 (2004).
Visca, P., Ciervo, A. & Orsi, N. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme l-ornithine N5-oxygenase in Pseudomonas aeruginosa. J. Bacteriol. 176, 1128–1140 (1994).
McMorran, B. J., Kumara, H. M., Sullivan, K. & Lamont, I. L. Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa. Microbiology 147, 1517–1524 (2001).
Ge, L. & Seah, S. Y. Heterologous expression, purification, and characterization of an l-ornithine N(5)-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa. J. Bacteriol. 188, 7205–7210 (2006).
Yeterian, E. et al. Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 38, 1447–1459 (2010).
Gulick, A. M. & Drake, E. J. Structural characterization and high-throughput screening of inhibitors of PvdQ, an NTN hydrolase involved in pyoverdine synthesis. ACS Chem. Biol. 6, 1277–1286 (2011).
Hannauer, M. et al. Biosynthesis of the pyoverdine siderophore of Pseudomonas aeruginosa involves precursors with a myristic or a myristoleic acid chain. FEBS Lett. 586, 96–101 (2012).
Nadal-Jimenez, P. et al. PvdP is a tyrosinase that drives maturation of the pyoverdine chromophore in Pseudomonas aeruginosa. J. Bacteriol. 196, 2681–2690 (2014).
Poppe, J., Reichelt, J. & Blankenfeldt, W. Pseudomonas aeruginosa pyoverdine maturation enzyme PvdP has a noncanonical domain architecture and affords insight into a new subclass of tyrosinases. J. Biol. Chem. 293, 14926–14936 (2018).
Yuan, Z. et al. Crystal structure of PvdO from Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 484, 195–201 (2017).
Ringel, M. T., Dräger, G. & Brüser, T. PvdO is required for the oxidation of dihydropyoverdine as the last step of fluorophore formation in Pseudomonas fluorescens. J. Biol. Chem. 293, 2330–2341 (2018).
Hannauer, M., Yeterian, E., Martin, L. W., Lamont, I. L. & Schalk, I. J. Secretion of newly synthesized pyoverdine by Pseudomonas aeruginosa involves an efflux pump. FEBS Lett. 584, 4751–4755 (2010).
Stein, N. V. et al. The RND efflux system ParXY affects siderophore secretion in Pseudomonas putida KT2440. Microbiol. Spectr. 11, e0230023 (2023).
Imperi, F. & Visca, P. Subcellular localization of the pyoverdine biogenesis machinery of Pseudomonas aeruginosa: a membrane-associated ‘siderosome’. FEBS Lett. 587, 3387–3391 (2013).
Manko, H. et al. PvdL orchestrates the assembly of the nonribosomal peptide synthetases involved in pyoverdine biosynthesis in Pseudomonas aeruginosa. Int. J. Mol. Sci. 25, 6013 (2024).
Philem, P. et al. Identification of active site residues of the siderophore synthesis enzyme PvdF and evidence for interaction of PvdF with a substrate-providing enzyme. Int. J. Mol. Sci. 22, 2211 (2021).
Gasser, V. et al. In cellulo FRET-FLIM and single molecule tracking reveal the supra-molecular organization of the pyoverdine bio-synthetic enzymes in Pseudomonas aeruginosa. Q. Rev. Biophys. 53, e1 (2020).
Manko, H. et al. FLIM-FRET measurements of protein–protein interactions in live bacteria. J. Vis. Exp. 25, 162 (2020).
Meneely, K. M., Barr, E. W., Bollinger, J. M. Jr. & Lamb, A. L. Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction. Biochemistry 48, 4371–4376 (2009).
Cunrath, O. et al. A cell biological view of the siderophore pyochelin iron uptake pathway in Pseudomonas aeruginosa. Environ. Microbiol. 17, 171–185 (2015).
Gasser, V., Guillon, L., Cunrath, O. & Schalk, I. J. Cellular organization of siderophore biosynthesis in Pseudomonas aeruginosa: evidence for siderosomes. J. Inorg. Biochem. 148, 27–34 (2015).
Roche, B., Mislin, G. L. A. & Schalk, I. J. Identification of the fatty acid coenzyme — a ligase FadD1 as an interacting partner of FptX in the Pseudomonas aeruginosa pyochelin pathway. FEBS Lett. 595, 370–378 (2021).
Vergnolle, O., Xu, H. & Blanchard, J. S. Mechanism and regulation of mycobactin fatty acyl-AMP ligase FadD33. J. Biol. Chem. 288, 28116–28125 (2013).
Armstrong, S. K., Pettis, G. S., Forrester, L. J. & McIntosh, M. A. The Escherichia coli enterobactin biosynthesis gene, entD: nucleotide sequence and membrane localization of its protein product. Mol. Microbiol. 3, 757–766 (1989).
Boukhalfa, H. & Crumbliss, A. L. Chemical aspects of siderophore mediated iron transport. Biometals 15, 325–339 (2002).
Drechsel, H. & Winkelmann, G. in Transition Metals in Microbial Metabolism 1–49 (Harwood Academic, 1997).
Miethke, M. & Marahiel, M. A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71, 413–451 (2007).
Evers, A., Hancock, R., Martell, A. & Motekaitis, R. Metal ion recognition in ligands with negatively charged oxygen donor groups. Complexation of Fe (III), Ga(III), In(III), Al(III) and other highly charged metal ions. Inorg. Chem. 28, 2189–2195 (1989).
Chen, Y., Jurkewitch, E., Bar-Ness, E. & Hadar, Y. Stability constants of pseudobactin complexes with transition metals. Soil Sci. Soc. Am. J. 58, 390–396 (1994).
Braud, A., Hannauer, M., Mislin, G. L. A. & Schalk, I. J. The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J. Bacteriol. 191, 5317–5325 (2009).
Braud, A., Hoegy, F., Jezequel, K., Lebeau, T. & Schalk, I. J. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ. Microbiol. 11, 1079–1091 (2009).
Lutoretti, S. & Grdinic, V. Spectrophotometric determination of vanadium(V) with desferrioxamine B. Analyst 111, 1163–1165 (1986).
Karpishin, T. B., Dewey, T. M. & Raymond, K. N. The vanadium(IV) enterobactin complex: structural, spectroscopic, and electrochemical characterization. J. Am. Chem. Soc. 115, 1842–1851 (1993).
Pakchung, A. A., Soe, C. Z., Lifa, T. & Codd, R. Complexes formed in solution between vanadium(IV)/(V) and the cyclic dihydroxamic acid putrebactin or linear suberodihydroxamic acid. Inorg. Chem. 50, 5978–5989 (2011).
Baysse, C. et al. Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa. Microbiology 146, 2425–2434 (2000).
Celia, H. et al. Structural insight into the role of the Ton complex in energy transduction. Nature 538, 60–65 (2016).
Celia, H. et al. Cryo-EM structure of the bacterial Ton motor subcomplex ExbB-ExbD provides information on structure and stoichiometry. Commun. Biol. 2, 358 (2019).
Celia, H., Noinaj, N. & Buchanan, S. K. Structure and stoichiometry of the Ton molecular motor. Int. J. Mol. Sci. 21, 375–390 (2020).
Braun, V. Iron uptake by Escherichia coli. Front. Biosci. 8, 1409–1421 (2003).
Cunrath, O. & Palmer, J. D. An overview of Salmonella enterica metal homeostasis pathways during infection. microLife 2, uqab001 (2021).
Zhu, M., Valdebenito, M., Winkelmann, G. & Hantke, K. Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151, 2363–2372 (2005).
Sheldon, J. R. & Heinrichs, D. E. Recent developments in understanding the iron acquisition strategies of Gram positive pathogens. FEMS Microbiol. Rev. 39, 592–630 (2015).
Ghssein, G. & Ezzeddine, Z. The key element role of metallophores in the pathogenicity and virulence of Staphylococcus aureus: a review. Biology 11, 1525 (2022).
Brickman, T. J. & McIntosh, M. A. Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J. Biol. Chem. 267, 12350–12355 (1992).
Perraud, Q. et al. A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa. ACS Chem. Biol. 13, 2603–2614 (2018).
Lin, H., Fischbach, M. A., Liu, D. R. & Walsh, C. T. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J. Am. Chem. Soc. 127, 11075–11084 (2005).
Schalk, I. J., Abdallah, M. A. & Pattus, F. Recycling of pyoverdin on the FpvA receptor after ferric pyoverdin uptake and dissociation in Pseudomonas aeruginosa. Biochemistry 41, 1663–1671 (2002).
Greenwald, J. et al. Real-time FRET visualization of ferric-pyoverdine uptake in Pseudomonas aeruginosa: a role for ferrous iron. J. Biol. Chem. 282, 2987–2995 (2007).
Ganne, G. et al. Iron release from the siderophore pyoverdine in Pseudomonas aeruginosa involves three new actors: FpvC, FpvG, and FpvH. ACS Chem. Biol. 12, 1056–1065 (2017).
Brillet, K. et al. An ABC transporter with two periplasmic binding proteins involved in iron acquisition in Pseudomonas aeruginosa. ACS Chem. Biol. 7, 2036–2045 (2012).
Cain, T. J. & Smith, A. T. Ferric iron reductases and their contribution to unicellular ferrous iron uptake. J. Inorg. Biochem. 218, 111407 (2021).
Matzanke, B. F., Anemuller, S., Schunemann, V., Trautwein, A. X. & Hantke, K. FhuF, part of a siderophore-reductase system. Biochemistry 43, 1386–1392 (2004).
Müller, K., Matzanke, B. F., Schünemann, V., Trautwein, A. X. & Hantke, K. FhuF, an iron-regulated protein of Escherichia coli with a new type of [2Fe-2S] center. Eur. J. Biochem. 258, 1001–1008 (1998).
Miethke, M., Hou, J. & Marahiel, M. A. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli. Biochemistry 50, 10951–10964 (2011).
Josts, I., Veith, K., Normant, V., Schalk, I. J. & Tidow, H. Structural insights into a novel family of integral membrane siderophore reductases. Proc. Natl Acad. Sci. USA 118, e2101952118 (2021).
Braud, A., Geoffroy, V., Hoegy, F., Mislin, G. L. A. & Schalk, I. J. The siderophores pyoverdine and pyochelin are involved in Pseudomonas aeruginosa resistance against metals: another biological function of these two siderophores. Environ. Microbiol. Rep. 2, 419–425 (2010).
Hannauer, M. et al. The PvdRT–OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. Environ. Microbiol. 14, 1696–1708 (2012).
Koh, E.-I. et al. Metal selectivity by the virulence-associated yersiniabactin metallophore system. Metallomics 7, 1011–1022 (2015).
Behnsen, J. et al. Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nat. Commun. 12, 7016 (2021).
Price, S. L. et al. Yersiniabactin contributes to overcoming zinc restriction during Yersinia pestis infection of mammalian and insect hosts. Proc. Natl Acad. Sci. USA 118, e2104073118 (2021).
Dostal, A. et al. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J. Nutr. 142, 271–277 (2012).
Krebs, N. F. et al. Effects of different complementary feeding regimens on iron status and enteric microbiota in breastfed infants. J. Pediatr. 163, 416–423.e4 (2013).
Ellermann, M. & Arthur, J. C. Siderophore-mediated iron acquisition and modulation of host–bacterial interactions. Free Radic. Biol. Med. 105, 68–78 (2017).
Abbas, R. et al. General overview of Klebsiella pneumonia: epidemiology and the role of siderophores in its pathogenicity. Biology 13, 78 (2024).
Wolz, C. et al. Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa. Infect. Immun. 62, 4021–4027 (1994).
Jeong, G.-J. et al. Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions. Appl. Microbiol. Biotechnol. 107, 1019–1038 (2023).
Spiga, L. et al. Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection. Cell Host Microbe 31, 1639–1654.e10 (2023).
Pecoraro, L. et al. Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores. J. Fungi 8, 21 (2021).
Mishra, P., Mishra, J. & Arora, N. K. Biofortification revisited: addressing the role of beneficial soil microbes for enhancing trace elements concentration in staple crops. Microbiol. Res. 275, 127442 (2023).
Song, H., ShouCun, Z., TianXing, L. & MingFu, G. Screening for siderophore-producing endophytic bacteria against Fusarium oxysporum. Agric. Sci. Technol. Hunan 12, 994–996 (2011).
Yu, X., Ai, C., Xin, L. & Zhou, G. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47, 138–145 (2011).
Korkea-aho, T. L., Heikkinen, J., Thompson, K. D., von Wright, A. & Austin, B. Pseudomonas sp. M174 inhibits the fish pathogen Flavobacterium psychrophilum. J. Appl. Microbiol. 111, 266–277 (2011).
De la Fuente, M., Vidal, J. M., Miranda, C. D., González, G. & Urrutia, H. Inhibition of Flavobacterium psychrophilum biofilm formation using a biofilm of the antagonist Pseudomonas fluorescens FF48. SpringerPlus 2, 176 (2013).
Lemos, M. L. & Balado, M. Iron uptake mechanisms as key virulence factors in bacterial fish pathogens. J. Appl. Microbiol. 129, 104–115 (2020).
El-Saadony, M. T. et al. The functionality of probiotics in aquaculture: an overview. Fish Shellfish Immunol. 117, 36–52 (2021).
Hofmann, M., Retamal-Morales, G. & Tischler, D. Metal binding ability of microbial natural metal chelators and potential applications. Nat. Prod. Rep. 37, 1262–1283 (2020).
Banerjee, S. et al. Interlining Cr(VI) remediation mechanism by a novel bacterium Pseudomonas brenneri isolated from coalmine wastewater. J. Environ. Manag. 233, 271–282 (2019).
Edberg, F., Kalinowski, B. E., Holmström, S. J. M. & Holm, K. Mobilization of metals from uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescens. Geobiology 8, 278–292 (2010).
Chuang, C.-Y. et al. Role of biopolymers as major carrier phases of Th, Pa, Pb, Po, and Be radionuclides in settling particles from the Atlantic Ocean. Mar. Chem. 157, 131–143 (2013).
Khan, A. et al. Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis. Int. Microbiol. 23, 277–286 (2020).
Nair, A., Juwarkar, A. A. & Singh, S. K. Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut. 180, 199–212 (2007).
Liao, Q. et al. Dynamic proteome responses to sequential reduction of Cr(VI) and adsorption of Pb(II) by Pannonibacter phragmitetus BB. J. Hazard. Mater. 386, 121988 (2020).
Ramasamy, K., Kamaludeen & Banu, S. P. Bioremediation of metals: microbial processes and techniques. in Environmental Bioremediation Technologies (eds Singh, S. N. & Tripathi, R. D.) 173–187 (Springer, 2007).
Asad, S. A., Farooq, M., Afzal, A. & West, H. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment — a review. Chemosphere 217, 925–941 (2019).
Braud, A., Jézéquel, K., Bazot, S. & Lebeau, T. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74, 280–286 (2009).
David, S. R. & Geoffroy, V. A. A review of asbestos bioweathering by siderophore-producing Pseudomonas: a potential strategy of bioremediation. Microorganisms 8, 1870 (2020).
Ambaye, T. G., Vaccari, M., Castro, F. D., Prasad, S. & Rtimi, S. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: a review on progress, challenges, and perspectives. Environ. Sci. Pollut. Res. Int. 27, 36052–36074 (2020).
Li, W. & Liu, X.-M. Mobilization and partitioning of rare earth elements in the presence of humic acids and siderophores. Chemosphere 254, 126801 (2020).
Nosrati, R. et al. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosens. Bioelectron. 117, 1–14 (2018).
Delattre, F. et al. Recognition of iron ions by carbazole-desferrioxamine fluorescent sensor and its application in total iron detection in airbone particulate matter. Talanta 144, 451–455 (2015).
Liu, Z., Purro, M., Qiao, J. & Xiong, M. P. Multifunctional polymeric micelles for combining chelation and detection of iron in living cells. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.201700162 (2017).
del Olmo, A., Caramelo, C. & SanJose, C. Fluorescent complex of pyoverdin with aluminum. J. Inorg. Biochem. 97, 384–387 (2003).
Chung Chun Lam, C. K. S., Jickells, T. D., Richardson, D. J. & Russell, D. A. Fluorescence-based siderophore biosensor for the determination of bioavailable iron in oceanic waters. Anal. Chem. 78, 5040–5045 (2006).
Shervedani, R. K. & Akrami, Z. Gold–deferrioxamine nanometric interface for selective recognition of Fe(III) using square wave voltammetry and electrochemical impedance spectroscopy methods. Biosens. Bioelectron. 39, 31–36 (2013).
Phillips, D. J., Davies, G.-L. & Gibson, M. I. Siderophore-inspired nanoparticle-based biosensor for the selective detection of Fe3+. J. Mater. Chem. B 3, 270–275 (2014).
Jung, W., Lee, D. Y., Moon, E. & Jon, S. Nanoparticles derived from naturally occurring metal chelators for theranostic applications. Adv. Drug Deliv. Rev. 191, 114620 (2022).
Blanco-Ameijeiras, S., Cabanes, D. J. E. & Hassler, C. S. Towards the development of a new generation of whole-cell bioreporters to sense iron bioavailability in oceanic systems — learning from the case of Synechococcus sp. PCC7002 iron bioreporter. J. Appl. Microbiol. 127, 1291–1304 (2019).
Petrik, M., Zhai, C., Haas, H. & Decristoforo, C. Siderophores for molecular imaging applications. Clin. Transl. Imaging 5, 15–27 (2017).
Mino, Y. et al. Characterization of Fe(III)-deferoxamine and Mn(II)-pectin as magnetic resonance imaging contrast agents. Biol. Pharm. Bull. 21, 1385–1388 (1998).
Babos, M. et al. In vitro evaluation of alternative oral contrast agents for MRI of the gastrointestinal tract. Eur. J. Radiol. 65, 133–139 (2008).
Auletta, S. et al. Imaging bacteria with radiolabelled quinolones, cephalosporins and siderophores for imaging infection: a systematic review. Clin. Transl. Imaging 4, 229–252 (2016).
Nosrati, R. et al. Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma. Sci. Rep. 11, 13065 (2021).
Velikyan, I. Prospective of 68Ga radionuclide contribution to the development of imaging agents for infection and inflammation. Contrast Media Mol. Imaging 2018, e9713691 (2018).
Pfister, J. et al. Hybrid imaging of Aspergillus fumigatus pulmonary infection with fluorescent, 68Ga-labelled siderophores. Biomolecules 10, 168 (2020).
Petrik, M., Pfister, J., Misslinger, M., Decristoforo, C. & Haas, H. Siderophore-based molecular imaging of fungal and bacterial infections — current status and future perspectives. J. Fungi 6, E73 (2020).
Petrik, M. et al. 68Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur. J. Nucl. Med. Mol. Imaging 48, 372–382 (2021).
Krajcovicova, S. et al. [68Ga]Ga-DFO-c(RGDyK): synthesis and evaluation of its potential for tumor imaging in mice. Int. J. Mol. Sci. 22, 7391 (2021).
Brittenham, G. M. Iron-chelating therapy for transfusional iron overload. N. Engl. J. Med. 364, 146–156 (2011).
Mobarra, N. et al. A review on iron chelators in treatment of iron overload syndromes. Int. J. Hematol. Oncol. Stem Cell Res. 10, 239–247 (2016).
Huang, X. Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat. Res. 533, 153–171 (2003).
Konishi, H. et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat. Commun. 7, 12365 (2016).
Yamasaki, T., Terai, S. & Sakaida, I. Deferoxamine for advanced hepatocellular carcinoma. N. Engl. J. Med. 365, 576–578 (2011).
Lovejoy, D. B. & Richardson, D. R. Iron chelators as anti-neoplastic agents: current developments and promise of the PIH class of chelators. Curr. Med. Chem. 10, 1035–1049 (2003).
Kim, Y., Lyvers, D. P., Wei, A., Reifenberger, R. G. & Low, P. S. Label-free detection of a bacterial pathogen using an immobilized siderophore, deferoxamine. Lab. Chip 12, 971–976 (2012).
Pahlow, S. et al. Rapid identification of Pseudomonas spp. via Raman spectroscopy using pyoverdine as capture probe. Anal. Chem. 88, 1570–1577 (2016).
Schalk, I. J. A Trojan-horse strategy including a bacterial suicide action for the efficient use of a specific Gram-positive antibiotic on Gram-negative bacteria. J. Med. Chem. 61, 3842–3844 (2018).
Page, M. G. Siderophore conjugates. Ann. N. Y. Acad. Sci. 1277, 115–126 (2013).
Ji, C., Juarez-Hernandez, R. E. & Miller, M. J. Exploiting bacterial iron acquisition: siderophore conjugates. Future Med. Chem. 4, 297–313 (2012).
Mislin, G. L. A. & Schalk, I. J. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 6, 408–420 (2014).
Rayner, B., Verderosa, A. D., Ferro, V. & Blaskovich, M. A. T. Siderophore conjugates to combat antibiotic-resistant bacteria. RSC Med. Chem. 14, 800–822 (2023).
Tomaras, A. P. et al. Adaptation-based resistance to siderophore-conjugated antibacterial agents by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 4197–4207 (2013).
Kim, A. et al. Pharmacodynamic profiling of a siderophore-conjugated monocarbam in Pseudomonas aeruginosa: assessing the risk for resistance and attenuated efficacy. Antimicrob. Agents Chemother. 59, 7743–7752 (2015).
Paech, F. et al. Mechanisms of hepatotoxicity associated with the monocyclic β-lactam antibiotic BAL30072. Arch. Toxicol. 91, 3647–3662 (2017).
Domingues, S., Lima, T., Saavedra, M. J. & Da Silva, G. J. An overview of cefiderocol’s therapeutic potential and underlying resistance mechanisms. Life 13, 1427 (2023).
Loomis, L. & Raymond, K. N. Solution equilibria of enterobactin complexes. Inorg. Chem. 30, 906–911 (1991).
Duhme, A. K., Hider, R. C. & Khodr, H. H. Synthesis and iron-binding properties of protochelin, the tris(catecholamide) siderophore of Azotobacter vinelandii. S. Chem. Ber. 130, 969–973 (1997).
Anderegg, G., L’Eplattenier, F. & Schwarzenbach, G. Hydroxamatkomplexe III. Eisen(III)-Austausch zwischen Sideraminen und Komplexonen. Diskussion der Bildungskonstanten der Hydroxamatkomplexe. Helv. Chim. Acta 46, 1409–1422 (1963).
Duckworth, O. W. et al. The exceptionally stable cobalt(III)–desferrioxamine B complex. Mar. Chem. 113, 114–122 (2009).
Brandel, J. et al. Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans. 41, 2820–2834 (2012).
Carrano, C. J. et al. Coordination chemistry of the carboxylate type siderophore rhizoferrin: the iron(III) complex and its metal analogs. Inorg. Chem. 35, 6429–6436 (1996).
Courcol, R. J., Trivier, D., Bissinger, M. C., Martin, G. R. & Brown, M. R. Siderophore production by Staphylococcus aureus and identification of iron-regulated proteins. Infect. Immun. 65, 1944–1948 (1997).
Jin, B. et al. Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes. Mol. Microbiol. 59, 1185–1198 (2006).
Zawadzka, A. M. et al. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc. Natl Acad. Sci. USA 106, 21854–21859 (2009).
Hanks, T. S., Liu, M., McClure, M. J. & Lei, B. ABC transporter FtsABCD of Streptococcus pyogenes mediates uptake of ferric ferrichrome. BMC Microbiol. 5, 62 (2005).
Beasley, F. C., Marolda, C. L., Cheung, J., Buac, S. & Heinrichs, D. E. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by staphyloferrin A, staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect. Immun. 79, 2345–2355 (2011).
Coulanges, V., Andre, P., Ziegler, O., Buchheit, L. & Vidon, D. J. Utilization of iron–catecholamine complexes involving ferric reductase activity in Listeria monocytogenes. Infect. Immun. 65, 2778–2785 (1997).
Coulanges, V., Andre, P. & Vidon, D. J.-M. Effect of siderophores, catecholamines, and catechol compounds on Listeria spp. growth in iron-complexed medium. Biochem. Biophys. Res. Commun. 249, 526–530 (1998).
Miethke, M. et al. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol. Microbiol. 61, 1413–1427 (2006).
Miethke, M. & Skerra, A. Neutrophil gelatinase-associated lipocalin expresses antimicrobial activity by interfering with l-norepinephrine-mediated bacterial iron acquisition. Antimicrob. Agents Chemother. 54, 1580–1589 (2010).
Zawadzka, A. M., Abergel, R. J., Nichiporuk, R., Andersen, U. N. & Raymond, K. N. Siderophore-mediated iron acquisition systems in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin. Biochemistry 48, 3645–3657 (2009).
Dean, C. R. & Poole, K. Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa. J. Bacteriol. 175, 317–324 (1993).
Ghysels, B. et al. The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol. Lett. 246, 167–174 (2005).
Moynié, L. et al. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat. Commun. 10, 3673 (2019).
Lundrigan, M. D. & Kadner, R. J. Nucleotide sequence of the gene for the ferrienterochelin receptor FepA in Escherichia coli. Homology among outer membrane receptors that interact with TonB. J. Biol. Chem. 261, 10797–10801 (1986).
Payne, M. A. et al. Biphasic binding kinetics between FepA and its ligands. J. Biol. Chem. 272, 21950–21955 (1997).
Buchanan, S. K. et al. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struct. Biol. 6, 56–63 (1999).
Chenault, S. S. & Earhart, C. F. Identification of hydrophobic proteins FepD and FepG of the Escherichia coli ferrienterobactin permease. J. Gen. Microbiol. 138, 2167–2171 (1992).
Stephens, D. L., Choe, M. D. & Earhart, C. F. Escherichia coli periplasmic protein FepB binds ferrienterobactin. Microbiology 141, 1647–1654 (1995).
Sprencel, C. et al. Binding of ferric enterobactin by the Escherichia coli periplasmic protein FepB. J. Bacteriol. 182, 5359–5364 (2000).
Poole, K., Neshat, S., Krebes, K. & Heinrichs, D. E. Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa. J. Bacteriol. 175, 4597–4604 (1993).
Brillet, K. et al. A β-strand lock-exchange for signal transduction in TonB-dependent transducers on the basis of a common structural motif. Structure 15, 1383–1391 (2007).
Chan, D. C. K. & Burrows, L. L. Pseudomonas aeruginosa FpvB is a high-affinity transporter for xenosiderophores ferrichrome and ferrioxamine B. mBio 14, e0314922 (2023).
Poole, K., Neshat, S. & Heinrichs, D. Pyoverdine-mediated iron transport in Pseudomonas aeruginosa: involvement of a high-molecular-mass outer membrane protein. FEMS Microbiol. Lett. 62, 1–5 (1991).
Ghysels, B. et al. FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology 150, 1671–1680 (2004).
Vigouroux, A. et al. A unique ferrous iron binding mode is associated with large conformational changes for the transport protein FpvC of Pseudomonas aeruginosa. FEBS J. 287, 295–309 (2020).
Bonneau, A., Roche, B. & Schalk, I. J. Iron acquisition in Pseudomonas aeruginosa by the siderophore pyoverdine: an intricate interacting network including periplasmic and membrane proteins. Sci. Rep. 10, 120 (2020).
Imperi, F., Tiburzi, F. & Visca, P. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 106, 20440–20445 (2009).
Yeterian, E., Martin, L. W., Lamont, I. L. & Schalk, I. J. An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa. Environ. Microbiol. Rep. 2, 412–418 (2010).
Acknowledgements
I.J.S. is supported by funding from the Centre National de la Recherche Scientifique.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Peer review
Peer review information
Nature Reviews Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Schalk, I.J. Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01090-6
Accepted:
Published:
DOI: https://doi.org/10.1038/s41579-024-01090-6