Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial siderophores: diversity, uptake pathways and applications

Abstract

Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biosynthesis pathway of enterobactin in Escherichia coli.
Fig. 2: Biosynthesis pathway of pyoverdine I in Pseudomonas aeruginosa.
Fig. 3: Structures of siderophores.
Fig. 4: Iron uptake in Gram-negative and Gram-positive bacteria.
Fig. 5: Iron acquisition by enterobactin and pyoverdine I.

Similar content being viewed by others

References

  1. Coughlan, M. P. The role of iron in microbial metabolism. Sci. Prog. 59, 1–23 (1971).

    CAS  PubMed  Google Scholar 

  2. Crichton, R. Iron Metabolism (Wiley, 2009).

  3. Braun, V. & Killmann, H. Bacterial solutions to the iron-supply problem. Trends Biochem. Sci. 24, 104–109 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kehl-Fie, T. E. & Skaar, E. P. Nutritional immunity beyond iron: a role for manganese and zinc. Curr. Opin. Chem. Biol. 14, 218–224 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell Host Microbe 13, 509–519 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Núñez, G., Sakamoto, K. & Soares, M. P. Innate nutritional immunity. J. Immunol. 201, 11–18 (2018).

    Article  PubMed  Google Scholar 

  7. Lopez, C. A. & Skaar, E. P. The impact of dietary transition metals on host–bacterial interactions. Cell Host Microbe 23, 737–748 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Obisesan, A. O., Zygiel, E. M. & Nolan, E. M. Bacterial responses to iron withholding by calprotectin. Biochemistry 60, 3337–3346 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Ratledge, C. & Dover, L. G. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54, 881–941 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637–657 (2011).

    Article  Google Scholar 

  13. Bearden, S. W., Fetherston, J. D. & Perry, R. D. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect. Immun. 65, 1659–1668 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schalk, I. J., Rigouin, C. & Godet, J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ. Microbiol. 22, 1447–1466 (2020).

    Article  PubMed  Google Scholar 

  15. Schalk, I. J., Mislin, G. L. A. & Brillet, K. Structure, function and binding selectivity and stereoselectivity of siderophore–iron outer membrane transporters. Curr. Top. Membr. 69, 37–66 (2012).

    Article  PubMed  Google Scholar 

  16. Schalk, I. J. & Guillon, L. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44, 1267–1277 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Schalk, I. J. & Perraud, Q. Pseudomonas aeruginosa and its multiple strategies to access iron. Environ. Microbiol. 25, 811–831 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Hernlem, B. J., Vane, L. M. & Sayles, G. D. Stability constants for complexes of the siderophore desferrioxamine B with selected heavy metal cations. Inorg. Chim. Acta 244, 179–184 (1996).

    Article  CAS  Google Scholar 

  19. Neubauer, U., Nowack, B., Furrer, G. & Schulin, R. Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ. Sci. Technol. 34, 2749–2755 (2000).

    Article  CAS  Google Scholar 

  20. Lozano-González, J. M. et al. Evaluation of siderophores generated by Pseudomonas bacteria and their possible application as Fe biofertilizers. Plants 12, 4054 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gómez-Godínez, L. J. et al. A look at plant-growth-promoting bacteria. Plants 12, 1668 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhong, J. et al. Characterization and biocontrol mechanism of Streptomyces olivoreticuli as a potential biocontrol agent against Rhizoctonia solani. Pestic. Biochem. Physiol. 197, 105681 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, H.-X. et al. Identification of a novel streptomyces sp. Strain HU2014 showing growth promotion and biocontrol effect against Rhizoctonia spp. in wheat. Plant. Dis. 107, 1139–1150 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Roskova, Z., Skarohlid, R. & McGachy, L. Siderophores: an alternative bioremediation strategy? Sci. Total Environ. 819, 153144 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Passari, A. K. et al. Opportunities and challenges of microbial siderophores in the medical field. Appl. Microbiol. Biotechnol. 107, 6751–6759 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan, D. & Fang, Q. Siderophores for medical applications: imaging, sensors, and therapeutics. Int. J. Pharm. 597, 120306 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Khan, A. et al. Induction of iron stress in hepatocellular carcinoma cell lines by siderophore of Aspergillus nidulans towards promising anticancer effect. Biol. Trace Elem. Res. 200, 3594–3607 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Ribeiro, M., Sousa, C. A. & Simões, M. Harnessing microbial iron chelators to develop innovative therapeutic agents. J. Adv. Res. 39, 89–101 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Ochsner, U. A. & Vasil, M. L. Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc. Natl Acad. Sci. USA 93, 4409–4414 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nader, S. et al. New insights into the tetrameric family of the Fur metalloregulators. Biometals 32, 501–519 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Troxell, B. & Hassan, H. M. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Front. Cell Infect. Microbiol. 3, 59 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pérard, J. et al. Quaternary structure of fur proteins, a new subfamily of tetrameric proteins. Biochemistry 55, 1503–1515 (2016).

    Article  PubMed  Google Scholar 

  33. Massé, E. & Gottesman, S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl Acad. Sci. USA 99, 4620–4625 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chareyre, S. & Mandin, P. Bacterial iron homeostasis regulation by sRNAs. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.RWR-0010-2017 (2018).

  35. Heinrichs, D. E. & Poole, K. Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. J. Bacteriol. 175, 5882–5889 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dean, C. R., Neshat, S. & Poole, K. PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa. J. Bacteriol. 178, 5361–5369 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hantke, K. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4, 172–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Braun, V. Iron uptake mechanisms and their regulation in pathogenic bacteria. Int. J. Med. Microbiol. 291, 67–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Visca, P., Leoni, L., Wilson, M. J. & Lamont, I. L. Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol. Microbiol. 45, 1177–1190 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Carpenter, C. & Payne, S. M. Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability. J. Inorg. Biochem. 133, 110–117 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ge, R. & Sun, X. Iron acquisition and regulation systems in Streptococcus species. Metallomics 6, 996–1003 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Cornelis, P. et al. High affinity iron uptake by pyoverdine in Pseudomonas aeruginosa involves multiple regulators besides Fur, PvdS, and FpvI. Biometals 36, 255–261 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Raymond, K. N., Dertz, E. A. & Kim, S. S. Enterobactin: an archetype for microbial iron transport. Proc. Natl Acad. Sci. USA 100, 3584–3588 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Quadri, L. E., Sello, J., Keating, T. A., Weinreb, P. H. & Walsh, C. T. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 5, 631–645 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Pelludat, C., Rakin, A., Jacobi, C. A., Schubert, S. & Heesemann, J. The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica: organization and siderophore-dependent regulation. J. Bacteriol. 180, 538–546 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gehring, A. M., Mori, I., Perry, R. D. & Walsh, C. T. The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of Yersinia pestis. Biochemistry 37, 11637–11650 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Hur, G. H., Vickery, C. R. & Burkart, M. D. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat. Prod. Rep. 29, 1074–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gulick, A. M. Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens. Nat. Prod. Rep. 34, 981–1009 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Süssmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis — principles and prospects. Angew. Chem. Int. Ed. Engl. 56, 3770–3821 (2017).

    Article  PubMed  Google Scholar 

  50. Meier, J. L. & Burkart, M. D. The chemical biology of modular biosynthetic enzymes. Chem. Soc. Rev. 38, 2012–2045 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Singh, M., Chaudhary, S. & Sareen, D. Non-ribosomal peptide synthetases: identifying the cryptic gene clusters and decoding the natural product. J. Biosci. 42, 175–187 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Crosa, J. H. & Walsh, C. T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66, 223–249 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, J., Quinn, N., Berchtold, G. A. & Walsh, C. T. Overexpression, purification, and characterization of isochorismate synthase (EntC), the first enzyme involved in the biosynthesis of enterobactin from chorismate. Biochemistry 29, 1417–1425 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, J., Duncan, K. & Walsh, C. T. Nucleotide sequence of a cluster of Escherichia coli enterobactin biosynthesis genes: identification of entA and purification of its product 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. J. Bacteriol. 171, 791–798 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gehring, A. M., Mori, I. & Walsh, C. T. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37, 2648–2659 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. de Chial, M. et al. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology 149, 821–831 (2003).

    Article  PubMed  Google Scholar 

  57. Albrecht-Gary, A. M., Blanc, S., Rochel, N., Ocacktan, A. Z. & Abdallah, M. A. Bacterial iron transport: coordination properties of pyoverdin PaA, a peptidic siderophore of Pseudomonas aeruginosa. Inorg. Chem. 33, 6391–6402 (1994).

    Article  CAS  Google Scholar 

  58. Visca, P., Imperi, F. & Lamont, I. L. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 15, 22–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Vandenende, C. S., Vlasschaert, M. & Seah, S. Y. Functional characterization of an aminotransferase required for pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa PAO1. J. Bacteriol. 186, 5596–5602 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Visca, P., Ciervo, A. & Orsi, N. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme l-ornithine N5-oxygenase in Pseudomonas aeruginosa. J. Bacteriol. 176, 1128–1140 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McMorran, B. J., Kumara, H. M., Sullivan, K. & Lamont, I. L. Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa. Microbiology 147, 1517–1524 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Ge, L. & Seah, S. Y. Heterologous expression, purification, and characterization of an l-ornithine N(5)-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa. J. Bacteriol. 188, 7205–7210 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yeterian, E. et al. Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 38, 1447–1459 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Gulick, A. M. & Drake, E. J. Structural characterization and high-throughput screening of inhibitors of PvdQ, an NTN hydrolase involved in pyoverdine synthesis. ACS Chem. Biol. 6, 1277–1286 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hannauer, M. et al. Biosynthesis of the pyoverdine siderophore of Pseudomonas aeruginosa involves precursors with a myristic or a myristoleic acid chain. FEBS Lett. 586, 96–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Nadal-Jimenez, P. et al. PvdP is a tyrosinase that drives maturation of the pyoverdine chromophore in Pseudomonas aeruginosa. J. Bacteriol. 196, 2681–2690 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Poppe, J., Reichelt, J. & Blankenfeldt, W. Pseudomonas aeruginosa pyoverdine maturation enzyme PvdP has a noncanonical domain architecture and affords insight into a new subclass of tyrosinases. J. Biol. Chem. 293, 14926–14936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yuan, Z. et al. Crystal structure of PvdO from Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 484, 195–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Ringel, M. T., Dräger, G. & Brüser, T. PvdO is required for the oxidation of dihydropyoverdine as the last step of fluorophore formation in Pseudomonas fluorescens. J. Biol. Chem. 293, 2330–2341 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Hannauer, M., Yeterian, E., Martin, L. W., Lamont, I. L. & Schalk, I. J. Secretion of newly synthesized pyoverdine by Pseudomonas aeruginosa involves an efflux pump. FEBS Lett. 584, 4751–4755 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Stein, N. V. et al. The RND efflux system ParXY affects siderophore secretion in Pseudomonas putida KT2440. Microbiol. Spectr. 11, e0230023 (2023).

    Article  PubMed  Google Scholar 

  72. Imperi, F. & Visca, P. Subcellular localization of the pyoverdine biogenesis machinery of Pseudomonas aeruginosa: a membrane-associated ‘siderosome’. FEBS Lett. 587, 3387–3391 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Manko, H. et al. PvdL orchestrates the assembly of the nonribosomal peptide synthetases involved in pyoverdine biosynthesis in Pseudomonas aeruginosa. Int. J. Mol. Sci. 25, 6013 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Philem, P. et al. Identification of active site residues of the siderophore synthesis enzyme PvdF and evidence for interaction of PvdF with a substrate-providing enzyme. Int. J. Mol. Sci. 22, 2211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gasser, V. et al. In cellulo FRET-FLIM and single molecule tracking reveal the supra-molecular organization of the pyoverdine bio-synthetic enzymes in Pseudomonas aeruginosa. Q. Rev. Biophys. 53, e1 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Manko, H. et al. FLIM-FRET measurements of protein–protein interactions in live bacteria. J. Vis. Exp. 25, 162 (2020).

    Google Scholar 

  77. Meneely, K. M., Barr, E. W., Bollinger, J. M. Jr. & Lamb, A. L. Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction. Biochemistry 48, 4371–4376 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Cunrath, O. et al. A cell biological view of the siderophore pyochelin iron uptake pathway in Pseudomonas aeruginosa. Environ. Microbiol. 17, 171–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Gasser, V., Guillon, L., Cunrath, O. & Schalk, I. J. Cellular organization of siderophore biosynthesis in Pseudomonas aeruginosa: evidence for siderosomes. J. Inorg. Biochem. 148, 27–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Roche, B., Mislin, G. L. A. & Schalk, I. J. Identification of the fatty acid coenzyme — a ligase FadD1 as an interacting partner of FptX in the Pseudomonas aeruginosa pyochelin pathway. FEBS Lett. 595, 370–378 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Vergnolle, O., Xu, H. & Blanchard, J. S. Mechanism and regulation of mycobactin fatty acyl-AMP ligase FadD33. J. Biol. Chem. 288, 28116–28125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Armstrong, S. K., Pettis, G. S., Forrester, L. J. & McIntosh, M. A. The Escherichia coli enterobactin biosynthesis gene, entD: nucleotide sequence and membrane localization of its protein product. Mol. Microbiol. 3, 757–766 (1989).

    Article  CAS  PubMed  Google Scholar 

  83. Boukhalfa, H. & Crumbliss, A. L. Chemical aspects of siderophore mediated iron transport. Biometals 15, 325–339 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Drechsel, H. & Winkelmann, G. in Transition Metals in Microbial Metabolism 1–49 (Harwood Academic, 1997).

  85. Miethke, M. & Marahiel, M. A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71, 413–451 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Evers, A., Hancock, R., Martell, A. & Motekaitis, R. Metal ion recognition in ligands with negatively charged oxygen donor groups. Complexation of Fe (III), Ga(III), In(III), Al(III) and other highly charged metal ions. Inorg. Chem. 28, 2189–2195 (1989).

    Article  CAS  Google Scholar 

  87. Chen, Y., Jurkewitch, E., Bar-Ness, E. & Hadar, Y. Stability constants of pseudobactin complexes with transition metals. Soil Sci. Soc. Am. J. 58, 390–396 (1994).

    Article  CAS  Google Scholar 

  88. Braud, A., Hannauer, M., Mislin, G. L. A. & Schalk, I. J. The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J. Bacteriol. 191, 5317–5325 (2009).

    Article  Google Scholar 

  89. Braud, A., Hoegy, F., Jezequel, K., Lebeau, T. & Schalk, I. J. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ. Microbiol. 11, 1079–1091 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Lutoretti, S. & Grdinic, V. Spectrophotometric determination of vanadium(V) with desferrioxamine B. Analyst 111, 1163–1165 (1986).

    Article  Google Scholar 

  91. Karpishin, T. B., Dewey, T. M. & Raymond, K. N. The vanadium(IV) enterobactin complex: structural, spectroscopic, and electrochemical characterization. J. Am. Chem. Soc. 115, 1842–1851 (1993).

    Article  CAS  Google Scholar 

  92. Pakchung, A. A., Soe, C. Z., Lifa, T. & Codd, R. Complexes formed in solution between vanadium(IV)/(V) and the cyclic dihydroxamic acid putrebactin or linear suberodihydroxamic acid. Inorg. Chem. 50, 5978–5989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Baysse, C. et al. Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa. Microbiology 146, 2425–2434 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Celia, H. et al. Structural insight into the role of the Ton complex in energy transduction. Nature 538, 60–65 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Celia, H. et al. Cryo-EM structure of the bacterial Ton motor subcomplex ExbB-ExbD provides information on structure and stoichiometry. Commun. Biol. 2, 358 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Celia, H., Noinaj, N. & Buchanan, S. K. Structure and stoichiometry of the Ton molecular motor. Int. J. Mol. Sci. 21, 375–390 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Braun, V. Iron uptake by Escherichia coli. Front. Biosci. 8, 1409–1421 (2003).

    Article  Google Scholar 

  98. Cunrath, O. & Palmer, J. D. An overview of Salmonella enterica metal homeostasis pathways during infection. microLife 2, uqab001 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhu, M., Valdebenito, M., Winkelmann, G. & Hantke, K. Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151, 2363–2372 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Sheldon, J. R. & Heinrichs, D. E. Recent developments in understanding the iron acquisition strategies of Gram positive pathogens. FEMS Microbiol. Rev. 39, 592–630 (2015).

    Article  PubMed  Google Scholar 

  101. Ghssein, G. & Ezzeddine, Z. The key element role of metallophores in the pathogenicity and virulence of Staphylococcus aureus: a review. Biology 11, 1525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brickman, T. J. & McIntosh, M. A. Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J. Biol. Chem. 267, 12350–12355 (1992).

    Article  CAS  PubMed  Google Scholar 

  103. Perraud, Q. et al. A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa. ACS Chem. Biol. 13, 2603–2614 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Lin, H., Fischbach, M. A., Liu, D. R. & Walsh, C. T. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J. Am. Chem. Soc. 127, 11075–11084 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schalk, I. J., Abdallah, M. A. & Pattus, F. Recycling of pyoverdin on the FpvA receptor after ferric pyoverdin uptake and dissociation in Pseudomonas aeruginosa. Biochemistry 41, 1663–1671 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Greenwald, J. et al. Real-time FRET visualization of ferric-pyoverdine uptake in Pseudomonas aeruginosa: a role for ferrous iron. J. Biol. Chem. 282, 2987–2995 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Ganne, G. et al. Iron release from the siderophore pyoverdine in Pseudomonas aeruginosa involves three new actors: FpvC, FpvG, and FpvH. ACS Chem. Biol. 12, 1056–1065 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Brillet, K. et al. An ABC transporter with two periplasmic binding proteins involved in iron acquisition in Pseudomonas aeruginosa. ACS Chem. Biol. 7, 2036–2045 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Cain, T. J. & Smith, A. T. Ferric iron reductases and their contribution to unicellular ferrous iron uptake. J. Inorg. Biochem. 218, 111407 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Matzanke, B. F., Anemuller, S., Schunemann, V., Trautwein, A. X. & Hantke, K. FhuF, part of a siderophore-reductase system. Biochemistry 43, 1386–1392 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Müller, K., Matzanke, B. F., Schünemann, V., Trautwein, A. X. & Hantke, K. FhuF, an iron-regulated protein of Escherichia coli with a new type of [2Fe-2S] center. Eur. J. Biochem. 258, 1001–1008 (1998).

    Article  PubMed  Google Scholar 

  112. Miethke, M., Hou, J. & Marahiel, M. A. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli. Biochemistry 50, 10951–10964 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Josts, I., Veith, K., Normant, V., Schalk, I. J. & Tidow, H. Structural insights into a novel family of integral membrane siderophore reductases. Proc. Natl Acad. Sci. USA 118, e2101952118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Braud, A., Geoffroy, V., Hoegy, F., Mislin, G. L. A. & Schalk, I. J. The siderophores pyoverdine and pyochelin are involved in Pseudomonas aeruginosa resistance against metals: another biological function of these two siderophores. Environ. Microbiol. Rep. 2, 419–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Hannauer, M. et al. The PvdRT–OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. Environ. Microbiol. 14, 1696–1708 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Koh, E.-I. et al. Metal selectivity by the virulence-associated yersiniabactin metallophore system. Metallomics 7, 1011–1022 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Behnsen, J. et al. Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nat. Commun. 12, 7016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Price, S. L. et al. Yersiniabactin contributes to overcoming zinc restriction during Yersinia pestis infection of mammalian and insect hosts. Proc. Natl Acad. Sci. USA 118, e2104073118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dostal, A. et al. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J. Nutr. 142, 271–277 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Krebs, N. F. et al. Effects of different complementary feeding regimens on iron status and enteric microbiota in breastfed infants. J. Pediatr. 163, 416–423.e4 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ellermann, M. & Arthur, J. C. Siderophore-mediated iron acquisition and modulation of host–bacterial interactions. Free Radic. Biol. Med. 105, 68–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Abbas, R. et al. General overview of Klebsiella pneumonia: epidemiology and the role of siderophores in its pathogenicity. Biology 13, 78 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wolz, C. et al. Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa. Infect. Immun. 62, 4021–4027 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jeong, G.-J. et al. Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions. Appl. Microbiol. Biotechnol. 107, 1019–1038 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Spiga, L. et al. Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection. Cell Host Microbe 31, 1639–1654.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Pecoraro, L. et al. Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores. J. Fungi 8, 21 (2021).

    Article  Google Scholar 

  127. Mishra, P., Mishra, J. & Arora, N. K. Biofortification revisited: addressing the role of beneficial soil microbes for enhancing trace elements concentration in staple crops. Microbiol. Res. 275, 127442 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Song, H., ShouCun, Z., TianXing, L. & MingFu, G. Screening for siderophore-producing endophytic bacteria against Fusarium oxysporum. Agric. Sci. Technol. Hunan 12, 994–996 (2011).

    Google Scholar 

  129. Yu, X., Ai, C., Xin, L. & Zhou, G. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47, 138–145 (2011).

    Article  Google Scholar 

  130. Korkea-aho, T. L., Heikkinen, J., Thompson, K. D., von Wright, A. & Austin, B. Pseudomonas sp. M174 inhibits the fish pathogen Flavobacterium psychrophilum. J. Appl. Microbiol. 111, 266–277 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. De la Fuente, M., Vidal, J. M., Miranda, C. D., González, G. & Urrutia, H. Inhibition of Flavobacterium psychrophilum biofilm formation using a biofilm of the antagonist Pseudomonas fluorescens FF48. SpringerPlus 2, 176 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lemos, M. L. & Balado, M. Iron uptake mechanisms as key virulence factors in bacterial fish pathogens. J. Appl. Microbiol. 129, 104–115 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. El-Saadony, M. T. et al. The functionality of probiotics in aquaculture: an overview. Fish Shellfish Immunol. 117, 36–52 (2021).

    Article  PubMed  Google Scholar 

  134. Hofmann, M., Retamal-Morales, G. & Tischler, D. Metal binding ability of microbial natural metal chelators and potential applications. Nat. Prod. Rep. 37, 1262–1283 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Banerjee, S. et al. Interlining Cr(VI) remediation mechanism by a novel bacterium Pseudomonas brenneri isolated from coalmine wastewater. J. Environ. Manag. 233, 271–282 (2019).

    Article  CAS  Google Scholar 

  136. Edberg, F., Kalinowski, B. E., Holmström, S. J. M. & Holm, K. Mobilization of metals from uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescens. Geobiology 8, 278–292 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Chuang, C.-Y. et al. Role of biopolymers as major carrier phases of Th, Pa, Pb, Po, and Be radionuclides in settling particles from the Atlantic Ocean. Mar. Chem. 157, 131–143 (2013).

    Article  CAS  Google Scholar 

  138. Khan, A. et al. Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis. Int. Microbiol. 23, 277–286 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Nair, A., Juwarkar, A. A. & Singh, S. K. Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut. 180, 199–212 (2007).

    Article  CAS  Google Scholar 

  140. Liao, Q. et al. Dynamic proteome responses to sequential reduction of Cr(VI) and adsorption of Pb(II) by Pannonibacter phragmitetus BB. J. Hazard. Mater. 386, 121988 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Ramasamy, K., Kamaludeen & Banu, S. P. Bioremediation of metals: microbial processes and techniques. in Environmental Bioremediation Technologies (eds Singh, S. N. & Tripathi, R. D.) 173–187 (Springer, 2007).

  142. Asad, S. A., Farooq, M., Afzal, A. & West, H. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment — a review. Chemosphere 217, 925–941 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Braud, A., Jézéquel, K., Bazot, S. & Lebeau, T. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74, 280–286 (2009).

    Article  PubMed  Google Scholar 

  144. David, S. R. & Geoffroy, V. A. A review of asbestos bioweathering by siderophore-producing Pseudomonas: a potential strategy of bioremediation. Microorganisms 8, 1870 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ambaye, T. G., Vaccari, M., Castro, F. D., Prasad, S. & Rtimi, S. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: a review on progress, challenges, and perspectives. Environ. Sci. Pollut. Res. Int. 27, 36052–36074 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Li, W. & Liu, X.-M. Mobilization and partitioning of rare earth elements in the presence of humic acids and siderophores. Chemosphere 254, 126801 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Nosrati, R. et al. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosens. Bioelectron. 117, 1–14 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Delattre, F. et al. Recognition of iron ions by carbazole-desferrioxamine fluorescent sensor and its application in total iron detection in airbone particulate matter. Talanta 144, 451–455 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Liu, Z., Purro, M., Qiao, J. & Xiong, M. P. Multifunctional polymeric micelles for combining chelation and detection of iron in living cells. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.201700162 (2017).

  150. del Olmo, A., Caramelo, C. & SanJose, C. Fluorescent complex of pyoverdin with aluminum. J. Inorg. Biochem. 97, 384–387 (2003).

    Article  PubMed  Google Scholar 

  151. Chung Chun Lam, C. K. S., Jickells, T. D., Richardson, D. J. & Russell, D. A. Fluorescence-based siderophore biosensor for the determination of bioavailable iron in oceanic waters. Anal. Chem. 78, 5040–5045 (2006).

    Article  PubMed  Google Scholar 

  152. Shervedani, R. K. & Akrami, Z. Gold–deferrioxamine nanometric interface for selective recognition of Fe(III) using square wave voltammetry and electrochemical impedance spectroscopy methods. Biosens. Bioelectron. 39, 31–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Phillips, D. J., Davies, G.-L. & Gibson, M. I. Siderophore-inspired nanoparticle-based biosensor for the selective detection of Fe3+. J. Mater. Chem. B 3, 270–275 (2014).

    Article  PubMed  Google Scholar 

  154. Jung, W., Lee, D. Y., Moon, E. & Jon, S. Nanoparticles derived from naturally occurring metal chelators for theranostic applications. Adv. Drug Deliv. Rev. 191, 114620 (2022).

    Article  CAS  PubMed  Google Scholar 

  155. Blanco-Ameijeiras, S., Cabanes, D. J. E. & Hassler, C. S. Towards the development of a new generation of whole-cell bioreporters to sense iron bioavailability in oceanic systems — learning from the case of Synechococcus sp. PCC7002 iron bioreporter. J. Appl. Microbiol. 127, 1291–1304 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Petrik, M., Zhai, C., Haas, H. & Decristoforo, C. Siderophores for molecular imaging applications. Clin. Transl. Imaging 5, 15–27 (2017).

    Article  PubMed  Google Scholar 

  157. Mino, Y. et al. Characterization of Fe(III)-deferoxamine and Mn(II)-pectin as magnetic resonance imaging contrast agents. Biol. Pharm. Bull. 21, 1385–1388 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Babos, M. et al. In vitro evaluation of alternative oral contrast agents for MRI of the gastrointestinal tract. Eur. J. Radiol. 65, 133–139 (2008).

    Article  PubMed  Google Scholar 

  159. Auletta, S. et al. Imaging bacteria with radiolabelled quinolones, cephalosporins and siderophores for imaging infection: a systematic review. Clin. Transl. Imaging 4, 229–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Nosrati, R. et al. Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma. Sci. Rep. 11, 13065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Velikyan, I. Prospective of 68Ga radionuclide contribution to the development of imaging agents for infection and inflammation. Contrast Media Mol. Imaging 2018, e9713691 (2018).

    Article  Google Scholar 

  162. Pfister, J. et al. Hybrid imaging of Aspergillus fumigatus pulmonary infection with fluorescent, 68Ga-labelled siderophores. Biomolecules 10, 168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Petrik, M., Pfister, J., Misslinger, M., Decristoforo, C. & Haas, H. Siderophore-based molecular imaging of fungal and bacterial infections — current status and future perspectives. J. Fungi 6, E73 (2020).

    Article  Google Scholar 

  164. Petrik, M. et al. 68Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur. J. Nucl. Med. Mol. Imaging 48, 372–382 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Krajcovicova, S. et al. [68Ga]Ga-DFO-c(RGDyK): synthesis and evaluation of its potential for tumor imaging in mice. Int. J. Mol. Sci. 22, 7391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Brittenham, G. M. Iron-chelating therapy for transfusional iron overload. N. Engl. J. Med. 364, 146–156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mobarra, N. et al. A review on iron chelators in treatment of iron overload syndromes. Int. J. Hematol. Oncol. Stem Cell Res. 10, 239–247 (2016).

    PubMed  PubMed Central  Google Scholar 

  168. Huang, X. Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat. Res. 533, 153–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Konishi, H. et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat. Commun. 7, 12365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yamasaki, T., Terai, S. & Sakaida, I. Deferoxamine for advanced hepatocellular carcinoma. N. Engl. J. Med. 365, 576–578 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Lovejoy, D. B. & Richardson, D. R. Iron chelators as anti-neoplastic agents: current developments and promise of the PIH class of chelators. Curr. Med. Chem. 10, 1035–1049 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Kim, Y., Lyvers, D. P., Wei, A., Reifenberger, R. G. & Low, P. S. Label-free detection of a bacterial pathogen using an immobilized siderophore, deferoxamine. Lab. Chip 12, 971–976 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Pahlow, S. et al. Rapid identification of Pseudomonas spp. via Raman spectroscopy using pyoverdine as capture probe. Anal. Chem. 88, 1570–1577 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Schalk, I. J. A Trojan-horse strategy including a bacterial suicide action for the efficient use of a specific Gram-positive antibiotic on Gram-negative bacteria. J. Med. Chem. 61, 3842–3844 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Page, M. G. Siderophore conjugates. Ann. N. Y. Acad. Sci. 1277, 115–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Ji, C., Juarez-Hernandez, R. E. & Miller, M. J. Exploiting bacterial iron acquisition: siderophore conjugates. Future Med. Chem. 4, 297–313 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Mislin, G. L. A. & Schalk, I. J. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 6, 408–420 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Rayner, B., Verderosa, A. D., Ferro, V. & Blaskovich, M. A. T. Siderophore conjugates to combat antibiotic-resistant bacteria. RSC Med. Chem. 14, 800–822 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tomaras, A. P. et al. Adaptation-based resistance to siderophore-conjugated antibacterial agents by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 4197–4207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kim, A. et al. Pharmacodynamic profiling of a siderophore-conjugated monocarbam in Pseudomonas aeruginosa: assessing the risk for resistance and attenuated efficacy. Antimicrob. Agents Chemother. 59, 7743–7752 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Paech, F. et al. Mechanisms of hepatotoxicity associated with the monocyclic β-lactam antibiotic BAL30072. Arch. Toxicol. 91, 3647–3662 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Domingues, S., Lima, T., Saavedra, M. J. & Da Silva, G. J. An overview of cefiderocol’s therapeutic potential and underlying resistance mechanisms. Life 13, 1427 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Loomis, L. & Raymond, K. N. Solution equilibria of enterobactin complexes. Inorg. Chem. 30, 906–911 (1991).

    Article  CAS  Google Scholar 

  184. Duhme, A. K., Hider, R. C. & Khodr, H. H. Synthesis and iron-binding properties of protochelin, the tris(catecholamide) siderophore of Azotobacter vinelandii. S. Chem. Ber. 130, 969–973 (1997).

    Article  CAS  Google Scholar 

  185. Anderegg, G., L’Eplattenier, F. & Schwarzenbach, G. Hydroxamatkomplexe III. Eisen(III)-Austausch zwischen Sideraminen und Komplexonen. Diskussion der Bildungskonstanten der Hydroxamatkomplexe. Helv. Chim. Acta 46, 1409–1422 (1963).

    Article  CAS  Google Scholar 

  186. Duckworth, O. W. et al. The exceptionally stable cobalt(III)–desferrioxamine B complex. Mar. Chem. 113, 114–122 (2009).

    Article  CAS  Google Scholar 

  187. Brandel, J. et al. Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans. 41, 2820–2834 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Carrano, C. J. et al. Coordination chemistry of the carboxylate type siderophore rhizoferrin: the iron(III) complex and its metal analogs. Inorg. Chem. 35, 6429–6436 (1996).

    Article  CAS  PubMed  Google Scholar 

  189. Courcol, R. J., Trivier, D., Bissinger, M. C., Martin, G. R. & Brown, M. R. Siderophore production by Staphylococcus aureus and identification of iron-regulated proteins. Infect. Immun. 65, 1944–1948 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Jin, B. et al. Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes. Mol. Microbiol. 59, 1185–1198 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Zawadzka, A. M. et al. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc. Natl Acad. Sci. USA 106, 21854–21859 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hanks, T. S., Liu, M., McClure, M. J. & Lei, B. ABC transporter FtsABCD of Streptococcus pyogenes mediates uptake of ferric ferrichrome. BMC Microbiol. 5, 62 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Beasley, F. C., Marolda, C. L., Cheung, J., Buac, S. & Heinrichs, D. E. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by staphyloferrin A, staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect. Immun. 79, 2345–2355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Coulanges, V., Andre, P., Ziegler, O., Buchheit, L. & Vidon, D. J. Utilization of iron–catecholamine complexes involving ferric reductase activity in Listeria monocytogenes. Infect. Immun. 65, 2778–2785 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Coulanges, V., Andre, P. & Vidon, D. J.-M. Effect of siderophores, catecholamines, and catechol compounds on Listeria spp. growth in iron-complexed medium. Biochem. Biophys. Res. Commun. 249, 526–530 (1998).

    Article  CAS  PubMed  Google Scholar 

  196. Miethke, M. et al. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol. Microbiol. 61, 1413–1427 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Miethke, M. & Skerra, A. Neutrophil gelatinase-associated lipocalin expresses antimicrobial activity by interfering with l-norepinephrine-mediated bacterial iron acquisition. Antimicrob. Agents Chemother. 54, 1580–1589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zawadzka, A. M., Abergel, R. J., Nichiporuk, R., Andersen, U. N. & Raymond, K. N. Siderophore-mediated iron acquisition systems in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin. Biochemistry 48, 3645–3657 (2009).

    Article  CAS  PubMed  Google Scholar 

  199. Dean, C. R. & Poole, K. Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa. J. Bacteriol. 175, 317–324 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ghysels, B. et al. The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol. Lett. 246, 167–174 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. Moynié, L. et al. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat. Commun. 10, 3673 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Lundrigan, M. D. & Kadner, R. J. Nucleotide sequence of the gene for the ferrienterochelin receptor FepA in Escherichia coli. Homology among outer membrane receptors that interact with TonB. J. Biol. Chem. 261, 10797–10801 (1986).

    Article  CAS  PubMed  Google Scholar 

  203. Payne, M. A. et al. Biphasic binding kinetics between FepA and its ligands. J. Biol. Chem. 272, 21950–21955 (1997).

    Article  CAS  PubMed  Google Scholar 

  204. Buchanan, S. K. et al. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struct. Biol. 6, 56–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  205. Chenault, S. S. & Earhart, C. F. Identification of hydrophobic proteins FepD and FepG of the Escherichia coli ferrienterobactin permease. J. Gen. Microbiol. 138, 2167–2171 (1992).

    Article  CAS  PubMed  Google Scholar 

  206. Stephens, D. L., Choe, M. D. & Earhart, C. F. Escherichia coli periplasmic protein FepB binds ferrienterobactin. Microbiology 141, 1647–1654 (1995).

    Article  CAS  PubMed  Google Scholar 

  207. Sprencel, C. et al. Binding of ferric enterobactin by the Escherichia coli periplasmic protein FepB. J. Bacteriol. 182, 5359–5364 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Poole, K., Neshat, S., Krebes, K. & Heinrichs, D. E. Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa. J. Bacteriol. 175, 4597–4604 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Brillet, K. et al. A β-strand lock-exchange for signal transduction in TonB-dependent transducers on the basis of a common structural motif. Structure 15, 1383–1391 (2007).

    Article  CAS  PubMed  Google Scholar 

  210. Chan, D. C. K. & Burrows, L. L. Pseudomonas aeruginosa FpvB is a high-affinity transporter for xenosiderophores ferrichrome and ferrioxamine B. mBio 14, e0314922 (2023).

    Article  PubMed  Google Scholar 

  211. Poole, K., Neshat, S. & Heinrichs, D. Pyoverdine-mediated iron transport in Pseudomonas aeruginosa: involvement of a high-molecular-mass outer membrane protein. FEMS Microbiol. Lett. 62, 1–5 (1991).

    CAS  PubMed  Google Scholar 

  212. Ghysels, B. et al. FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology 150, 1671–1680 (2004).

    Article  CAS  PubMed  Google Scholar 

  213. Vigouroux, A. et al. A unique ferrous iron binding mode is associated with large conformational changes for the transport protein FpvC of Pseudomonas aeruginosa. FEBS J. 287, 295–309 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Bonneau, A., Roche, B. & Schalk, I. J. Iron acquisition in Pseudomonas aeruginosa by the siderophore pyoverdine: an intricate interacting network including periplasmic and membrane proteins. Sci. Rep. 10, 120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Imperi, F., Tiburzi, F. & Visca, P. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 106, 20440–20445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Yeterian, E., Martin, L. W., Lamont, I. L. & Schalk, I. J. An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa. Environ. Microbiol. Rep. 2, 412–418 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I.J.S. is supported by funding from the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle J. Schalk.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schalk, I.J. Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01090-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01090-6

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology