Abstract
The bacterial envelope is one of the oldest and most essential cellular components and has been traditionally divided into Gram-positive (monoderm) and Gram-negative (diderm). Recent landmark studies have challenged a major paradigm in microbiology by inferring that the last bacterial common ancestor had a diderm envelope and that the outer membrane (OM) was lost repeatedly in evolution to give rise to monoderms. Intriguingly, OM losses appear to have occurred exclusively in the Terrabacteria, one of the two major clades of bacteria. In this Review, we present current knowledge about the Terrabacteria. We describe their diversity and phylogeny and then highlight the vast phenotypic diversity of the Terrabacteria cell envelopes, which display large deviations from the textbook examples of diderms and monoderms, challenging the classical Gram-positive–Gram-negative divide. We highlight the striking differences in the systems involved in OM biogenesis in Terrabacteria with respect to the classical diderm experimental models and how they provide novel insights into the diversity and biogenesis of the bacterial cell envelope. We also discuss the potential evolutionary steps that might have led to the multiple losses of the OM and speculate on how the very first OM might have emerged before the last bacterial common ancestor.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).
Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).
Rosas, N. C. & Lithgow, T. Targeting bacterial outer-membrane remodelling to impact antimicrobial drug resistance. Trends Microbiol. 30, 544–552 (2022).
Storek, K. M., Sun, D. & Rutherford, S. T. Inhibitors targeting BamA in Gram-negative bacteria. Biochim. Biophys. Acta Mol. Cell Res. 1871, 119609 (2024).
Sabnis, A. & Edwards, A. M. Lipopolysaccharide as an antibiotic target. Biochim. Biophys. Acta Mol. Cell Res. 1870, 119507 (2023).
Overly Cottom, C., Stephenson, R., Wilson, L. & Noinaj, N. Targeting BAM for novel therapeutics against pathogenic Gram-negative bacteria. Antibiotics 12, 679 (2023).
Romano, K. P. & Hung, D. T. Targeting LPS biosynthesis and transport in Gram-negative bacteria in the era of multi-drug resistance. Biochim. Biophys. Acta Mol. Cell Res. 1870, 119407 (2023).
Sperandeo, P., Martorana, A. M., Zaccaria, M. & Polissi, A. Targeting the LPS export pathway for the development of novel therapeutics. Biochim. Biophys. Acta Mol. Cell Res. 1870, 119406 (2023).
Riu, F. et al. Antibiotics and carbohydrate-containing drugs targeting bacterial cell envelopes: an overview. Pharmaceuticals 15, 942 (2022).
Pahil, K. S. et al. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature 625, 572–577 (2024).
Zampaloni, C. et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 625, 566–571 (2024).
Oestreicher, Z., Taoka, A. & Fukumori, Y. A comparison of the surface nanostructure from two different types of Gram-negative cells: Escherichia coli and Rhodobacter sphaeroides. Micron 72, 8–14 (2015).
Pasquina-Lemonche, L. et al. The architecture of the Gram-positive bacterial cell wall. Nature 582, 294–297 (2020).
Benn, G. et al. Phase separation in the outer membrane of Escherichia coli. Proc. Natl Acad. Sci. USA 118, e2112237118 (2021).
Lithgow, T., Stubenrauch, C. J. & Stumpf, M. P. H. Surveying membrane landscapes: a new look at the bacterial cell surface. Nat. Rev. Microbiol. 21, 502–518 (2023).
Errington, J. L-form bacteria, cell walls and the origins of life. Open Biol. 3, 120143 (2013).
Lake, J. A. Evidence for an early prokaryotic endosymbiosis. Nature 460, 967–971 (2009).
Tocheva, E. I., Ortega, D. R. & Jensen, G. J. Sporulation, bacterial cell envelopes and the origin of life. Nat. Rev. Microbiol. 14, 535–542 (2016).
Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).
Taib, N. et al. Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition. Nat. Ecol. Evol. 4, 1661–1672 (2020).
Megrian, D., Taib, N., Jaffe, A. L., Banfield, J. F. & Gribaldo, S. Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria. Nat. Microbiol. 7, 2114–2127 (2022).
Coleman, G. A. et al. A rooted phylogeny resolves early bacterial evolution. Science 372, eabe0511 (2021).
Antunes, L. C. S. et al. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the firmicutes. eLife 5, e14589 (2016).
Megrian, D., Taib, N., Witwinowski, J., Beloin, C. & Gribaldo, S. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Mol. Microbiol. 113, 659–671 (2020).
Witwinowski, J. et al. An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. Nat. Microbiol. 7, 411–422 (2022).
Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4, 44 (2004).
Battistuzzi, F. U. & Hedges, S. B. A major clade of prokaryotes with ancient adaptations to life on land. Mol. Biol. Evol. 26, 335–343 (2009).
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).
Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).
Sutcliffe, I. C. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 18, 464–470 (2010).
Kartmann, B., Stengler, S. & Niederweis, M. Porins in the cell wall of Mycobacterium tuberculosis. J. Bacteriol. 181, 6543 (1999).
Niederweis, M., Danilchanka, O., Huff, J., Hoffmann, C. & Engelhardt, H. Mycobacterial outer membranes: in search of proteins. Trends Microbiol. 18, 109–116 (2010).
Niederweis, M. et al. Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol. Microbiol. 33, 933–945 (1999).
Bhamidi, S. et al. The identification and location of succinyl residues and the characterization of the interior arabinan region allow for a model of the complete primary structure of Mycobacterium tuberculosis mycolyl arabinogalactan. J. Biol. Chem. 283, 12992–13000 (2008).
Chiaradia, L. et al. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci. Rep. 7, 1–12 (2017).
Dulberger, C. L., Rubin, E. J. & Boutte, C. C. The mycobacterial cell envelope — a moving target. Nat. Rev. Microbiol. 18, 47–59 (2019).
Vincent, A. T. et al. The mycobacterial cell envelope: a relict from the past or the result of recent evolution? Front. Microbiol. 9, 2341 (2018).
Gaisin, V. A., Kooger, R., Grouzdev, D. S., Gorlenko, V. M. & Pilhofer, M. Cryo-electron tomography reveals the complex ultrastructural organization of multicellular filamentous Chloroflexota (Chloroflexi) bacteria. Front. Microbiol. 11, 1373 (2020).
Mavromatis, K. et al. Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. PLoS ONE 4, e4192 (2009).
Tocheva, E. I. et al. Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell 146, 799–812 (2011).
Watanabe, M., Kojima, H. & Fukui, M. Limnochorda pilosa gen. nov., sp. nov., a moderately thermophilic, facultatively anaerobic, pleomorphic bacterium and proposal of Limnochordaceae fam. nov., Limnochordales ord. nov. and Limnochordia classis nov. in the phylum Firmicutes. Int. J. Syst. Evol. Microbiol. 65, 2378–2384 (2015).
Puech, V. et al. Structure of the cell envelope of Corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147, 1365–1382 (2001).
Brennan, P. J. & Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 64, 29–63 (1995).
Jackson, M. The mycobacterial cell envelope — lipids. Cold Spring Harb. Perspect. Med. 4, a021105 (2014).
Nikaido, H., Kim, S. H. & Rosenberg, E. Y. Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol. Microbiol 8, 1025–1030 (1993).
Liu, J., Rosenberg, E. Y. & Nikaido, H. Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. Proc. Natl Acad. Sci. USA 92, 11254–11258 (1995).
Rastogi, N., Hellio, R. & David, H. L. A new insight into the mycobacterial cell envelope architecture by the localization of antigens in ultrathin sections. Zentralbl Bakteriol. 275, 287–302 (1991).
Hoffmann, C., Leis, A., Niederweis, M., Plitzko, J. M. & Engelhardt, H. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc. Natl Acad. Sci. USA 105, 3963–3967 (2008).
Rogers, H. J., Perkins, H. R. & Ward, J. B. Microbial cell walls and membranes. Microb. Cell Walls Membr. https://doi.org/10.1007/978-94-011-6014-8 (1980).
Vollmer, W., Blanot, D. & De Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).
Golecki, J. R. Studies on ultrastructure and composition of cell walls of the cyanobacterium Anacystis nidulans. Arch. Microbiol. 114, 35–41 (1977).
Hoiczyk, E. & Baumeister, W. Envelope structure of four gliding filamentous Cyanobacteria. J. Bacteriol. 177, 2387–2395 (1995).
Work, E. & Griffiths, H. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95, 641 (1968).
Sexton, D. L., Burgold, S., Schertel, A. & Tocheva, E. I. Super-resolution confocal cryo-CLEM with cryo-FIB milling for in situ imaging of Deinococcus radiodurans. Curr. Res. Struct. Biol. 4, 1–9 (2021).
Farci, D. et al. Purification and characterization of DR_2577 (SlpA) a major S-layer protein from Deinococcus radiodurans. Front. Microbiol. 6, 142960 (2015).
von Kügelgen, A. et al. Interdigitated immunoglobulin arrays form the hyperstable surface layer of the extremophilic bacterium Deinococcus radiodurans. Proc. Natl Acad. Sci. USA 120, e2215808120 (2023).
von Kügelgen, A., van Dorst, S., Alva, V. & Bharat, T. A. M. A multidomain connector links the outer membrane and cell wall in phylogenetically deep-branching bacteria. Proc. Natl Acad. Sci. USA 119, e2203156119 (2022).
Bharat, T. A. M., Tocheva, E. I. & Alva, V. The cell envelope architecture of Deinococcus: HPI forms the S-layer and SlpA tethers the outer membrane to peptidoglycan. Proc. Natl Acad. Sci. USA 120, e2305338120 (2023).
Hoiczyk, E. & Baumeister, W. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in Cyanobacteria. Curr. Biol. 8, 1161–1168 (1998).
Sexton, D. L. et al. Ultrastructure of organohalide-respiring Dehalococcoidia revealed by cryo-electron tomography. Appl. Environ. Microbiol. 88, e0190621 (2022).
Razin, S., Yogev, D. & Naot, Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62, 1094–1156 (1998).
Luef, B. et al. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat. Commun. 6, 6372 (2015).
Moreira, D., Zivanovic, Y., López-Archilla, A. I., Iniesto, M. & López-García, P. Reductive evolution and unique predatory mode in the CPR bacterium Vampirococcus lugosii. Nat. Commun. 12, 2454 (2021).
Ollivier, B. M., Mah, R. A. & Ferguson, T. J. Emendation of the genus Thermobacteroides: Thermobacteroides proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int. J. Syst. Bacteriol. 35, 425–428 (1985).
Etchebehere, C., Pavan, M. E., Zorzópulos, J., Soubes, M. & Muxí, L. Coprothermobacter platensis sp. nov., a new anaerobic proteolytic thermophilic bacterium isolated from an anaerobic mesophilic sludge. Int. J. Syst. Bacteriol. 48, 1297–1304 (1998).
Mori, K., Yamaguchi, K., Sakiyama, Y., Urabe, T. & Suzuki, K. I. Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov. Int. J. Syst. Evol. Microbiol. 59, 2894–2898 (2009).
McInerney, M. J., Bryant, M. P., Hespell, R. B. & Costerton, J. W. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41, 1029 (1981).
Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int. J. Syst. Evol. Microbiol. 50, 771–779 (2000).
Panova, I. A. et al. Desulfosporosinus metallidurans sp. nov., an. acidophilic, metal-resistant sulfate-reducing bacterium from acid mine drainage. Int. J. Syst. Evol. Microbiol. 71, 004876 (2021).
Maheux, A. F. et al. Criibacterium bergeronii gen. nov., sp. nov., a new member of the family Peptostreptococcaceae, isolated from human clinical samples. Int. J. Syst. Evol. Microbiol. 71, 004691 (2021).
Huber, R. et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch. Microbiol. 144, 324–333 (1986).
Hao, L. et al. Novel prosthecate bacteria from the candidate phylum Acetothermia. ISME J. 12, 2225–2237 (2018).
Hoppert, M. et al. Structure–functional analysis of the Dictyoglomus cell envelope. Syst. Appl. Microbiol. 35, 279–290 (2012).
Saiki, T., Kobayashi, Y., Kawagoe, K. & Beppu, T. Dictyoglomus thermophilumn gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int. J. Syst. Bacteriol. 35, 253–259 (1985).
Kuwabara, T., Kawasaki, A., Uda, I. & Sugai, A. Thermosipho globiformans sp. nov., an anaerobic thermophilic bacterium that transforms into multicellular spheroids with a defect in peptidoglycan formation. Int. J. Syst. Evol. Microbiol. 61, 1622–1627 (2011).
Chen, C., Lin, L., Peng, Q., Ben, K. & Zhou, Z. Meiothermus rosaceus sp. nov. isolated from Tengchong hot spring in Yunnan, China. FEMS Microbiol. Lett. 216, 263–268 (2002).
Mori, K. et al. Oceanithermus desulfurans sp. nov., a novel thermophilic, sulfur-reducing bacterium isolated from a sulfide chimney in Suiyo Seamount. Int. J. Syst. Evol. Microbiol. 54, 1561–1566 (2004).
Brock, T. D. & Edwards, M. R. Fine structure of thermus aquaticus, an extreme thermophile. J. Bacteriol. 104, 509–517 (1970).
Pradel, N. et al. Aminithiophilus ramosus gen. nov., sp. nov., a sulphur-reducing bacterium isolated from a pyrite-forming enrichment culture, and taxonomic revision of the family Synergistaceae. Int. J. Syst. Evol. Microbiol. 73, 005691 (2023).
Liebl, W., Winterhalter, C., Baumeister, W., Armbrecht, M. & Valdez, M. Xylanase attachment to the cell wall of the hyperthermophilic bacterium Thermotoga maritima. J. Bacteriol. 190, 1350–1358 (2008).
Jarvit, S., Gollanf, P. J. & Aro, E. M. Understanding the roles of the thylakoid lumen in photosynthesis regulation. Front. Plant. Sci. 4, 434 (2013).
Rast, A., Heinz, S. & Nickelsen, J. Biogenesis of thylakoid membranes. Biochim. Biophys. Acta 1847, 821–830 (2015).
Katayama, T. et al. Isolation of a member of the candidate phylum ‘Atribacteria’ reveals a unique cell membrane structure. Nat. Commun. 11, 6381 (2020).
Surkov, A. V., Dubinina, G. A., Lysenko, A. M., Glöckner, F. O. & Kuever, J. Dethiosulfovibrio russensis sp. nov., Dethiosulfovibrio marinus sp. nov. and Dethiosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from ‘Thiodenron’ sulfur mats in different saline environments. Int. J. Syst. Evol. Microbiol. 51, 327–337 (2001).
Wang, Y. et al. Genetic manipulation of Patescibacteria provides mechanistic insights into microbial dark matter and the epibiotic lifestyle. Cell 186, 4803–4817.e13 (2023).
Konovalova, A., Kahne, D. E. & Silhavy, T. J. Outer membrane biogenesis. Annu. Rev. Microbiol. 71, 539 (2017).
Simpson, B. W. & Trent, M. S. Pushing the envelope: LPS modifications and their consequences. Nat. Rev. Microbiol. 17, 403–416 (2019).
Lundstedt, E., Kahne, D. & Ruiz, N. Assembly and maintenance of lipids at the bacterial outer membrane. Chem. Rev. 121, 5098–5123 (2021).
Kumar, S. & Ruiz, N. Bacterial asmA-like proteins: bridging the gap in intermembrane phospholipid transport. Contact 6, 25152564231185931 (2023).
Konovalova, A. & Silhavy, T. J. Outer membrane lipoprotein biogenesis: Lol is not the end. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 370, 20150030 (2015).
Narita, S. I., Masui, C., Suzuki, T., Dohmae, N. & Akiyama, Y. Protease homolog BepA (YfgC) promotes assembly and degradation of β-barrel membrane proteins in Escherichia coli. Proc. Natl Acad. Sci. USA 110, E3612–E3621 (2013).
Plummer, A. M. & Fleming, K. G. From chaperones to the membrane with a BAM! Trends Biochem. Sci. 41, 872–882 (2016).
Ricci, D. P. & Silhavy, T. J. Outer membrane protein insertion by the β-barrel assembly machine. EcoSal Plus https://doi.org/10.1128/ecosalplus.ESP-0035-2018 (2019).
Knowles, T. J., Scott-Tucker, A., Overduin, M. & Henderson, I. R. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat. Rev. Microbiol. 7, 206–214 (2009).
Doyle, M. T. & Bernstein, H. D. Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel. Nat. Commun. 10, 3358 (2019).
Doyle, M. T. & Bernstein, H. D. Function of the Omp85 superfamily of outer membrane protein assembly factors and polypeptide transporters. Annu. Rev. Microbiol. 76, 259–279 (2022).
Tomasek, D. et al. Structure of a nascent membrane protein as it folds on the BAM complex. Nature 583, 473–478 (2020).
Heinz, E. & Lithgow, T. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front. Microbiol. 5, 370 (2014).
Chaturvedi, D. & Mahalakshmi, R. Transmembrane β-barrels: evolution, folding and energetics. Biochim. Biophys. Acta Biomembr. 1859, 2467–2482 (2017).
Har, E. M., Gupta, M., Wühr, M. & Silhavy, T. J. The gain-of-function allele bamAE470K bypasses the essential requirement for BamD in β-barrel outer membrane protein assembly. Proc. Natl Acad. Sci. USA 117, 18737–18743 (2020).
Arnold, T., Zeth, K. & Linke, D. Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition. J. Biol. Chem. 285, 18003–18015 (2010).
Yu, J. & Lu, L. BamA is a pivotal protein in cell envelope synthesis and cell division in Deinococcus radiodurans. Biochim. Biophys. Acta Biomembr. 1861, 1365–1374 (2019).
Deghelt, M. et al. The outer membrane and peptidoglycan layer form a single mechanical device balancing turgor. Preprint at bioRxiv https://doi.org/10.1101/2023.04.29.538579 (2023).
Rojas, E. R. et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 559, 617 (2018).
Braun, V. & Rehn, K. Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall. The specific effect of trypsin on the membrane structure. Eur. J. Biochem. 10, 426–438 (1969).
Parsons, L. M., Lin, F. & Orban, J. Peptidoglycan recognition by Pal, an outer membrane lipoprotein. Biochemistry 45, 2122–2128 (2006).
Gerding, M. A., Ogata, Y., Pecora, N. D., Niki, H. & De Boer, P. A. J. The trans-envelope Tol–Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol. Microbiol. 63, 1008–1025 (2007).
Park, J. S. et al. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the Gram-negative bacterial outer membrane. FASEB J. 26, 219–228 (2012).
Kamio, Y., Itoh, Y. & Terawaki, Y. Chemical structure of peptidoglycan in Selenomonas ruminantium: cadaverine links covalently to the D-glutamic acid residue of peptidoglycan. J. Bacteriol. 146, 49–53 (1981).
Cava, F., De Pedro, M. A., Schwarz, H., Henne, A. & Berenguer, J. Binding to pyruvylated compounds as an ancestral mechanism to anchor the outer envelope in primitive bacteria. Mol. Microbiol. 52, 677–690 (2004).
Kojima, S. & Okumura, Y. Outer membrane-deprived Cyanobacteria liberate periplasmic and thylakoid luminal components that support the growth of heterotrophs. Preprint at bioRxiv https://doi.org/10.1101/2020.03.24.006684 (2020).
Kojima, S. et al. Cadaverine covalently linked to peptidoglycan is required for interaction between the peptidoglycan and the periplasm-exposed S-layer-homologous domain of major outer membrane protein Mep45 in Selenomonas ruminantium. J. Bacteriol. 192, 5953–5961 (2010).
Olabarría, C., Carrascosa, J. L., De Pedro, M. A. & Berenguer, J. A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus. J. Bacteriol. 178, 4765–4772 (1996).
Rothfuss, H., Lara, J. C., Schmid, A. K. & Lidstrom, M. E. Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. Microbiology 152, 2779–2787 (2006).
Silale, A. et al. Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes. Nat. Commun. 14, 7152 (2023).
Ekiert, D. C. et al. Architectures of lipid transport systems for the bacterial outer membrane. Cell 169, 273–285.e17 (2017).
Tang, X. et al. Structural insights into outer membrane asymmetry maintenance in Gram-negative bacteria by MlaFEDB. Nat. Struct. Mol. Biol. 28, 81–91 (2021).
Grasekamp, K. P. et al. The Mla system of diderm Firmicute Veillonella parvula reveals an ancestral transenvelope bridge for phospholipid trafficking. Nat. Commun. 14, 7642 (2023).
Thong, S. et al. Defining key roles for auxiliary proteins in an ABC transporter that maintains bacterial outer membrane lipid asymmetry. eLife 5, e19042 (2016).
Chen, J. et al. Structure of an endogenous mycobacterial MCE lipid transporter. Nature 620, 445–452 (2023).
Ruiz, N., Davis, R. M. & Kumar, S. YhdP, TamB, and YdbH are redundant but essential for growth and lipid homeostasis of the Gram-negative outer membrane. mBio 12, e0271421 (2021).
Grimm, J. et al. The inner membrane protein YhdP modulates the rate of anterograde phospholipid flow in Escherichia coli. Proc. Natl Acad. Sci. USA 117, 26907–26914 (2020).
Douglass, M. V., McLean, A. B. & Trent, M. S. Absence of YhdP, TamB, and YdbH leads to defects in glycerophospholipid transport and cell morphology in Gram-negative bacteria. PLoS Genet. 18, e1010096 (2022).
Cooper, B. F. et al. Phospholipid transport to the bacterial outer membrane through an envelope-spanning bridge. Preprint at bioRxiv https://doi.org/10.1101/2023.10.05.561070 (2023).
Isom, G. L. et al. LetB structure reveals a tunnel for lipid transport across the bacterial envelope. Cell 181, 653–664.e19 (2020).
Nakayama, T. & Zhang-Akiyama, Q. M. pqiABC and yebST, putative mce operons of Escherichia coli, encode transport pathways and contribute to membrane integrity. J. Bacteriol. 199, e00606–e00616 (2017).
Yu, J. et al. A tamB homolog is involved in maintenance of cell envelope integrity and stress resistance of Deinococcus radiodurans. Sci. Rep. 7, 45929 (2017).
Selkrig, J. et al. Conserved features in TamA enable interaction with TamB to drive the activity of the translocation and assembly module. Sci. Rep. 5, 1–12 (2015).
Heinz, E., Selkrig, J., Belousoff, M. J. & Lithgow, T. Evolution of the translocation and assembly module (TAM). Genome Biol. Evol. 7, 1628 (2015).
Iqbal, H., Kenedy, M. R., Lybecker, M. & Akins, D. R. The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. Mol. Microbiol. 102, 757–774 (2016).
Törk, L., Moffatt, C. B., Bernhardt, T. G., Garner, E. C. & Kahne, D. Single-molecule dynamics show a transient lipopolysaccharide transport bridge. Nature 623, 814–819 (2023).
Putker, F., Bos, M. P. & Tommassen, J. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiol. Rev. 39, 985–1002 (2015).
Sahonero-Canavesi, D. X. et al. Changes in the distribution of membrane lipids during growth of Thermotoga maritima at different temperatures: indications for the potential mechanism of biosynthesis of ether-bound diabolic acid (membrane-spanning) lipids. Appl. Environ. Microbiol. 88, e0176321 (2022).
Damsté, J. S. S. et al. Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales. Arch. Microbiol. 188, 629 (2007).
He, H. et al. A Borrelia burgdorferi LptD homolog is required for flipping of surface lipoproteins through the spirochetal outer membrane. Mol. Microbiol. 119, 752–767 (2023).
Zgurskaya, H. I., Krishnamoorthy, G., Ntreh, A. & Lu, S. Mechanism and function of the outer membrane channel TolC in multidrug resistance and physiology of enterobacteria. Front. Microbiol. 2, 189 (2011).
Hahn, A., Stevanovic, M., Mirus, O. & Schleiff, E. The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance. J. Biol. Chem. 287, 41126–41138 (2012).
Brumm, P. J., Gowda, K., Robb, F. T. & Mead, D. A. The complete genome sequence of hyperthermophile Dictyoglomus turgidum DSM 6724TM reveals a specialized carbohydrate fermentor. Front. Microbiol. 7, 1979 (2016).
Dodsworth, J. A. et al. Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat. Commun. 4, 1854 (2013).
Hu, Z. Y. et al. The first complete genome sequence of the class Fimbriimonadia in the phylum Armatimonadetes. PLoS ONE 9, e100794 (2014).
Vergalli, J. et al. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat. Rev. Microbiol. 18, 164–176 (2019).
Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64, 43 (2010).
Zinke, M. et al. Ton motor conformational switch and peptidoglycan role in bacterial nutrient uptake. Nat. Commun. 15, 331 (2024).
Mirus, O., Strauss, S., Nicolaisen, K., von Haeseler, A. & Schleiff, E. TonB-dependent transporters and their occurrence in Cyanobacteria. BMC Biol. 7, 68 (2009).
Poppleton, D. I. et al. Outer membrane proteome of Veillonella parvula: a diderm firmicute of the human microbiome. Front. Microbiol. 8, 1215 (2017).
Berezuk, A. M. et al. Outer membrane lipoprotein RlpA is a novel periplasmic interaction partner of the cell division protein FtsK in Escherichia coli. Sci. Rep. 8, 1–14 (2018).
Typas, A. et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143, 1097–1109 (2010).
Caveney, N. A. et al. Structure of the peptidoglycan synthase activator LpoP in Pseudomonas aeruginosa. Structure 28, 643 (2020).
Legood, S., Seng, D., Boneca, I. G. & Buddelmeijer, N. A defect in lipoprotein modification by Lgt leads to abnormal morphology and cell death in Escherichia coli that is independent of major lipoprotein Lpp. J. Bacteriol. 204, e0016422 (2022).
Voedts, H. et al. Role of endopeptidases in peptidoglycan synthesis mediated by alternative cross‐linking enzymes in Escherichia coli. EMBO J. 40, e108126 (2021).
Fagan, R. P. & Fairweather, N. F. Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 12, 211–222 (2014).
Fioravanti, A., Mathelie-Guinlet, M., Dufrêne, Y. F. & Remaut, H. The Bacillus anthracis S-layer is an exoskeleton-like structure that imparts mechanical and osmotic stabilization to the cell wall. PNAS Nexus 1, 1–10 (2022).
Chaturongakul, S. & Ounjai, P. Phage–host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Front. Microbiol. 5, 98825 (2014).
Laloux, G. Shedding light on the cell biology of the predatory bacterium Bdellovibrio bacteriovorus. Front. Microbiol. 10, 508840 (2020).
Abavisani, M. et al. Colistin resistance mechanisms in Gram-negative bacteria: a focus on Escherichia coli. Lett. Appl. Microbiol. 76, 1–13 (2023).
Pandi, A. et al. Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides. Nat. Commun. 14, 71–97 (2023).
Manniello, M. D. et al. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol. Life Sci. 78, 4259–4282 (2021).
Allan, E. J., Hoischen, C. & Gumpert, J. Bacterial L‐forms. Adv. Appl. Microbiol. 68, 1–39 (2009).
Brown, S., Santa Maria, J. P. & Walker, S. Wall teichoic acids of Gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336 (2013).
Rajagopal, M. & Walker, S. Envelope structures of Gram-positive bacteria. Curr. Top. Microbiol. Immunol. 404, 1 (2017).
Nguyen, M. T., Matsuo, M., Niemann, S., Herrmann, M. & Götz, F. Lipoproteins in Gram-positive bacteria: abundance, function, fitness. Front. Microbiol. 11, 582582 (2020).
Gupta, R. S. Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 100, 171–182 (2011).
Deamer, D., Dworkin, J. P., Sandford, S. A., Bernstein, M. P. & Allamandola, L. J. The first cell membranes. Astrobiology 2, 371–381 (2002).
Peretó, J., López-García, P. & Moreira, D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29, 469–477 (2004).
Fuerst, J. A. & Sagulenko, E. Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat. Rev. Microbiol. 9, 403–413 (2011).
Heimerl, T. et al. A complex endomembrane system in the archaeon Ignicoccus hospitalis tapped by Nanoarchaeum equitans. Front. Microbiol. 8, 1072 (2017).
Mamou, G. et al. Peptidoglycan maturation controls outer membrane protein assembly. Nature 606, 953–959 (2022).
Hummels, K. R. et al. Coordination of bacterial cell wall and outer membrane biosynthesis. Nature 615, 300–304 (2023).
Deghelt, M. & Collet, J. F. Bacterial envelope built to a peptidoglycan tune. Nature 606, 866–867 (2022).
Fivenson, E. M. et al. A role for the Gram-negative outer membrane in bacterial shape determination. Proc. Natl Acad. Sci. USA 120, e2301987120 (2023).
Béchon, N. et al. Autotransporters drive biofilm formation and autoaggregation in the diderm Firmicute Veillonella parvula. J. Bacteriol. 202, e00461–e00520 (2020).
Nobu, M. K. et al. Unique H2-utilizing lithotrophy in serpentinite-hosted systems. ISME J. 17, 95–104 (2022).
Navarro, P. P. et al. Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli. Nat. Microbiol. 7, 1621–1634 (2022).
Khanna, K., Lopez-Garrido, J., Sugie, J., Pogliano, K. & Villa, E. Asymmetric localization of the cell division machinery during Bacillus subtilis sporulation. eLife 10, e62204 (2021).
Rast, A. et al. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants 5, 436–446 (2019).
Sexton, D. L. et al. The cell envelope of Thermotogae suggests a mechanism for outer membrane biogenesis. Proc. Natl Acad. Sci. USA 120, e2303275120 (2023).
Acknowledgements
This work was supported by the Bettencourt-Schueller Foundation programme Impulscience (ENVOL) to S.G., the French National Research Agency (OM-LipAsy-CE44-008) to S.G. and C.B. and the French government Investissement d’Avenir Program, Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant no. ANR-10-LABX-62-IBEID). B.B.B.’s PhD fellowship is supported by MENESR (Ministère Français de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche), the Fondation pour la Recherche Médicale (FRM) and ANR-10-LABX-62-IBEID. B.B.B. wishes to thank H. Voedts and all members of the EBMC Unit for fruitful discussions during the preparation of this Review.
Author information
Authors and Affiliations
Contributions
B.B.B. and N.T. researched data for the article. C.B. contributed to discussion of the content. B.B.B., N.T. and S.G. wrote the article. All authors reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Beaud Benyahia, B., Taib, N., Beloin, C. et al. Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01088-0
Accepted:
Published:
DOI: https://doi.org/10.1038/s41579-024-01088-0