Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution

Abstract

The bacterial envelope is one of the oldest and most essential cellular components and has been traditionally divided into Gram-positive (monoderm) and Gram-negative (diderm). Recent landmark studies have challenged a major paradigm in microbiology by inferring that the last bacterial common ancestor had a diderm envelope and that the outer membrane (OM) was lost repeatedly in evolution to give rise to monoderms. Intriguingly, OM losses appear to have occurred exclusively in the Terrabacteria, one of the two major clades of bacteria. In this Review, we present current knowledge about the Terrabacteria. We describe their diversity and phylogeny and then highlight the vast phenotypic diversity of the Terrabacteria cell envelopes, which display large deviations from the textbook examples of diderms and monoderms, challenging the classical Gram-positive–Gram-negative divide. We highlight the striking differences in the systems involved in OM biogenesis in Terrabacteria with respect to the classical diderm experimental models and how they provide novel insights into the diversity and biogenesis of the bacterial cell envelope. We also discuss the potential evolutionary steps that might have led to the multiple losses of the OM and speculate on how the very first OM might have emerged before the last bacterial common ancestor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diderm and monoderm cell envelope architectures as described in model organisms.
Fig. 2: Historical and current view of Terrabacteria diversity and redefinition of envelope types.
Fig. 3: Diversity of cell envelopes in Terrabacteria challenges the Gram-positive–Gram-negative divide.
Fig. 4: Outer membrane biogenesis and transport systems in E. coli and diderm Terrabacteria.
Fig. 5: Evolutionary scenarios for emergence and loss of the outer membrane.

Similar content being viewed by others

References

  1. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rosas, N. C. & Lithgow, T. Targeting bacterial outer-membrane remodelling to impact antimicrobial drug resistance. Trends Microbiol. 30, 544–552 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Storek, K. M., Sun, D. & Rutherford, S. T. Inhibitors targeting BamA in Gram-negative bacteria. Biochim. Biophys. Acta Mol. Cell Res. 1871, 119609 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Sabnis, A. & Edwards, A. M. Lipopolysaccharide as an antibiotic target. Biochim. Biophys. Acta Mol. Cell Res. 1870, 119507 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Overly Cottom, C., Stephenson, R., Wilson, L. & Noinaj, N. Targeting BAM for novel therapeutics against pathogenic Gram-negative bacteria. Antibiotics 12, 679 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Romano, K. P. & Hung, D. T. Targeting LPS biosynthesis and transport in Gram-negative bacteria in the era of multi-drug resistance. Biochim. Biophys. Acta Mol. Cell Res. 1870, 119407 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Sperandeo, P., Martorana, A. M., Zaccaria, M. & Polissi, A. Targeting the LPS export pathway for the development of novel therapeutics. Biochim. Biophys. Acta Mol. Cell Res. 1870, 119406 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Riu, F. et al. Antibiotics and carbohydrate-containing drugs targeting bacterial cell envelopes: an overview. Pharmaceuticals 15, 942 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pahil, K. S. et al. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature 625, 572–577 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zampaloni, C. et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 625, 566–571 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oestreicher, Z., Taoka, A. & Fukumori, Y. A comparison of the surface nanostructure from two different types of Gram-negative cells: Escherichia coli and Rhodobacter sphaeroides. Micron 72, 8–14 (2015).

    Article  PubMed  Google Scholar 

  13. Pasquina-Lemonche, L. et al. The architecture of the Gram-positive bacterial cell wall. Nature 582, 294–297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benn, G. et al. Phase separation in the outer membrane of Escherichia coli. Proc. Natl Acad. Sci. USA 118, e2112237118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lithgow, T., Stubenrauch, C. J. & Stumpf, M. P. H. Surveying membrane landscapes: a new look at the bacterial cell surface. Nat. Rev. Microbiol. 21, 502–518 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Errington, J. L-form bacteria, cell walls and the origins of life. Open Biol. 3, 120143 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lake, J. A. Evidence for an early prokaryotic endosymbiosis. Nature 460, 967–971 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Tocheva, E. I., Ortega, D. R. & Jensen, G. J. Sporulation, bacterial cell envelopes and the origin of life. Nat. Rev. Microbiol. 14, 535–542 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taib, N. et al. Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition. Nat. Ecol. Evol. 4, 1661–1672 (2020).

    Article  PubMed  Google Scholar 

  21. Megrian, D., Taib, N., Jaffe, A. L., Banfield, J. F. & Gribaldo, S. Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria. Nat. Microbiol. 7, 2114–2127 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Coleman, G. A. et al. A rooted phylogeny resolves early bacterial evolution. Science 372, eabe0511 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Antunes, L. C. S. et al. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the firmicutes. eLife 5, e14589 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Megrian, D., Taib, N., Witwinowski, J., Beloin, C. & Gribaldo, S. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Mol. Microbiol. 113, 659–671 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Witwinowski, J. et al. An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. Nat. Microbiol. 7, 411–422 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4, 44 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Battistuzzi, F. U. & Hedges, S. B. A major clade of prokaryotes with ancient adaptations to life on land. Mol. Biol. Evol. 26, 335–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sutcliffe, I. C. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 18, 464–470 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Kartmann, B., Stengler, S. & Niederweis, M. Porins in the cell wall of Mycobacterium tuberculosis. J. Bacteriol. 181, 6543 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Niederweis, M., Danilchanka, O., Huff, J., Hoffmann, C. & Engelhardt, H. Mycobacterial outer membranes: in search of proteins. Trends Microbiol. 18, 109–116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niederweis, M. et al. Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol. Microbiol. 33, 933–945 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Bhamidi, S. et al. The identification and location of succinyl residues and the characterization of the interior arabinan region allow for a model of the complete primary structure of Mycobacterium tuberculosis mycolyl arabinogalactan. J. Biol. Chem. 283, 12992–13000 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chiaradia, L. et al. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci. Rep. 7, 1–12 (2017).

    Article  CAS  Google Scholar 

  37. Dulberger, C. L., Rubin, E. J. & Boutte, C. C. The mycobacterial cell envelope — a moving target. Nat. Rev. Microbiol. 18, 47–59 (2019).

    Article  PubMed  Google Scholar 

  38. Vincent, A. T. et al. The mycobacterial cell envelope: a relict from the past or the result of recent evolution? Front. Microbiol. 9, 2341 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gaisin, V. A., Kooger, R., Grouzdev, D. S., Gorlenko, V. M. & Pilhofer, M. Cryo-electron tomography reveals the complex ultrastructural organization of multicellular filamentous Chloroflexota (Chloroflexi) bacteria. Front. Microbiol. 11, 1373 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mavromatis, K. et al. Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. PLoS ONE 4, e4192 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tocheva, E. I. et al. Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell 146, 799–812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Watanabe, M., Kojima, H. & Fukui, M. Limnochorda pilosa gen. nov., sp. nov., a moderately thermophilic, facultatively anaerobic, pleomorphic bacterium and proposal of Limnochordaceae fam. nov., Limnochordales ord. nov. and Limnochordia classis nov. in the phylum Firmicutes. Int. J. Syst. Evol. Microbiol. 65, 2378–2384 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Puech, V. et al. Structure of the cell envelope of Corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147, 1365–1382 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Brennan, P. J. & Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 64, 29–63 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Jackson, M. The mycobacterial cell envelope — lipids. Cold Spring Harb. Perspect. Med. 4, a021105 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nikaido, H., Kim, S. H. & Rosenberg, E. Y. Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol. Microbiol 8, 1025–1030 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, J., Rosenberg, E. Y. & Nikaido, H. Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. Proc. Natl Acad. Sci. USA 92, 11254–11258 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rastogi, N., Hellio, R. & David, H. L. A new insight into the mycobacterial cell envelope architecture by the localization of antigens in ultrathin sections. Zentralbl Bakteriol. 275, 287–302 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Hoffmann, C., Leis, A., Niederweis, M., Plitzko, J. M. & Engelhardt, H. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc. Natl Acad. Sci. USA 105, 3963–3967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rogers, H. J., Perkins, H. R. & Ward, J. B. Microbial cell walls and membranes. Microb. Cell Walls Membr. https://doi.org/10.1007/978-94-011-6014-8 (1980).

  51. Vollmer, W., Blanot, D. & De Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Golecki, J. R. Studies on ultrastructure and composition of cell walls of the cyanobacterium Anacystis nidulans. Arch. Microbiol. 114, 35–41 (1977).

    Article  CAS  PubMed  Google Scholar 

  53. Hoiczyk, E. & Baumeister, W. Envelope structure of four gliding filamentous Cyanobacteria. J. Bacteriol. 177, 2387–2395 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Work, E. & Griffiths, H. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95, 641 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sexton, D. L., Burgold, S., Schertel, A. & Tocheva, E. I. Super-resolution confocal cryo-CLEM with cryo-FIB milling for in situ imaging of Deinococcus radiodurans. Curr. Res. Struct. Biol. 4, 1–9 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Farci, D. et al. Purification and characterization of DR_2577 (SlpA) a major S-layer protein from Deinococcus radiodurans. Front. Microbiol. 6, 142960 (2015).

    Article  Google Scholar 

  57. von Kügelgen, A. et al. Interdigitated immunoglobulin arrays form the hyperstable surface layer of the extremophilic bacterium Deinococcus radiodurans. Proc. Natl Acad. Sci. USA 120, e2215808120 (2023).

    Article  Google Scholar 

  58. von Kügelgen, A., van Dorst, S., Alva, V. & Bharat, T. A. M. A multidomain connector links the outer membrane and cell wall in phylogenetically deep-branching bacteria. Proc. Natl Acad. Sci. USA 119, e2203156119 (2022).

    Article  Google Scholar 

  59. Bharat, T. A. M., Tocheva, E. I. & Alva, V. The cell envelope architecture of Deinococcus: HPI forms the S-layer and SlpA tethers the outer membrane to peptidoglycan. Proc. Natl Acad. Sci. USA 120, e2305338120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hoiczyk, E. & Baumeister, W. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in Cyanobacteria. Curr. Biol. 8, 1161–1168 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Sexton, D. L. et al. Ultrastructure of organohalide-respiring Dehalococcoidia revealed by cryo-electron tomography. Appl. Environ. Microbiol. 88, e0190621 (2022).

    Article  PubMed  Google Scholar 

  62. Razin, S., Yogev, D. & Naot, Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62, 1094–1156 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luef, B. et al. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat. Commun. 6, 6372 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Moreira, D., Zivanovic, Y., López-Archilla, A. I., Iniesto, M. & López-García, P. Reductive evolution and unique predatory mode in the CPR bacterium Vampirococcus lugosii. Nat. Commun. 12, 2454 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ollivier, B. M., Mah, R. A. & Ferguson, T. J. Emendation of the genus Thermobacteroides: Thermobacteroides proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int. J. Syst. Bacteriol. 35, 425–428 (1985).

    Article  CAS  Google Scholar 

  66. Etchebehere, C., Pavan, M. E., Zorzópulos, J., Soubes, M. & Muxí, L. Coprothermobacter platensis sp. nov., a new anaerobic proteolytic thermophilic bacterium isolated from an anaerobic mesophilic sludge. Int. J. Syst. Bacteriol. 48, 1297–1304 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Mori, K., Yamaguchi, K., Sakiyama, Y., Urabe, T. & Suzuki, K. I. Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov. Int. J. Syst. Evol. Microbiol. 59, 2894–2898 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. McInerney, M. J., Bryant, M. P., Hespell, R. B. & Costerton, J. W. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41, 1029 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int. J. Syst. Evol. Microbiol. 50, 771–779 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Panova, I. A. et al. Desulfosporosinus metallidurans sp. nov., an. acidophilic, metal-resistant sulfate-reducing bacterium from acid mine drainage. Int. J. Syst. Evol. Microbiol. 71, 004876 (2021).

    Article  CAS  Google Scholar 

  71. Maheux, A. F. et al. Criibacterium bergeronii gen. nov., sp. nov., a new member of the family Peptostreptococcaceae, isolated from human clinical samples. Int. J. Syst. Evol. Microbiol. 71, 004691 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  72. Huber, R. et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch. Microbiol. 144, 324–333 (1986).

    Article  CAS  Google Scholar 

  73. Hao, L. et al. Novel prosthecate bacteria from the candidate phylum Acetothermia. ISME J. 12, 2225–2237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hoppert, M. et al. Structure–functional analysis of the Dictyoglomus cell envelope. Syst. Appl. Microbiol. 35, 279–290 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Saiki, T., Kobayashi, Y., Kawagoe, K. & Beppu, T. Dictyoglomus thermophilumn gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int. J. Syst. Bacteriol. 35, 253–259 (1985).

    Article  Google Scholar 

  76. Kuwabara, T., Kawasaki, A., Uda, I. & Sugai, A. Thermosipho globiformans sp. nov., an anaerobic thermophilic bacterium that transforms into multicellular spheroids with a defect in peptidoglycan formation. Int. J. Syst. Evol. Microbiol. 61, 1622–1627 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, C., Lin, L., Peng, Q., Ben, K. & Zhou, Z. Meiothermus rosaceus sp. nov. isolated from Tengchong hot spring in Yunnan, China. FEMS Microbiol. Lett. 216, 263–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Mori, K. et al. Oceanithermus desulfurans sp. nov., a novel thermophilic, sulfur-reducing bacterium isolated from a sulfide chimney in Suiyo Seamount. Int. J. Syst. Evol. Microbiol. 54, 1561–1566 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Brock, T. D. & Edwards, M. R. Fine structure of thermus aquaticus, an extreme thermophile. J. Bacteriol. 104, 509–517 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pradel, N. et al. Aminithiophilus ramosus gen. nov., sp. nov., a sulphur-reducing bacterium isolated from a pyrite-forming enrichment culture, and taxonomic revision of the family Synergistaceae. Int. J. Syst. Evol. Microbiol. 73, 005691 (2023).

    Article  CAS  Google Scholar 

  81. Liebl, W., Winterhalter, C., Baumeister, W., Armbrecht, M. & Valdez, M. Xylanase attachment to the cell wall of the hyperthermophilic bacterium Thermotoga maritima. J. Bacteriol. 190, 1350–1358 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Jarvit, S., Gollanf, P. J. & Aro, E. M. Understanding the roles of the thylakoid lumen in photosynthesis regulation. Front. Plant. Sci. 4, 434 (2013).

    Google Scholar 

  83. Rast, A., Heinz, S. & Nickelsen, J. Biogenesis of thylakoid membranes. Biochim. Biophys. Acta 1847, 821–830 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Katayama, T. et al. Isolation of a member of the candidate phylum ‘Atribacteria’ reveals a unique cell membrane structure. Nat. Commun. 11, 6381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Surkov, A. V., Dubinina, G. A., Lysenko, A. M., Glöckner, F. O. & Kuever, J. Dethiosulfovibrio russensis sp. nov., Dethiosulfovibrio marinus sp. nov. and Dethiosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from ‘Thiodenron’ sulfur mats in different saline environments. Int. J. Syst. Evol. Microbiol. 51, 327–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, Y. et al. Genetic manipulation of Patescibacteria provides mechanistic insights into microbial dark matter and the epibiotic lifestyle. Cell 186, 4803–4817.e13 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Konovalova, A., Kahne, D. E. & Silhavy, T. J. Outer membrane biogenesis. Annu. Rev. Microbiol. 71, 539 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Simpson, B. W. & Trent, M. S. Pushing the envelope: LPS modifications and their consequences. Nat. Rev. Microbiol. 17, 403–416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lundstedt, E., Kahne, D. & Ruiz, N. Assembly and maintenance of lipids at the bacterial outer membrane. Chem. Rev. 121, 5098–5123 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Kumar, S. & Ruiz, N. Bacterial asmA-like proteins: bridging the gap in intermembrane phospholipid transport. Contact 6, 25152564231185931 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Konovalova, A. & Silhavy, T. J. Outer membrane lipoprotein biogenesis: Lol is not the end. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 370, 20150030 (2015).

    Article  PubMed  Google Scholar 

  92. Narita, S. I., Masui, C., Suzuki, T., Dohmae, N. & Akiyama, Y. Protease homolog BepA (YfgC) promotes assembly and degradation of β-barrel membrane proteins in Escherichia coli. Proc. Natl Acad. Sci. USA 110, E3612–E3621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Plummer, A. M. & Fleming, K. G. From chaperones to the membrane with a BAM! Trends Biochem. Sci. 41, 872–882 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ricci, D. P. & Silhavy, T. J. Outer membrane protein insertion by the β-barrel assembly machine. EcoSal Plus https://doi.org/10.1128/ecosalplus.ESP-0035-2018 (2019).

  95. Knowles, T. J., Scott-Tucker, A., Overduin, M. & Henderson, I. R. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat. Rev. Microbiol. 7, 206–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Doyle, M. T. & Bernstein, H. D. Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel. Nat. Commun. 10, 3358 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Doyle, M. T. & Bernstein, H. D. Function of the Omp85 superfamily of outer membrane protein assembly factors and polypeptide transporters. Annu. Rev. Microbiol. 76, 259–279 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Tomasek, D. et al. Structure of a nascent membrane protein as it folds on the BAM complex. Nature 583, 473–478 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Heinz, E. & Lithgow, T. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front. Microbiol. 5, 370 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chaturvedi, D. & Mahalakshmi, R. Transmembrane β-barrels: evolution, folding and energetics. Biochim. Biophys. Acta Biomembr. 1859, 2467–2482 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Har, E. M., Gupta, M., Wühr, M. & Silhavy, T. J. The gain-of-function allele bamAE470K bypasses the essential requirement for BamD in β-barrel outer membrane protein assembly. Proc. Natl Acad. Sci. USA 117, 18737–18743 (2020).

    Article  Google Scholar 

  102. Arnold, T., Zeth, K. & Linke, D. Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition. J. Biol. Chem. 285, 18003–18015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu, J. & Lu, L. BamA is a pivotal protein in cell envelope synthesis and cell division in Deinococcus radiodurans. Biochim. Biophys. Acta Biomembr. 1861, 1365–1374 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Deghelt, M. et al. The outer membrane and peptidoglycan layer form a single mechanical device balancing turgor. Preprint at bioRxiv https://doi.org/10.1101/2023.04.29.538579 (2023).

  105. Rojas, E. R. et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 559, 617 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Braun, V. & Rehn, K. Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall. The specific effect of trypsin on the membrane structure. Eur. J. Biochem. 10, 426–438 (1969).

    Article  CAS  PubMed  Google Scholar 

  107. Parsons, L. M., Lin, F. & Orban, J. Peptidoglycan recognition by Pal, an outer membrane lipoprotein. Biochemistry 45, 2122–2128 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Gerding, M. A., Ogata, Y., Pecora, N. D., Niki, H. & De Boer, P. A. J. The trans-envelope Tol–Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol. Microbiol. 63, 1008–1025 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Park, J. S. et al. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the Gram-negative bacterial outer membrane. FASEB J. 26, 219–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kamio, Y., Itoh, Y. & Terawaki, Y. Chemical structure of peptidoglycan in Selenomonas ruminantium: cadaverine links covalently to the D-glutamic acid residue of peptidoglycan. J. Bacteriol. 146, 49–53 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cava, F., De Pedro, M. A., Schwarz, H., Henne, A. & Berenguer, J. Binding to pyruvylated compounds as an ancestral mechanism to anchor the outer envelope in primitive bacteria. Mol. Microbiol. 52, 677–690 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Kojima, S. & Okumura, Y. Outer membrane-deprived Cyanobacteria liberate periplasmic and thylakoid luminal components that support the growth of heterotrophs. Preprint at bioRxiv https://doi.org/10.1101/2020.03.24.006684 (2020).

  113. Kojima, S. et al. Cadaverine covalently linked to peptidoglycan is required for interaction between the peptidoglycan and the periplasm-exposed S-layer-homologous domain of major outer membrane protein Mep45 in Selenomonas ruminantium. J. Bacteriol. 192, 5953–5961 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Olabarría, C., Carrascosa, J. L., De Pedro, M. A. & Berenguer, J. A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus. J. Bacteriol. 178, 4765–4772 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rothfuss, H., Lara, J. C., Schmid, A. K. & Lidstrom, M. E. Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. Microbiology 152, 2779–2787 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Silale, A. et al. Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes. Nat. Commun. 14, 7152 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ekiert, D. C. et al. Architectures of lipid transport systems for the bacterial outer membrane. Cell 169, 273–285.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tang, X. et al. Structural insights into outer membrane asymmetry maintenance in Gram-negative bacteria by MlaFEDB. Nat. Struct. Mol. Biol. 28, 81–91 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Grasekamp, K. P. et al. The Mla system of diderm Firmicute Veillonella parvula reveals an ancestral transenvelope bridge for phospholipid trafficking. Nat. Commun. 14, 7642 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Thong, S. et al. Defining key roles for auxiliary proteins in an ABC transporter that maintains bacterial outer membrane lipid asymmetry. eLife 5, e19042 (2016).

    Google Scholar 

  121. Chen, J. et al. Structure of an endogenous mycobacterial MCE lipid transporter. Nature 620, 445–452 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Ruiz, N., Davis, R. M. & Kumar, S. YhdP, TamB, and YdbH are redundant but essential for growth and lipid homeostasis of the Gram-negative outer membrane. mBio 12, e0271421 (2021).

    Article  PubMed  Google Scholar 

  123. Grimm, J. et al. The inner membrane protein YhdP modulates the rate of anterograde phospholipid flow in Escherichia coli. Proc. Natl Acad. Sci. USA 117, 26907–26914 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Douglass, M. V., McLean, A. B. & Trent, M. S. Absence of YhdP, TamB, and YdbH leads to defects in glycerophospholipid transport and cell morphology in Gram-negative bacteria. PLoS Genet. 18, e1010096 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cooper, B. F. et al. Phospholipid transport to the bacterial outer membrane through an envelope-spanning bridge. Preprint at bioRxiv https://doi.org/10.1101/2023.10.05.561070 (2023).

  126. Isom, G. L. et al. LetB structure reveals a tunnel for lipid transport across the bacterial envelope. Cell 181, 653–664.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nakayama, T. & Zhang-Akiyama, Q. M. pqiABC and yebST, putative mce operons of Escherichia coli, encode transport pathways and contribute to membrane integrity. J. Bacteriol. 199, e00606–e00616 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Yu, J. et al. A tamB homolog is involved in maintenance of cell envelope integrity and stress resistance of Deinococcus radiodurans. Sci. Rep. 7, 45929 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Selkrig, J. et al. Conserved features in TamA enable interaction with TamB to drive the activity of the translocation and assembly module. Sci. Rep. 5, 1–12 (2015).

    Article  Google Scholar 

  130. Heinz, E., Selkrig, J., Belousoff, M. J. & Lithgow, T. Evolution of the translocation and assembly module (TAM). Genome Biol. Evol. 7, 1628 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Iqbal, H., Kenedy, M. R., Lybecker, M. & Akins, D. R. The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. Mol. Microbiol. 102, 757–774 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Törk, L., Moffatt, C. B., Bernhardt, T. G., Garner, E. C. & Kahne, D. Single-molecule dynamics show a transient lipopolysaccharide transport bridge. Nature 623, 814–819 (2023).

    Article  PubMed  Google Scholar 

  133. Putker, F., Bos, M. P. & Tommassen, J. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiol. Rev. 39, 985–1002 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Sahonero-Canavesi, D. X. et al. Changes in the distribution of membrane lipids during growth of Thermotoga maritima at different temperatures: indications for the potential mechanism of biosynthesis of ether-bound diabolic acid (membrane-spanning) lipids. Appl. Environ. Microbiol. 88, e0176321 (2022).

    Article  PubMed  Google Scholar 

  135. Damsté, J. S. S. et al. Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales. Arch. Microbiol. 188, 629 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  136. He, H. et al. A Borrelia burgdorferi LptD homolog is required for flipping of surface lipoproteins through the spirochetal outer membrane. Mol. Microbiol. 119, 752–767 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zgurskaya, H. I., Krishnamoorthy, G., Ntreh, A. & Lu, S. Mechanism and function of the outer membrane channel TolC in multidrug resistance and physiology of enterobacteria. Front. Microbiol. 2, 189 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hahn, A., Stevanovic, M., Mirus, O. & Schleiff, E. The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance. J. Biol. Chem. 287, 41126–41138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Brumm, P. J., Gowda, K., Robb, F. T. & Mead, D. A. The complete genome sequence of hyperthermophile Dictyoglomus turgidum DSM 6724TM reveals a specialized carbohydrate fermentor. Front. Microbiol. 7, 1979 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Dodsworth, J. A. et al. Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat. Commun. 4, 1854 (2013).

    Article  PubMed  Google Scholar 

  141. Hu, Z. Y. et al. The first complete genome sequence of the class Fimbriimonadia in the phylum Armatimonadetes. PLoS ONE 9, e100794 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Vergalli, J. et al. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat. Rev. Microbiol. 18, 164–176 (2019).

    Article  PubMed  Google Scholar 

  143. Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64, 43 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zinke, M. et al. Ton motor conformational switch and peptidoglycan role in bacterial nutrient uptake. Nat. Commun. 15, 331 (2024).

    Article  Google Scholar 

  145. Mirus, O., Strauss, S., Nicolaisen, K., von Haeseler, A. & Schleiff, E. TonB-dependent transporters and their occurrence in Cyanobacteria. BMC Biol. 7, 68 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Poppleton, D. I. et al. Outer membrane proteome of Veillonella parvula: a diderm firmicute of the human microbiome. Front. Microbiol. 8, 1215 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Berezuk, A. M. et al. Outer membrane lipoprotein RlpA is a novel periplasmic interaction partner of the cell division protein FtsK in Escherichia coli. Sci. Rep. 8, 1–14 (2018).

    Article  CAS  Google Scholar 

  148. Typas, A. et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143, 1097–1109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Caveney, N. A. et al. Structure of the peptidoglycan synthase activator LpoP in Pseudomonas aeruginosa. Structure 28, 643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Legood, S., Seng, D., Boneca, I. G. & Buddelmeijer, N. A defect in lipoprotein modification by Lgt leads to abnormal morphology and cell death in Escherichia coli that is independent of major lipoprotein Lpp. J. Bacteriol. 204, e0016422 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Voedts, H. et al. Role of endopeptidases in peptidoglycan synthesis mediated by alternative cross‐linking enzymes in Escherichia coli. EMBO J. 40, e108126 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fagan, R. P. & Fairweather, N. F. Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 12, 211–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Fioravanti, A., Mathelie-Guinlet, M., Dufrêne, Y. F. & Remaut, H. The Bacillus anthracis S-layer is an exoskeleton-like structure that imparts mechanical and osmotic stabilization to the cell wall. PNAS Nexus 1, 1–10 (2022).

    Article  CAS  Google Scholar 

  154. Chaturongakul, S. & Ounjai, P. Phage–host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Front. Microbiol. 5, 98825 (2014).

    Article  Google Scholar 

  155. Laloux, G. Shedding light on the cell biology of the predatory bacterium Bdellovibrio bacteriovorus. Front. Microbiol. 10, 508840 (2020).

    Article  Google Scholar 

  156. Abavisani, M. et al. Colistin resistance mechanisms in Gram-negative bacteria: a focus on Escherichia coli. Lett. Appl. Microbiol. 76, 1–13 (2023).

    Article  Google Scholar 

  157. Pandi, A. et al. Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides. Nat. Commun. 14, 71–97 (2023).

    Article  Google Scholar 

  158. Manniello, M. D. et al. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol. Life Sci. 78, 4259–4282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Allan, E. J., Hoischen, C. & Gumpert, J. Bacterial L‐forms. Adv. Appl. Microbiol. 68, 1–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Brown, S., Santa Maria, J. P. & Walker, S. Wall teichoic acids of Gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Rajagopal, M. & Walker, S. Envelope structures of Gram-positive bacteria. Curr. Top. Microbiol. Immunol. 404, 1 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Nguyen, M. T., Matsuo, M., Niemann, S., Herrmann, M. & Götz, F. Lipoproteins in Gram-positive bacteria: abundance, function, fitness. Front. Microbiol. 11, 582582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Gupta, R. S. Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 100, 171–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Deamer, D., Dworkin, J. P., Sandford, S. A., Bernstein, M. P. & Allamandola, L. J. The first cell membranes. Astrobiology 2, 371–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Peretó, J., López-García, P. & Moreira, D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29, 469–477 (2004).

    Article  PubMed  Google Scholar 

  166. Fuerst, J. A. & Sagulenko, E. Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat. Rev. Microbiol. 9, 403–413 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Heimerl, T. et al. A complex endomembrane system in the archaeon Ignicoccus hospitalis tapped by Nanoarchaeum equitans. Front. Microbiol. 8, 1072 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Mamou, G. et al. Peptidoglycan maturation controls outer membrane protein assembly. Nature 606, 953–959 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hummels, K. R. et al. Coordination of bacterial cell wall and outer membrane biosynthesis. Nature 615, 300–304 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Deghelt, M. & Collet, J. F. Bacterial envelope built to a peptidoglycan tune. Nature 606, 866–867 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Fivenson, E. M. et al. A role for the Gram-negative outer membrane in bacterial shape determination. Proc. Natl Acad. Sci. USA 120, e2301987120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Béchon, N. et al. Autotransporters drive biofilm formation and autoaggregation in the diderm Firmicute Veillonella parvula. J. Bacteriol. 202, e00461–e00520 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Nobu, M. K. et al. Unique H2-utilizing lithotrophy in serpentinite-hosted systems. ISME J. 17, 95–104 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Navarro, P. P. et al. Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli. Nat. Microbiol. 7, 1621–1634 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Khanna, K., Lopez-Garrido, J., Sugie, J., Pogliano, K. & Villa, E. Asymmetric localization of the cell division machinery during Bacillus subtilis sporulation. eLife 10, e62204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rast, A. et al. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants 5, 436–446 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Sexton, D. L. et al. The cell envelope of Thermotogae suggests a mechanism for outer membrane biogenesis. Proc. Natl Acad. Sci. USA 120, e2303275120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bettencourt-Schueller Foundation programme Impulscience (ENVOL) to S.G., the French National Research Agency (OM-LipAsy-CE44-008) to S.G. and C.B. and the French government Investissement d’Avenir Program, Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant no. ANR-10-LABX-62-IBEID). B.B.B.’s PhD fellowship is supported by MENESR (Ministère Français de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche), the Fondation pour la Recherche Médicale (FRM) and ANR-10-LABX-62-IBEID. B.B.B. wishes to thank H. Voedts and all members of the EBMC Unit for fruitful discussions during the preparation of this Review.

Author information

Authors and Affiliations

Authors

Contributions

B.B.B. and N.T. researched data for the article. C.B. contributed to discussion of the content. B.B.B., N.T. and S.G. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Simonetta Gribaldo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaud Benyahia, B., Taib, N., Beloin, C. et al. Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01088-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01088-0

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology