Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards improved biofilm models

Abstract

Biofilms are complex microbial communities that have a critical function in many natural ecosystems, industrial settings as well as in recurrent and chronic infections. Biofilms are highly heterogeneous and dynamic assemblages that display complex responses to varying environmental factors, and those properties present substantial challenges for their study and control. In recent years, there has been a growing interest in developing improved biofilm models to offer more precise and comprehensive representations of these intricate systems. However, an objective assessment for ascertaining the ability of biofilms in model systems to recapitulate those in natural environments has been lacking. In this Perspective, we focus on medical biofilms to delve into the current state-of-the-art in biofilm modelling, emphasizing the advantages and limitations of different approaches and addressing the key challenges and opportunities for future research. We outline a framework for quantitatively assessing model accuracy. Ultimately, this Perspective aims to provide a comprehensive and critical overview of medically focused biofilm models, with the intent of inspiring future research aimed at enhancing the biological relevance of biofilm models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major biofilm properties.
Fig. 2: Diversity of biofilm models.
Fig. 3: A framework for biofilm model accuracy assessment.

Similar content being viewed by others

References

  1. Slavkin, H. C. Biofilms, microbial ecology and Antoni van Leeuwenhoek. J. Am. Dent. Assoc. 128, 492–495 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Bourgeois, J. F. & Barja, F. The history of vinegar and of its acetification systems. Arch. Sci. 62, 147–160 (2009).

    CAS  Google Scholar 

  3. Mack, W. N., Mack, J. P. & Ackerson, A. O. Microbial film development in a trickling filter. Microb. Ecol. 2, 215–226 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Vert, M. et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 84, 377–410 (2012).

    Article  CAS  Google Scholar 

  5. Bamford, N. C., MacPhee, C. E. & Stanley-Wall, N. R. Microbial primer: an introduction to biofilms — what they are, why they form and their impact on built and natural environments. Microbiology 169, 001338 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Crivello, G., Fracchia, L., Ciardelli, G., Boffito, M. & Mattu, C. In vitro models of bacterial biofilms: innovative tools to improve understanding and treatment of infections. Nanomaterials 13, 904 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guzmán-Soto, I. et al. Mimicking biofilm formation and development: recent progress in in vitro and in vivo biofilm models. iScience 24, 102443 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Merritt, J. H., Kadouri, D. E. & O’Toole, G. A. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. https://doi.org/10.1002/9780471729259.mc01b01s00 (2005).

  10. Ciofu, O., Moser, C., Jensen, P. O. & Hoiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 18, 621–635 (2022).

    Article  Google Scholar 

  11. Dufrene, Y. F. & Persat, A. Mechanomicrobiology: how bacteria sense and respond to forces. Nat. Rev. Microbiol. 18, 227–240 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Yuan, L., Straub, H., Shishaeva, L. & Ren, Q. Microfluidics for biofilm studies. Annu. Rev. Anal. Chem. 16, 139–159 (2023).

    Article  CAS  Google Scholar 

  13. Vyas, H. K. N., Xia, B. & Mai-Prochnow, A. Clinically relevant in vitro biofilm models: a need to mimic and recapitulate the host environment. Biofilm 4, 100069 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nowakowska, J., Landmann, R. & Khanna, N. Foreign body infection models to study host–pathogen response and antimicrobial tolerance of bacterial biofilm. Antibiotics 3, 378–397 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Diban, F. et al. Biofilms in chronic wound infections: innovative antimicrobial approaches using the in vitro Lubbock chronic wound biofilm model. Int. J. Mol. Sci. 24, 1004 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang, Y. et al. Manipulation of saliva-derived microcosm biofilms to resemble dysbiotic subgingival microbiota. Appl. Environ. Microbiol. 87, e02371–e02420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang, M. et al. Evaluating bacterial pathogenesis using a model of human airway organoids infected with Pseudomonas aeruginosa biofilms. Microbiol. Spectr. 10, e0240822 (2022).

    Article  PubMed  Google Scholar 

  18. Wu, B. et al. Human organoid biofilm model for assessing antibiofilm activity of novel agents. npj Biofilms Microbiomes 7, 8 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Horvath, T. D. et al. Interrogation of the mammalian gut–brain axis using LC-MS/MS-based targeted metabolomics with in vitro bacterial and organoid cultures and in vivo gnotobiotic mouse models. Nat. Protoc. 18, 490–529 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Dalton, T. et al. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS ONE 6, e27317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DeLeon, S. et al. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model. Infect. Immun. 82, 4718–4728 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ehrlich, G. D. et al. Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA 287, 1710–1715 (2002).

    Article  PubMed  Google Scholar 

  23. Jensen, L. K., Johansen, A. S. B. & Jensen, H. E. Porcine models of biofilm infections with focus on pathomorphology. Front. Microbiol. 8, 1961 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Christensen, L. D. et al. Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology 153, 2312–2320 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Bottagisio, M., Coman, C. & Lovati, A. B. Animal models of orthopaedic infections. A review of rabbit models used to induce long bone bacterial infections. J. Med. Microbiol. 68, 506–537 (2019).

    Article  PubMed  Google Scholar 

  26. Tan, M. L. L., Chin, J. S., Madden, L. & Becker, D. L. Challenges faced in developing an ideal chronic wound model. Expert Opin. Drug. Discov. 18, 99–114 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Thomsen, K. et al. Animal models of chronic and recurrent Pseudomonas aeruginosa lung infection: significance of macrolide treatment. APMIS 130, 458–476 (2022).

    Article  PubMed  Google Scholar 

  28. Vanderpool, E. J. & Rumbaugh, K. P. Host–microbe interactions in chronic rhinosinusitis biofilms and models for investigation. Biofilm 6, 100160 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carey, A. J. et al. Urinary tract infection of mice to model human disease: practicalities, implications and limitations. Crit. Rev. Microbiol. 42, 780–799 (2016).

    PubMed  Google Scholar 

  30. Kolpen, M. et al. Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax 77, 1015–1022 (2022).

    Article  PubMed  Google Scholar 

  31. Phalak, P., Chen, J., Carlson, R. P. & Henson, M. A. Metabolic modeling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species. BMC Syst. Biol. 10, 90 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Head, D., Marsh, P. D., Devine, D. A. & Tenuta, L. M. A. In silico modeling of hyposalivation and biofilm dysbiosis in root caries. J. Dent. Res. 100, 977–982 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Roberts, M. E. & Stewart, P. S. Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation. Antimicrob. Agents Chemother. 48, 48–52 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duddu, R., Chopp, D. L. & Moran, B. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol. Bioeng. 103, 92–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Sauer, K. et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 20, 608–620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharma, S. et al. Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms 11, 1614 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Toole, G. A. et al. Model systems to study the chronic, polymicrobial infections in cystic fibrosis: current approaches and exploring future directions. mBio 12, e0176321 (2021).

    Article  PubMed  Google Scholar 

  38. Barraza, J. P. & Whiteley, M. A Pseudomonas aeruginosa antimicrobial affects the biogeography but not fitness of Staphylococcus aureus during coculture. mBio https://doi.org/10.1128/mBio.00047-21 (2021).

  39. Ibberson, C. B., Barraza, J. P., Holmes, A. L., Cao, P. & Whiteley, M. Precise spatial structure impacts antimicrobial susceptibility of S. aureus in polymicrobial wound infections. Proc. Natl Acad. Sci. USA 119, e2212340119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cornforth, D. M., Diggle, F. L., Melvin, J. A., Bomberger, J. M. & Whiteley, M. Quantitative framework for model evaluation in microbiology research using Pseudomonas aeruginosa and cystic fibrosis infection as a test case. mBio 11, e03042–e03119 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lewin, G. R. et al. Application of a quantitative framework to improve the accuracy of a bacterial infection model. Proc. Natl Acad. Sci. USA 120, e2221542120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lewin, G. R., Stocke, K. S., Lamont, R. J. & Whiteley, M. A quantitative framework reveals traditional laboratory growth is a highly accurate model of human oral infection. Proc. Natl Acad. Sci. USA 119, e2116637119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Duran-Pinedo, A. et al. Long-term dynamics of the human oral microbiome during clinical disease progression. BMC Biol. 19, 240 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Duran-Pinedo, A. E. et al. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J. 8, 1659–1672 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Duran-Pinedo, A. E., Solbiati, J., Teles, F. & Frias-Lopez, J. Subgingival host–microbiome metatranscriptomic changes following scaling and root planing in grade II/III periodontitis. J. Clin. Periodontol. 50, 316–330 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Jorth, P. et al. Metatranscriptomics of the human oral microbiome during health and disease. mBio 5, e01012–e01014 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nowicki, E. M. et al. Microbiota and metatranscriptome changes accompanying the onset of gingivitis. mBio 9, e00575–e00618 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haft, D. H. et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 29, 41–43 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bang-Andreasen, T. et al. Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol. Ecol. 96, fiaa016 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cornforth, D. et al. Pseudomonas aeruginosa transcriptome during human infection. Proc. Natl Acad. Sci. USA 115, E5125–E5134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Crabbe, A. et al. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl. Environ. Microbiol. 77, 1221–1230 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Frias-Lopez, J. et al. Microbial community gene expression in ocean surface waters. Proc. Natl Acad. Sci. USA 105, 3805–3810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nuccio, E. E. et al. Community RNA-seq: multi-kingdom responses to living versus decaying roots in soil. ISME Commun. 1, 72 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ott, E. et al. Molecular repertoire of Deinococcus radiodurans after 1 year of exposure outside the International Space Station within the Tanpopo mission. Microbiome 8, 150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi, Y., Tyson, G. W. & DeLong, E. F. Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature 459, 266–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Zhao, X. et al. Phenotypic, genomic, and transcriptomic changes in an Acinetobacter baumannii strain after spaceflight in China’s Tiangong-2 space laboratory. Braz. J. Microbiol. 53, 1447–1464 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Caglar, M. U. et al. The E. coli molecular phenotype under different growth conditions. Sci. Rep. 7, 45303 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, W. H. et al. Integration of multi-omics data of a genome-reduced bacterium: prevalence of post-transcriptional regulation and its correlation with protein abundances. Nucleic Acids Res. 44, 1192–1202 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choi, Y. W., Park, S. A., Lee, H. W., Kim, D. S. & Lee, N. G. Analysis of growth phase-dependent proteome profiles reveals differential regulation of mRNA and protein in Helicobacter pylori. Proteomics 8, 2665–2675 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Corbin, R. W. et al. Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc. Natl Acad. Sci. USA 100, 9232–9237 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jayapal, K. P. et al. Uncovering genes with divergent mRNA–protein dynamics in Streptomyces coelicolor. PLoS ONE 3, e2097 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kwon, T., Huse, H. K., Vogel, C., Whiteley, M. & Marcotte, E. M. Protein-to-mRNA ratios are conserved between Pseudomonas aeruginosa strains. J. Proteome Res. 13, 2370–2380 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lu, P., Vogel, C., Wang, R., Yao, X. & Marcotte, E. M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25, 117–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Maier, T. et al. Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol. Syst. Biol. 7, 511 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang, M. et al. Impact of growth rate on the protein–mRNA ratio in Pseudomonas aeruginosa. mBio 14, e0306722 (2023).

    Article  PubMed  Google Scholar 

  66. Ohayon, S., Girsault, A., Nasser, M., Shen-Orr, S. & Meller, A. Simulation of single-protein nanopore sensing shows feasibility for whole-proteome identification. PLoS Comput. Biol. 15, e1007067 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Palmblad, M. Theoretical considerations for next-generation proteomics. J. Proteome Res. 20, 3395–3399 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Swaminathan, J. et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. https://doi.org/10.1038/nbt.4278 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Azimi, S., Klementiev, A. D., Whiteley, M. & Diggle, S. P. Bacterial quorum sensing during infection. Annu. Rev. Microbiol. 74, 201–219 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Azimi, S., Lewin, G. R. & Whiteley, M. The biogeography of infection revisited. Nat. Rev. Microbiol. 20, 579–592 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Ibberson, C. B. & Whiteley, M. The social life of microbes in chronic infection. Curr. Opin. Microbiol. 53, 44–50 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Connell, J. L., Kim, J., Shear, J. B., Bard, A. J. & Whiteley, M. Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy. Proc. Natl Acad. Sci. USA 111, 18255–18260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Connell, J. L., Ritschdorff, E. T., Whiteley, M. & Shear, J. B. 3D printing of microscopic bacterial communities. Proc. Natl Acad. Sci. USA 110, 18380–18385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, D. et al. Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries. Proc. Natl Acad. Sci. USA 117, 12375–12386 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stacy, A. et al. Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc. Natl Acad. Sci. USA 111, 7819–7824 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stacy, A., McNally, L., Darch, S. E., Brown, S. P. & Whiteley, M. The biogeography of polymicrobial infection. Nat. Rev. Microbiol. 14, 93–105 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Lidstrom, M. E. & Konopka, M. C. The role of physiological heterogeneity in microbial population behavior. Nat. Chem. Biol. 6, 705–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Blattman, S. B., Jiang, W., Oikonomou, P. & Tavazoie, S. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. Nat. Microbiol. 5, 1192–1201 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Homberger, C., Barquist, L. & Vogel, J. Ushering in a new era of single-cell transcriptomics in bacteria. Microlife 3, uqac020 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ma, P. et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 186, 877–891.e14 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McNulty, R. et al. Probe-based bacterial single-cell RNA sequencing predicts toxin regulation. Nat. Microbiol. 8, 934–945 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, B. et al. Single-cell massively-parallel multiplexed microbial sequencing (M3-seq) identifies rare bacterial populations and profiles phage infection. Nat. Microbiol. 8, 1846–1862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Avila Cobos, F., Vandesompele, J., Mestdagh, P. & De Preter, K. Computational deconvolution of transcriptomics data from mixed cell populations. Bioinformatics 34, 1969–1979 (2018).

    Article  PubMed  Google Scholar 

  86. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Harrison, J. J. et al. Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat. Protoc. 5, 1236–1254 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Millar, M. R., Linton, C. J. & Sherriff, A. Use of a continuous culture system linked to a modified Robbins device or flow cell to study attachment of bacteria to surfaces. Methods Enzymol. 337, 43–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Goeres, D. M. et al. A method for growing a biofilm under low shear at the air–liquid interface using the drip flow biofilm reactor. Nat. Protoc. 4, 783–788 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Perrin, A., Herbelin, P., Jorand, F. P. A., Skali-Lami, S. & Mathieu, L. Design of a rotating disk reactor to assess the colonization of biofilms by free-living amoebae under high shear rates. Biofouling 34, 368–377 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Palmer, K. L., Aye, L. M. & Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189, 8079–8087 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Edwards, S. & Kjellerup, B. V. Exploring the applications of invertebrate host–pathogen models for in vivo biofilm infections. FEMS Immunol. Med. Microbiol. 65, 205–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Schoenborn, A. A., Clapper, H., Eckshtain-Levi, N. & Shank, E. A. Rhizobacteria impact colonization of Listeria monocytogenes on Arabidopsis thaliana roots. Appl. Environ. Microbiol. 87, e0141121 (2021).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kendra P. Rumbaugh.

Ethics declarations

Competing interests

M.W. is the co-founder and CSO of SynthBiome, Inc. K.P.R. does not declare competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Darla Goeres, Knut Drescher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumbaugh, K.P., Whiteley, M. Towards improved biofilm models. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01086-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01086-2

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology