Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut–airway microbiome axis in health and respiratory diseases

Abstract

Communication between the gut and remote organs, such as the brain or the cardiovascular system, has been well established and recent studies provide evidence for a potential bidirectional gut–airway axis. Observations from animal and human studies indicate that respiratory insults influence the activity of the gut microbiome and that microbial ligands and metabolic products generated by the gut microbiome shape respiratory immunity. Information exchange between these two large mucosal surface areas regulates microorganism–immune interactions, with significant implications for the clinical and treatment outcomes of a range of respiratory conditions, including asthma, chronic obstructive pulmonary disease and lung cancer. In this Review, we summarize the most recent data in this field, offering insights into mechanisms of gut–airway crosstalk across spatial and temporal gradients and their relevance for respiratory health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Compartmentalization of microbial phylogeny in the gut and airways.
Fig. 2: Factors affecting human gut and airway microbiome development through the lifespan.
Fig. 3: Crosstalk between the lung and the gut microbiotas.
Fig. 4: The future of microbiome medicine.

Similar content being viewed by others

References

  1. Weeks, J. R., Staples, K. J., Spalluto, C. M., Watson, A. & Wilkinson, T. M. A. The role of non-typeable. Front. Cell Infect. Microbiol. 11, 720742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Altman, M. C. et al. Transcriptome networks identify mechanisms of viral and nonviral asthma exacerbations in children. Nat. Immunol. 20, 637–651 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wenger, M. et al. When the allergy alarm bells toll: the role of Toll-like receptors in allergic diseases and treatment. Front. Mol. Biosci. 10, 1204025 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Donovan, C. et al. The role of the microbiome and the NLRP3 inflammasome in the gut and lung. J. Leukoc. Biol. 108, 925–935 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, H. et al. Highly multiplexed bioactivity screening reveals human and microbiota metabolome-GPCRome interactions. Cell 186, 3095–3110.e19 (2023).

    Article  PubMed  Google Scholar 

  6. DeVries, A. et al. Maternal prenatal immunity, neonatal trained immunity, and early airway microbiota shape childhood asthma development. Allergy 77, 3617–3628 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Hampton, H. R. & Chtanova, T. Lymphatic migration of immune cells. Front. Immunol. 10, 1168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doré, E. & Boilard, E. Bacterial extracellular vesicles and their interplay with the immune system. Pharmacol. Ther. 247, 108443 (2023).

    Article  PubMed  Google Scholar 

  9. McCauley, K. et al. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. J. Allergy Clin. Immunol. 144, 1187–1197 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mourani, P. M., Harris, J. K., Sontag, M. K., Robertson, C. E. & Abman, S. H. Molecular identification of bacteria in tracheal aspirate fluid from mechanically ventilated preterm infants. PLoS ONE 6, e25959 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lohmann, P. et al. The airway microbiome of intubated premature infants: characteristics and changes that predict the development of bronchopulmonary dysplasia. Pediatr. Res. 76, 294–301 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Gallacher, D. J. & Kotecha, S. Respiratory microbiome of new-born infants. Front. Pediatr. 4, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Huffnagle, G. B., Dickson, R. P. & Lukacs, N. W. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol. 10, 299–306 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Teo, S. M. et al. Airway microbiota dynamics uncover a critical window for interplay of pathogenic bacteria and allergy in childhood respiratory disease. Cell Host Microbe 24, 341–352.e5 (2018). This study examines how shifts in the nasopharyngeal microbiome composition, often occurring before viral infections and symptoms, coupled with early allergic sensitization, are linked to persistent wheezing disease in children.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dubourg, G. et al. Culturomics and pyrosequencing evidence of the reduction in gut microbiota diversity in patients with broad-spectrum antibiotics. Int. J. Antimicrob. Agents 44, 117–124 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Koliada, A. et al. Seasonal variation in gut microbiota composition: cross-sectional evidence from Ukrainian population. BMC Microbiol. 20, 100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vatanen, T. et al. Mobile genetic elements from the maternal microbiome shape infant gut microbial assembly and metabolism. Cell 185, 4921–4936.e15 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bargheet, A. et al. Development of early life gut resistome and mobilome across gestational ages and microbiota-modifying treatments. EBioMedicine 92, 104613 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reyman, M. et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat. Commun. 10, 4997 (2019). This study shows the impact of delivery mode on the composition of the gut microbiota over the first year of life, and the subsequent implications for susceptibility to respiratory infections.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Panzer, A. R. et al. The impact of prenatal dog keeping on infant gut microbiota development. Clin. Exp. Allergy 53, 833–845 (2023).

    Article  PubMed  Google Scholar 

  26. Sun, J. et al. Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nat. Commun. 11, 1427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wiertsema, S. P., van Bergenhenegouwen, J., Garssen, J. & Knippels, L. M. J. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients 13, 886 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozcam, M. et al. A secondary metabolite drives intraspecies antagonism in a gut symbiont that is inhibited by cell-wall acetylation. Cell Host Microbe 30, 824–835.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Ozcam, M. et al. Gut symbionts Lactobacillus reuteri R2lc and 2010 encode a polyketide synthase cluster that activates the mammalian aryl hydrocarbon receptor. Appl. Env. Microb. 85, e01661-18 (2019).

    Article  Google Scholar 

  30. Fujimura, K. E. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22, 1187–1191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McCauley, K. E. et al. Heritable vaginal bacteria influence immune tolerance and relate to early-life markers of allergic sensitization in infancy. Cell Rep. Med. 3, 100713 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leitao, F. S. et al. Sputum microbiome is associated with 1-year mortality after chronic obstructive pulmonary disease hospitalizations. Am. J. Respir. Crit. Care Med. 199, 1205–1213 (2019).

    Article  Google Scholar 

  33. Teo, S. M. et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 17, 704–715 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Flynn, J. M., Niccum, D., Dunitz, J. M. & Hunter, R. C. Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease. PLoS Pathog. 12, e1005846 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ghorbani, P. et al. Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth. Eur. Respir. J. 46, 1033–1045 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Querdasi, F. R. et al. Multigenerational adversity impacts on human gut microbiome composition and socioemotional functioning in early childhood. Proc. Natl Acad. Sci. USA 120, e2213768120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O’Dwyer, D. N. et al. Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1127–1138 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sibila, O. et al. Airway bacterial load and inhaled antibiotic response in bronchiectasis. Am. J. Respir. Crit. Care Med. 200, 33–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, P. P. et al. The gut-lung axis in critical illness: microbiome composition as a predictor of mortality at day 28 in mechanically ventilated patients. BMC Microbiol. 23, 399 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kelly, B. J. et al. Composition and dynamics of the respiratory tract microbiome in intubated patients. Microbiome 4, 7 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Combs, M. P. et al. Lung microbiota predict chronic rejection in healthy lung transplant recipients: a prospective cohort study. Lancet Respir. Med. 9, 601–612 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sencio, V., Machado, M. G. & Trottein, F. The lung-gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol. 14, 296–304 (2021). This review highlights the crucial role of the gut microbiota in enhancing lung immunity against viral respiratory infections and explores the potential impact of alterations in gut microbiota composition on disease outcomes, including in the context of COVID-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alhamwe, B. A. et al. Extracellular vesicles and asthma — more than just a co-existence. Int. J. Mol. Sci. 22, 4984 (2021).

    Article  CAS  Google Scholar 

  45. Morin, A. et al. Epigenetic landscape links upper airway microbiota in infancy with allergic rhinitis at 6 years of age. J. Allergy Clin. Immun. 146, 1358–1366 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Venegas, D. P. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).

    Article  CAS  Google Scholar 

  47. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Yeung, F. et al. Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host Microbe 27, 809–822.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fonseca, W. et al. Lactobacillus johnsonii supplementation attenuates respiratory viral infection via metabolic reprogramming and immune cell modulation. Mucosal Immunol. 10, 1569–1580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hjelmsø, M. H. et al. Prenatal dietary supplements influence the infant airway microbiota in a randomized factorial clinical trial. Nat. Commun. 11, 426 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chavakis, T. Immunometabolism: where immunology and metabolism meet. J. Innate Immun. 14, 1–3 (2022).

    Article  PubMed  Google Scholar 

  52. Roduit, C. et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 74, 799–809 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Li, N. et al. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir. Res. 22, 274 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gui, Q. et al. The association between gut butyrate-producing bacteria and non-small-cell lung cancer. J. Clin. Lab. Anal. 34, e23318 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thorburn, A. N., Macia, L. & Mackay, C. R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40, 833–842 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Ferolla, F. M. et al. Macronutrients during pregnancy and life-threatening respiratory syncytial virus infections in children. Am. J. Resp. Crit. Care 187, 983–990 (2013).

    Article  CAS  Google Scholar 

  57. Sikder, M. A. et al. Maternal diet modulates the infant microbiome and intestinal Flt3L necessary for dendritic cell development and immunity to respiratory infection. Immunity 56, 1098–1114.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, Y. D. et al. Intestinal microbiota-derived propionic acid protects against zinc oxide nanoparticle-induced lung injury. Am. J. Resp. Cell Mol. 67, 680–694 (2022).

    Article  CAS  Google Scholar 

  59. Maruyama, D. et al. Regulation of lung immune tone by the gut-lung axis via dietary fiber, gut microbiota, and short-chain fatty acids. Preprint at bioRxiv https://doi.org/10.1101/2023.08.24.552964 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Trompette, A. et al. Dietary fiber confers protection against flu by shaping Ly6c. Immunity 48, 992–1005.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Jiang, M. et al. Butyrate inhibits iILC2-mediated lung inflammation via lung–gut axis in chronic obstructive pulmonary disease (COPD). BMC Pulm. Med. 23, 163 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Machado, M. G., Sencio, V. & Trottein, F. Short-chain fatty acids as a potential treatment for infections: a closer look at the lungs. Infect. Immun. 89, e00188-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dang, A. T. & Marsland, B. J. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 12, 843–850 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014). This seminal study highlights that dietary fibre influences the gut and lung microbiota, leading to increased SCFAs in the bloodstream, which can impact lung inflammation and immune responses.

    Article  CAS  PubMed  Google Scholar 

  65. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013). This study demonstrates that microbial metabolites, particularly the SCFAs butyrate and propionate produced by gut bacteria, promote the generation of anti-inflammatory Treg cells in the intestine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Segal, L. N. et al. Anaerobic bacterial fermentation products increase tuberculosis risk in antiretroviral-drug-treated HIV patients. Cell Host Microbe 21, 530–537.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Levan, S. R. et al. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nat. Microbiol. 4, 1851–1861 (2019). This study reports that gut bacteria-derived 12,13-diHOME contributes to allergic inflammation by reducing Treg cells in the lungs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Raatz, S. K., Conrad, Z., Jahns, L., Belury, M. A. & Picklo, M. J. Modeled replacement of traditional soybean and canola oil with high-oleic varieties increases monounsaturated fatty acid and reduces both saturated fatty acid and polyunsaturated fatty acid intake in the US adult population. Am. J. Clin. Nutr. 108, 594–602 (2018).

    Article  PubMed  Google Scholar 

  69. Peebles, R. S. Prostaglandins in asthma and allergic diseases. Pharmacol. Ther. 193, 1–19 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Devillard, E., McIntosh, F. M., Duncan, S. H. & Wallace, R. J. Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J. Bacteriol. 189, 2566–2570 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jaudszus, A. et al. Cis-9,trans-11-conjugated linoleic acid inhibits allergic sensitization and airway inflammation via a PPAR γ-related mechanism in mice. J. Nutr. 138, 1336–1342 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Turpeinen, A. M., Ylönen, N., von Willebrand, E., Basu, S. & Aro, A. Immunological and metabolic effects of cis-9, trans-11-conjugated linoleic acid in subjects with birch pollen allergy. Br. J. Nutr. 100, 112–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Schulthess, J. et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50, 432–445.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ning, L., Rui, X., Bo, W. & Qing, G. The critical roles of histone deacetylase 3 in the pathogenesis of solid organ injury. Cell Death Dis. 12, 734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McCauley, K. E. et al. Seasonal airway microbiome and transcriptome interactions promote childhood asthma exacerbations. J. Allergy Clin. Immunol. 150, 204–213 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Doyle, L. M. & Wang, M. Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8, 727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramirez, M. I. & Marcilla, A. Pathogens and extracellular vesicles: new paths and challenges to understanding and treating diseases. Editorial opinion. Mol. Immunol. 139, 155–156 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Kim, M. R. et al. Staphylococcus aureus-derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses. Allergy 67, 1271–1281 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Chelakkot, C. et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 50, e450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. von Gerichten, J. et al. Bacterial immunogenic α-galactosylceramide identified in the murine large intestine: dependency on diet and inflammation. J. Lipid Res. 60, 1892–1904 (2019).

    Article  Google Scholar 

  81. Zhang, J. et al. Natural killer T cell ligand alpha-galactosylceramide protects against gut ischemia reperfusion-induced organ injury in mice. Cytokine 111, 237–245 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. D’Amico, F., Baumgart, D. C., Danese, S. & Peyrin-Biroulet, L. Diarrhea during COVID-19 infection: pathogenesis, epidemiology, prevention, and management. Clin. Gastroenterol. Hepatol. 18, 1663–1672 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Antunes, K. H. et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat. Commun. 10, 3273 (2019). This study demonstrates that a high-fibre diet protects mice from severe RSV infection by modulating the intestinal microbiota, promoting acetate production and triggering an IFNβ response in lung epithelial cells, ultimately reducing viral load and inflammation.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369, 1210–1220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Steed, A. L. et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357, 498–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, Q. et al. Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection. Genome Biol. 21, 99 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bradley, K. C. et al. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell Rep. 28, 245–256.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Onder, G., Rezza, G. & Brusaferro, S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 323, 1775–1776 (2020).

    CAS  PubMed  Google Scholar 

  92. Xu, Y. et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 26, 502–505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes. Science 369, 50–54 (2020). This recent study shows that COVID-19 can infect the intestines due to high angiotensin-converting enzyme 2 (ACE2) receptor expression.

    Article  CAS  PubMed  Google Scholar 

  94. Nagata, N. et al. Human gut microbiota and its metabolites impact immune responses in COVID-19 and its complications. Gastroenterology 164, 272–288 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Xu, X. G. et al. Integrated analysis of gut microbiome and host immune responses in COVID-19. Front. Med. 16, 263–275 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sun, Z. H. et al. Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Med. 20, 24 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Guo, M. Q. et al. Guild-level microbiome signature associated with COVID-19 severity and prognosis. mBio 14, e0325922 (2023). Using both human and animal models, this study demonstrates that gut microbiome dysbiosis is linked to bacterial translocation into the blood, causing severe secondary infections in cases of SARS-CoV-2 infection.

    Article  Google Scholar 

  98. Zhang, F. et al. Prolonged impairment of short-chain fatty acid and L-isoleucine biosynthesis in gut microbiome in patients with COVID-19. Gastroenterology 162, 548–561.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Cao, J. B. et al. Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut Microbes 13, 1–21 (2021).

    Article  PubMed  Google Scholar 

  100. Bernard-Raichon, L. et al. Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nat. Commun. 13, 5926 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fujimura, K. E. et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl Acad. Sci. USA 111, 805–810 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Fonseca, W. et al. Maternal gut microbiome regulates immunity to RSV infection in offspring. J. Exp. Med. 218, e20210235 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kyburz, A. et al. Transmaternal Helicobacter pylori exposure reduces allergic airway inflammation in offspring through regulatory T cells. J. Allergy Clin. Immunol. 143, 1496–1512.e11 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, A. et al. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome. Microbiol. Spectr. 9, e0085921 (2021).

    Article  PubMed  Google Scholar 

  105. Henry, G. E., Momin, R. A., Nair, M. G. & Dewitt, D. L. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agric. Food Chem. 50, 2231–2234 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Gostner, J. M., Becker, K., Kofler, H., Strasser, B. & Fuchs, D. Tryptophan metabolism in allergic disorders. Int. Arch. Allergy Immunol. 169, 203–215 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. von Bubnoff, D. & Bieber, T. The indoleamine 2,3-dioxygenase (IDO) pathway controls allergy. Allergy 67, 718–725 (2012).

    Article  Google Scholar 

  108. Ray, K. J., Santee, C., McCauley, K., Panzer, A. R. & Lynch, S. V. Gut Bifidobacteria enrichment following oral Lactobacillus-supplementation is associated with clinical improvements in children with cystic fibrosis. BMC Pulm. Med. 22, 287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01956916 (2015).

  110. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05502913 (2023).

  111. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04924374 (2023).

  112. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04951583 (2023).

  113. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04924270 (2023).

  114. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05873348 (2023).

  115. Jang, Y. O. et al. Fecal microbial transplantation and a high fiber diet attenuates emphysema development by suppressing inflammation and apoptosis. Exp. Mol. Med. 52, 1128–1139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Trivillin, A. et al. Early oral nutritional supplements in the prevention of wheezing, asthma, and respiratory infections. Front. Pediatr. 10, 866868 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Scoditti, E., Massaro, M., Garbarino, S. & Toraldo, D. M. Role of diet in chronic obstructive pulmonary disease prevention and treatment. Nutrients 11, 1357 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brustad, N. et al. Fish oil and vitamin D supplementations in pregnancy protect against childhood croup. J. Allergy Clin. Immunol. Pract. 11, 315–321 (2023). This study shows that supplementation of pregnant individuals with fish oil (n-3 long-chain PUFAs) and vitamin D reduced the risk of respiratory disorder (croup) in their children during the first 3 years of life.

    Article  CAS  PubMed  Google Scholar 

  119. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00798226 (2024).

  120. Mills, S., Stanton, C., Lane, J. A., Smith, G. J. & Ross, R. P. Precision nutrition and the microbiome, Part I: current state of the science. Nutrients 11, 923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of Bacteria and Archaea. Science 327, 167–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Sharma, A. et al. CRISPR–Cas9 editing of the HBG1 and HBG2 promoters to treat sickle cell disease. N. Engl. J. Med. 389, 820–832 (2023). This study reports, for the first time, that an engineered bacteriophage M13 can deliver DNA, including a programmable CRISPR–Cas9 system, to E. coli in the mouse gastrointestinal tract, allowing precise microbiome editing and strain-specific modifications.

    Article  CAS  PubMed  Google Scholar 

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04443907 (2024).

  124. Qiu, H. Y., Ji, R. J. & Zhang, Y. Current advances of CRISPR–Cas technology in cell therapy. Cell Insight 1, 100067 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Dong, X. et al. Genetic manipulation of the human gut bacterium Eggerthella lenta reveals a widespread family of transcriptional regulators. Nat. Commun. 13, 7624 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhao, M. et al. Engineered phage with cell-penetrating peptides for intracellular bacterial infections. mSystems 8, e0064623 (2023).

    Article  PubMed  Google Scholar 

  127. Luo, W. et al. Deep tumor penetration of CRISPR–Cas system for photothermal-sensitized immunotherapy via probiotics. Nano Lett. 23, 8081–8090 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Slevogt, H. et al. Moraxella catarrhalis is internalized in respiratory epithelial cells by a trigger-like mechanism and initiates a TLR2- and partly NOD1-dependent inflammatory immune response. Cell Microbiol. 9, 694–707 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Lam, K. N. et al. Phage-delivered CRISPR–Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 37, 109930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Man, W. H., Piters, W. A. A. D. & Bogaert, D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol. 15, 259–270 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Marsh, R. L. et al. The microbiota in bronchoalveolar lavage from young children with chronic lung disease includes taxa present in both the oropharynx and nasopharynx. Microbiome 4, 37 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bassis, C. M. et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio 6, e00037–15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Charlson, E. S. et al. Lung-enriched organisms and aberrant bacterial and fungal respiratory microbiota after lung transplant. Am. J. Resp. Crit. Care 186, 536–545 (2012).

    Article  Google Scholar 

  134. Dickson, R. P. et al. Bacterial topography of the healthy human lower respiratory tract. mBio 8, e02287-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Dickson, R. P. et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc. 12, 821–830 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Armougom, F. et al. Microbial diversity in the sputum of a cystic fibrosis patient studied with 16S rDNA pyrosequencing. Eur. J. Clin. Microbiol. 28, 1151–1154 (2009).

    Article  CAS  Google Scholar 

  137. Guss, A. M. et al. Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J. 5, 20–29 (2011).

    Article  PubMed  Google Scholar 

  138. Segal, L. N. et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat. Microbiol. 1, 16031 (2016). This study explores the impact of microaspiration and the presence of oral bacteria in the lower airways on inflammation and immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pragman, A. A. et al. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease. Microbiome 6, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tsay, J. C. J., Murthy, V. & Segal, L. N. in Current Cancer Research (ed. Robertson, E. S.) 151–166 (Humana Press, 2019).

  141. Zhang, S., Bai, X. & Shan, F. The progress and confusion of anti-PD1/PD-L1 immunotherapy for patients with advanced non-small cell lung cancer. Int. Immunopharmacol. 80, 106247 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Mohseni, A. H., Taghinezhad-S, S., Casolaro, V., Lv, Z. W. & Li, D. Potential links between the microbiota and T cell immunity determine the tumor cell fate. Cell Death Dis. 14, 154 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Eng, L. et al. Impact of antibiotic exposure before immune checkpoint inhibitor treatment on overall survival in older adults with cancer: a population-based study. J. Clin. Oncol. 41, 3122–3134 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018). This study demonstrates that gut bacterial microbiota composition influences response to cancer immunotherapy, with specific bacteria enhancing treatment effectiveness.

    Article  CAS  PubMed  Google Scholar 

  146. Jin, C. et al. Commensal microbiota promote lung cancer development via γδ T cells. Cell 176, 998–1013.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jin, Y. P. et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J. Thorac. Oncol. 14, 1378–1389 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Qiu, B. et al. Gut microbiome is associated with the response to chemoradiotherapy in patients with non-small cell lung cancer. Int. J. Radiat. Oncol. 115, 407–418 (2023).

    Article  Google Scholar 

  149. Mishra, A. et al. Microbial exposure during early human development primes fetal immune cells. Cell 184, 3394–3409.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vidal, M. S. & Menon, R. In utero priming of fetal immune activation: myths and mechanisms. J. Reprod. Immunol. 157, 103922 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Rackaityte, E. et al. Viable bacterial colonization is highly limited in the human intestine in utero. Nat. Med. 26, 599–607 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. DiGiulio, D. B. et al. Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age fetuses. J. Perinat. Med. 38, 495–502 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  153. McGovern, N. et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 546, 662–666 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bisgaard, H., Jensen, S. M. & Bønnelykke, K. Interaction between asthma and lung function growth in early life. Am. J. Respir. Crit. Care Med. 185, 1183–1189 (2012).

    Article  PubMed  Google Scholar 

  155. Bobolea, I., Arismendi, E., Valero, A. & Agustí, A. Early life origins of asthma: a review of potential effectors. J. Investig. Allergol. Clin. Immunol. 29, 168–179 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Rothers, J. et al. Maternal cytokine profiles during pregnancy predict asthma in children of mothers without asthma. Am. J. Respir. Cell Mol. Biol. 59, 592–600 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nayfach, S., Rodriguez-Mueller, B., Garud, N. & Pollard, K. S. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 26, 1612–1625 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Durack, J. et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat. Commun. 9, 707 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bowerman, K. L. et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat. Commun. 11, 5886 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li, J. et al. Robust cross-cohort gut microbiome associations with COVID-19 severity. Gut Microbes 15, 2242615 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Yu, Z., Shen, X., Wang, A., Hu, C. & Chen, J. The gut microbiome: a line of defense against tuberculosis development. Front. Cell Infect. Microbiol. 13, 1149679 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liu, X. et al. The role of gut microbiota in lung cancer: from carcinogenesis to immunotherapy. Front. Oncol. 11, 720842 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by S.V.L.’s research programme, which is funded by the National Institutes of Health/National Institute of Allergy and Infectious Disease awards AI128482, AI148104, UG3OD023282 and AI089473 and by Lyda Hill Philanthropies, Acton Family Giving, the Valhalla Foundation, Hastings/Quillin Fund — an advised fund of the Silicon Valley Community Foundation, the CH Foundation, Laura and Gary Lauder and Family, the Sea Grape Foundation, the Emerson Collective, Mike Schroepfer and Erin Hoffman Family Fund — an advised fund of the Silicon Valley Community Foundation and the Anne Wojcicki Foundation through the Audacious Project at the Innovative Genomics Institute, Berkeley California. M.Ö. is supported by postdoctoral T32 fellowship 2T32DK007762-46. The authors thank H. Steininger, M. Bacino and S. Vylkova for their internal review of this article.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Susan V. Lynch.

Ethics declarations

Competing interests

S.V.L. is a board member and consultant for the biotechnology company Siolta Therapeutics, Inc. and holds stock in the company. She also consults for Sanofi. M.Ö. is supported in part by NIH Training Grant T32-DK007762.

Peer review

Peer review information

Nature Reviews Microbiology thanks Benjamin Wu and Michael Combs for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Clinicaltrials.gov: https://clinicaltrials.gov/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özçam, M., Lynch, S.V. The gut–airway microbiome axis in health and respiratory diseases. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01048-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01048-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing